™ ’ -

- Language Reference Manual

The Iagination, odsi

APF BASIC

This version of the popular BASIC computer language has been specifically designed
and written for the APF Imagination Machine. Special features of this language
include:

* Three octave music system.
* High and low resolution color graphics.
* Hand control input commands.
» Four place, fixed decimal arithmetic with 12 digit accuracy.
The information in this manual is organized and presented for use by experienced

programmers. For an introduction to BASIC programming, we suggest BASIC Tutor™
—an interactive teaching system available for your APF personal computer.

I (N Fo/INDE X I

CHAPTER 1 KEYBOARD AND HAND CONTROLS PAGE 6
CHAPTER 2 GENERAL PAGE 7
NUMBER VARIABLES RULES OF PRECEDENCE
LETTER VARIABLES LINE LENGTH, SPACING
VARIABLE NAMES MULTIPLE STATEMENTS
ALGEBRAIC OPERATORS MAXIMUM LINE NUMBER

RELATIONAL AND LOGICAL OPERATORS

CHAPTER 3 COMMANDS PAGE 8

EDIT

LIST

LIST 100
LIST 100,
LIST 1005
RUN

CHAPTER 4 PROGRAM STATEMENTS PAGE 8

CALL
DATA 5.10.BILL

DIM AS$(10).B$(4,12).C(5.8)

END PAGE 9
FORA=BTOC

FOR A=10 TO 1 STEP-1

GOSUB 100

GOTO 100

IF A=B THEN 300

IF AS<BS THEN GOSUB 2000

IF A<>B THEN PRINT “EQUAL":END

INPUT A

INPUT A.B

INPUT "AMOUNT".A

LETA=50rA=5 PAGE 10
ON A GOSUB 1000.1200.1500,2000

ON A GOTO 10.20.30

POKE 784.1

PRINT A

PRINT AB

PRINT A;B

PRINT A;TAB(10).B

PRINT A:SPC(10):B

PRINT “HELLO"

PRINT USING “SS### ##".A

PRINT USING “######## TOTAL IS ###" AS.B

PRINT USING AS.B

PRINT USING 100.A PAGE 11
READ A BS

RESTORE

RETURN

STOP

CHAPTER 5 ARITHMETIC FUNCTIONS

ABS(X)
INT(X)
PEEK(X)
RND(X)
SGN(X)

CHAPTER 6 STRING FUNCTIONS
ASC(AS)
CHRS(N)
KEY $(X)
LEN(AS)
ADDRESSING CHARACTERS IN A STRING

CHAPTER 7 MUSIC

CHAPTER 8 GRAPHICS (64 x 32)

COLOR

SHAPE

PLOT 10,8

HLIN 10,20.8

VLIN 8,12,10

CLEAR SCREEN

EXAMINE SCREEN LOCATION
REVERSE VIDEO (BLACK/ORANGE)
REVERSE VIDEO (GREEN/GREEN)
LOCATE CURSOR

POSITION CURSOR

CHAPTER 9 GRAPHICS (128 x 192)

MODE SELECT
MEMORY MAPS
DEFINE SHAPES
PLOT SHAPES
EXAMPLE

CHAPTER 10 TAPE

SAVING PROGRAMS
LOADING TAPES
AUDIO RECORDING
AUDIO SHUTOFF
MOTOR START/STOP

APPENDEX
A. RESERVED WORDS
B. ASCII CODES
C. MACHINE LANGUAGE ACCESS
D. ERROR MESSAGES

PAGE 11

PAGE 12

PAGE 13

PAGE 14

PAGE 15

PAGE 16

PAGE 17

PAGE 19

PAGE 20

B CHAPTER 1 KEYBOARD AND HAND CONTROLS NN

Study the keyboard carefully. Most of the keyboard is like a standard typewriter with
several special keys. In addition to the special keys the Imagination Machine also has
two rows of control keywords across the top of the keyboard. Use of the special keys
is described in the section below.

((cosus [rer [ourw [weur | om [ron Jreron] mew [on Jooro [ro [mestone |
L v] ster | srov[READ Incn] eana | eno] ust [REW]usmﬁ I csm[CLOAD J

i ——
oj LINE
FEED

iy () () 7_

\

\.

ESC

When ESC is pressed a | appears on the screen.

CTRL

The CTRL key allows you to use the control keywords printed above the top row of
keys. The two rows of control keywords correspond to the top two rows of keys.
To print GOTO on the screen hold down the CTRL key and press the @ key. To print
CLOAD on the screen hold down the CTRL key and press the RETURN key.

SHIFT

Since the computer has no lower case letters the SHIFT keys are only used to print
the symbols on the upper half of the number keys and wherever shown on other keys.
HERE IS

Is not used in the current version of APF BASIC.

LINE FEED

Is not used in the current version ot APF BASIC.

RETURN

The RETURN key acts like the carriage return on a typewriter. It is also used to tell
the computer when you are through entering. When this key is pressed the computer
will look at what you have typed and decide what to do with it.

RUB OUT

The RUBOQUT key is used to back space and erase one character at a time.

REPT

The REPT (repeat) key is used to make any other key print continuously on the screen
as long as you hold down both keys. up to the maximum line length of 128 characters.
BRK

The BRK (break) key causes your program to stop running and return to user input
or control mode It does not function during an input statement or while saving and
loading on tape.

HAND CONTROLS

There are two hand controllers attached to the MP 1000. One s marked with an L
for teft and the other with an R for right. They can be accessed with a key $ function
P12,

6

I CHAPTER 2 GENERAL NG

VARIABLES
There are two types of variables, number variables or letter variables. The maximum
number of variables is 26.

NUMBER VARIABLES —Number variables can be up to 13 digits long ranging from
+999,999,999.9999 to —999,999,999.9999.

LETTER VARIABLES —Letter variables can contain up to 100 characters. The maxi-
mum length of each letter variable must be defined with a dimension statement.

VARIABLE NAMES —Variable names can be up to 5 characters long. but only the
first 2 characters are used. Names cannot cbntain a keyword. The first character must
be a letter. Letter variable names must end with a $.
EXAMPLE: Variable names that are correct but different.

A A% A1, A1$, A2SAM, A2SAMS
Variable names that the computer sees as being the same.

AL, ALSAM, ALLEN, ALL, AL123.
Variable names that are illegal and don't work.

3AL. A$B. A3%.

ALGEBRAIC OPERATORS
The symbols used for arithmetic operations are

+ a+b: arithmetic addition: aplusb

— a—b: arithmetic subtraction: aminusb

* a*b: multiplication: atimesb

/ a/b: division: adivided by b

f ajpb exponetiation: a to the b power —note:

b must be an integer.

RELATIONAL AND LOGICAL OPERATORS

Used to compare 2 values, produces a true or false result.
a =b aequalb

a<>b a notequalb

a<b alessthanb

a > b agreaterthanb

a<<=b alessthanorequal b

a>=b agreater than or equal b

RULES OF PRECEDENCE
Expressions are evaluated with operators having the following precedence
highest precedence: negation

t exponention

*./ multiplication/division

— .+ addition/subtraction

lowest precedence: relational
When 2 operators of the same precedence occur, the expression is evaluated left
to right.

LINE LENGTH
Maximum line length is 128 characters. Keywords count as one character.

SPACING

All spaces are ignored except those inside quotation marks or in REM statements,
or in a print using definition.

MULTIPLE STATEMENTS/LINE

Multiple statements are separated by a colon.

ex: 10 PRINT 123:IF A=B THEN GOTO 30

MAX LINE #
Maximum line # is 9999. All line #'s must be integer only.

I CHAPTER 3 COMMANDS I

EDIT
The EDIT statement is used to change a portion of a line in your program. It must be
followed by the line number you want to change and the ESC key. Then type the
section of the statement you want to change. Press the ESC key again and then the
new characters.
EXAMPLE: EDIT N ESC X ESC Y RETURN

N is line # to be edited

X is text to be deleted

Y is text to replace X
EXAMPLE: 100 INPUT A$:PRINT IN$

200 IF IN$="NOT THEN 1000

300 IF IN$S="YES" THEN 100

EDIT 100(AS[INS

EDIT 200(T(

EDIT 300[100{RETURN

LIST

100 INPUT INS$:PRINTINS

200 IF IN$="NO" THEN 1000

300 IF IN$="YES" THEN RETURN

LIST
Lists all lines in your program

LIST 100
Lists line 100 of program

LIST 100,
Lists from line 100 to end of program

LIST 100,5
Lists five lines of your program. beginning with line number 100

RUN
Sets all variables to zero. Execution then begins with the first line in your program.

B CHAPTER 4 PROGRAM STATEMENTS NN

CALL

Transfers program execution to a machine language routine written in M 6800 object

code

EXAMPLE CALL 17046
This call branches your program to a special sub-routine that begins at
location 17046. This particular sub-routine will clear the TV screen. When
a 6800 RTS instruction occurs. return will be to the next basic statement.

DATA 5.10.BILL

Stores data to be accessed by READ statements. Data items will be read sequentially.
llems may be numbers or characters but not expressions. Each data item must be
separated by a comma

DIM

Reserves memory for strings. lists of strings. or tables of numbers.

EXAMPLE DIM A$(10).B8%(4.12).C(5.8)
This example reserves memory for an 11 character string. {A$),5 strings
of 13 characters each. (B$),and a table of numbers that is 6 rows by 9
columns {C) Maximum string length 1s 100 characters. A$(99).

END
Stops program and returns control to the console.

FORA=BTOC
Combines with a NEXT statement to form a loop. Variable A begins with the value of
B and increments to the value of C.

FOR A=10 TO1 STEP-1
Combines with a NEXT statement to count from 10 to 1. Note: if step value is not
given, it is assumed to be 1.
EXAMPLE: 10 FOR A = 10to t STEP -1
20 PRINT A
30 NEXT A

GOSuUB 100
Calls a BASIC subroutine located at line 100.

GOTO 100
Transfers program to line 100.

IF A=B THEN 300
Transfers program to line 300 if A equals B. If A is not equal to B the rest of the line
is not read by the computer and the program transfers to the next numbered line.
Any comparison can be used, such as;
= equal
<> not equal
> greater than
< less than
>= greater than or equal
<= less'than or equal

IF AS<=BS$ THEN GOSUB 2000

Transfers program to the subroutine at 2000 if A$ is less than B$. The value of A$ is
compared to the value of B$ alphabetically. Numerals come before letters alpha-
betically.

IF A=B THEN PRINT “EQUAL":END
Prints the word EQUAL and ends the program if A and B are not equal. If A equals B
then the next line of the program is executed.

INPUT A

Reads data from the keyboard. A question mark is displayed to indicate that the com-
puter is waiting for a response. Separate multiple input items with a comma. Command
is only terminated after a return key is pressed.

EXAMPLE: INPUT AB

The user must respond with two numbers separate by commas. If only one input is
given, then computer automatically asks for second one (B)

INPUT AS,B
The user must enter a character string comma and a number.

INPUT “AMOUNT", A
Prints the word AMOUNT foliowed by a question mark and waits for the user to type
in a number.

NOTE: If anumber is being requested and the user responds with a group of characters
beginning with a letter, then the computer accepts the input as if he types a 0.

If the user types a group of characters beginning with one or more numerals the
computer accepts those numerals as the number.

LETA=5o0r A=5
Sets the variable A equal to the constant 5. The word LET is optional and A=5 also
works. The constant 5 can be replaced by an arithmatic expression.
EXAMPLE A -34(B+C)." 4
B 3+B/C -AA2*C
This example is equivalent to B=3+(B/C}—-({A/12)*C)

ON A GOSUB 1000,1200,1500,2000

Calls one of a list of subroutines, depending on the value of A. If A equals one, GOSUB
1000 results; if A equals two, GOSUB 1200 results; and if A equals three, GOSUB
1500 results. If A equals any other value. then GOSUB 2000 resuits.

ON A GOTO 10,20,30
Jumps to one of a list of lines, depending on the value of A If A equals one, GOTO
10 results and if A equals two. GOTO 20 results. Any other value results ina GOTO 30.

POKE 7841

Places the number 1 in memory location 784 This POKE displays the letter A in the
middle of your screen. Any memory location can be poked as long as it is between
0 and 65, 536. The value poked must be a positive integer from 0 to 255. If greater
than 255, modulo (255} is performed

PRINT A
Prints the value of A

PRINT AB
Prints the values ot A and B in separate columns. Columns are automatically 8 char-
acters wide. (ie. A is column 1. B is printed in column 9).

PRINT A:B
Prints the vatues of A and B with no spaces between them

PRINT A:TAB(10).B
Prints the value of A spaces ten characters from the left margin. and prints the value
of B.

PRINT A:SPC(10).8
Prints the value of A. spaces ten characters from the last character in A, and prints
the value of B

PRINT "HELLO"
Prints HELLO.

PRINT USING “$S###8 #8" A

Prints the value of A with a leading dollar sign and two decimal places... $29.50,
$104.01. $.02. etc. You must use as many pound signs (#} as there are digits in the
value of A

PRINT USING “s#xuss#s# TOTAL IS ###" AS.B
Replaces the pound signs (#} with the characters in'AS and the value of B. .- SATUR-
DAY TOTAL IS 128. DOOMSDAY TOTAL IS 27 TOTAL IS 365, etc

PRINT USING AS.B
Prints the value of B. using the characters in A$ as the format The format string is
contained in the string variable. A$

10

PRINT USING 100,A
Prints the value of A, using the data in line 100 as the format. Line 100 must begin
with a colon and quotes are not required.

100 ## ##4#

100 SS###4.##

100 :LAST QUOTE: ##t##

READ A ,BS
Reads data into specified variable from DATA statement.
EXAMPLE: 100 DATA 37,BILL.SAM.8
200 READ A.B$
300 READ C$,.D,E.F$
310 DATA 42 THE
Note that DATA statements can be placed after the READ statements.

RESTORE
Resets the data pointer so that the next READ statement begins with the first DATA
statement in the program.
EXAMPLE: 100 DATA 37.BILL,8, SAM
200 READ A, Bs$
300 RESTORE
400 READ C.D$
In this example C will be assigned the value 37.

RETURN
Returns from the subroutine to the statement following the GOSUB.

STOP
Stops the program.

I CHAPTER 5 ARITHMETIC FUNCTIONS N

All functions are written of the form
NAME(X)
Name is the function mnemonic. No spaces are allowed between the name and the
left parenthesis.
X is the operand and can be a constant, expression or function.

ABS(X)—returns absoiute value of x
ABS(-12)=12
ABS(0) =0
ABS(1.45) = 1.45

INT(X) —returns integer portion of X. Fractional portion of x is truncated.
INT(12.34) = 12

PEEK(X) —returns decimal value stored in memory location x. X is a decimal address.

EXAMPLE: A=PEEK (41452)
In this example the value of memory location 41452 is placed in A If it is @ then
CSAVE will place the TV image at the beginning of your tape.

RND(X) random number between @ and 3.9999

SGN(X) tif x>0, —1if x<0.0 if x=0.

1

IR CHAPTER 6 STRING FUNCTIONS NS

ASC(AS) Returns ASCIH Code of the first character in AS.
ex: PRINT ASC(A"}
65 This is decimal ASCIHI code for letter A

CHRS(N) Produces string of one character length whose ASCIil code is N.
Ex: PRINT CHR$(31)
-— This is the literal whose ASCI code is decimal 31.

LEN(AS) Returns # of characters (Length) in AS.
EX: DIM A$(10)
A$ = "ABC"
PRINT LEN (A$)
3 Lengthis 3.

KEY$(0) Reads the typewriter keyboard. If no key is pressed, A$=""_ If key is pressed,
A$ - C" where Cis the character typed.
EXAMPLE: 10 A$=KEY$(3): IF A$=""THEN 10
20 PRINT AS
Line 10 is asking if any key on the keyboard is pressed. If no, it loops back to the
beginning of line 10 and asks again. If a key is pressed. the program drops through
to line 20 and prints that key on the screen.

A$=KEY$(2)

Reads the left hand control. If no key is pressed, A$=""_If key @ to 9 is pressed,
A$ “n where n s the number of the key. If the knob is moved, A$="d" where d is
the direction (N.S.E. or W).If CL is pressed, A$—"?"1If either EN or the FIRE button
is pressed. As=""

A$=KEY$(1)
Reads the right hand control in the same manner as described above.

ADDRESSING CHARACTERS IN A STRING
Since strings are dimensional as arrays. it is possible to address any character or
group of characters in a string.
EXAMPLE:
DIM A$(9).B$(1)
A$ "ABCDEFGHIJ”

PRINT AS$ This prints ABCDEFGHIJ
PRINT A$(4) This prints EFGHIJ
B$ AS$(3)PRINT BS This prints DE

I CHAPTER 7 MUsIC I

Using the MUSIC command, you can write and play music on your computer using
numbers. The numbers 1 through 7 play the musical scale.

D
& A
o o7

To play one octave higher, place a multiply sign (*) in front of the number, and to
play one octave lower, place a divide (/) sign in front of the number.

/1 /3 /5 /7 2 4 6 *x1 %3 %5 %7
/2 /4 /6 1 357:«2*4*6J

]

e

7

You can also play sharps and flats by typing a + or — sign in front of the note.
The number zero (@) is used to hold the previous note.
Leaving a space between numbers creates a pause in the music.

EXAMPLE: MUSIC"3212333"
MUSIC"3212333000"
If the music plays too quickly you can slow it down by placing a @ between each note.
MUSIC"302010203030"
Spaces create a different sound.
MUSIC'3212333"
If you want to use the same sequence of notes over and over you can assign them
to a variable.
MUSICAS.B$
EXAMPLE: 10 For I=1 t0 10
20 Music “/1/2/3/4/5/6/71234567*1*2*3*4*5*6*7"
30 Next I
EXAMPLE: Let's try a song.
MUSIC “32123332223553212333322321"
EXAMPLE: Using A$,B$

A$="5552332"
B8$="77665"
MUSIC AS, B$

I CHAPTER 8 GRAPHICS (64x32) NI

The low resolution graphics mode divides the screen into 512 cursor size rectangles,
32 columns wide by 16 rows high {32 x 16). These are the same 512 boxeés used to
show alphanumerics and therefore this mode allows mixing of alphanumerics and
color graphics on the screen.

COLOR

Any cursor position can be any one of eight colors’at any time by assigning it a color
number from @ to 7. Setting COLOR =expression determines the color to be usedinthe
next line or plot command. Expression can be a constant or expression. Modulo
arithmetic is performed so the expression can.be greater than>7.

Q@ = Dark Green 4 = White

1 = Yellow 5 = Light Green
2 = Blue 6 = Purple

3 - Red 7 = QOrange

This means you can have eight different coiors on the screen at the same time.

SHAPE

To get higher resolution each cursor position-can be divided into four cells. By se-
lecting the appropriate shapes you can draw a picture with much higher resolution
(64 x 32).

The shape table shows the number for each cursor shape.

Ol 4” 8“ 12
1n SH QE 13
GM 75 115 15

Shape is set equal to a constant or expression. It's value is used in the next plot or
line command modulo 15 arithmatic is performed so shape can be greater than 15:

Since only one color can be assigned to a cursor position the cells that are lit will all
be the same color and the remaining cetls will be black.

SHAPE 6 BLACK YELLOW
COLOR 1 YELLOW BLACK
PLOT
To select the X and Y position on the screen where you want the shape to appear

use the PLOT command.

14

PLOT 10,8
Means place the shape in the 10th column in the 8th row.

l —

01 23456 7 891011121314151617181920212223242526272829 3031

10

1"

12

13

14

15

To place shape 6 on the screen in yellow and black in the position X = 10, Y = 8 the
command would be:
COLOR=1:SHAPE=6:PLOT10.8

LINE
To draw a horizontal line of the selected shape use the HLIN command and specify

the starting column, the ending column and the row.

HLIN 10,20,8
Means draw a line starting in column 10 ending in column 20 using row 8. The same
process is used to draw vertical lines on the screen.

VLIN 8,12,10
Means draw a vertical line starting in row 8 ending in row 12 using column 10.

NOTE: If you plot a shape or top of another shape the second shape is added to the
first shape;it does not replace it. The new shape takes on the new color.
Plotting a 9 on top of a 6 gives you a 15.

EXAMPLE: 10 SHAPE=15
20FORI=0to 7
30 COLOR=1
40 HLIN 1,311, 1
50 HLIN [,31—1, 151
60 VLIN 1,151, 1
70 VLIN 1, 151,311
80 NEXT I
90 GOTO 90

CLEAR SCREEN
To clear the screen use CALL 17046

EXAMINE SCREEN LOCATION
A=PEEK(512+Y*32+X)
EXAMPLE:

PRINT PEEK(512+10*32+18)
This prints the contents of the 18th position of the 10th row The numbers 512°and 32
are always used as shown. The other two numbers determine the X and Y coordinate
of the screen.

If A>127, the location contains a shape (EB , m ,etc.)
If A<< =127, the location contains a character (A, B, C, etc.)

0<A<63 light green character on dark green
A CHARACTER

~ [JJJO0000
N ——

CHARACTER CODE (APPENDIX A)

64<A <127 dark green character on light green
A = CHARACTER + 64

A-LHNO00O0O0O0

CHARACTER CODE (APPENDIX A)

128<A<255 shape
A =128+ COLOR*16 + SHAPE

~-[M0O0000004

—
COLOR ~ SHAPE

REVERSE VIDEO (BLACK/ORANGE)

POKE 8193.60

Changes color of reverse video characters from dark green on light green to black
on orange. This does not affect letters in standard video. light green on dark green.

REVERSE VIDEO (GREEN/GREEN)
POKE 8193.52
Restores standard video. Use after POKE 8193.60.

LOCATE CURSOR
A Peek (40960)'256 + PEEK(40961)
Places in A the position of the cursor.

A ROW*32 + COLUMN + 512
» ERENEEEIO0000000

ROW COLUMN

POSITION CURSOR
Position cursor by setting A as shown and poking two locations. To position cursor

at 22,7
. L=7
. P=22
« A=L*32+P +512
- POKE 40960.A/256
+« POKE 40961 .A-INT(A/256)*256

16

I CHAPTER 9 GRAPHICS (128x192) I

Graphics mode (128 x 192)—There is a high resolution graphics mode which has the
following features.
1. 128 x 192 resolution
2. 2 color sets each with 4 colors so there can be a total of 8 colors on the screen
at once.

MODE SELECT
Enter this graphics mode with:

POKE 8193,60

POKE 8194,158
Return to the (64 x 32) graphic mode with:

POKE 8193,52

POKE 8194,30
When the computer is in this mode there is no alphanumerics capability. Therefore,
pressing keys or the keyboard will not-produce letters on the screen but will cause
the computer to take a directed action.

MEMORY MAPS

Two memory areas are used. The screen map occupies memory locations @ to 383
and the shape table occupies locations 512 to 1023.

31

SCREEN MAP
32

384 OBJECT BOXES

11
The TV screen is divided into 384 object boxes (12 rows by 32 columns). Each box
may contain any one of 32 special shapes.

These shapes are stored in the shape table and numbered @ to 31.
15

SHAPE TABLE
16

31

The shape table describes each of the 32 shapes that can be displayed. Each shape
is composed of 16 bytes, one byte for each horizontal row of dots in the shape.

17

DEFINE SHAPES
In this graphic’'s mode each shape to be plotted on the screen is 4 dots wide and 16
dots high.

Each horizontal row of four dots is set with a POKE instruction. For example, this
POKE sets the top row of dots in shape number one to the colors C1, C2, C3, and C4:
POKE 512,C1*64+C2*16+C3*4+C4

Each color number is between @ and 3, depending on the color selected. The color
tables are in the next section.

The example at the end of this section shows how up to 32 shapes can be created
with similar POKE instructions.

PLOT SHAPES

After the shapes have been created in the shape table, they can be plotted on the
screen.

The format for each byte in the screen map is:

cOEO0000
N—

SHAPE NUMBER

COLOR TABLE

If color table setect @
® GREEN

1 YELLOW

2 BLUE

3 RED

If cotor table select 1
@ WHITE

1 AQUA

2 PURPLE

3 ORANGE

NOTE: The color table is selected in the screen map and the specific color in the
table is included in the shape definition.

EXAMPLE:
100 L=6:REM LINES AREQTO 1
110 P=19:REM POSITIONS ARE @ TO 31
120 S=13:REM SHAPES ARE 0 TO 31
130 T=0:REM COLOR TABLES ARE @ OR 1
140 DATA (0.0.1.1:REM A SHAPE IS 4 DOTS ACROSS
150 DATA 0.0.1.1:REM BY 16 DOTS DOWN
160 DATA 0.1.1.2:REM
170 DATA 0.1.1.2:REM EACH DOT IS ONE OF FOUR
180 DATA 1.1.2.2:REM COLORS
190 DATA 1.1.2.2:REM
200 DATA 1.2.2.3:REM EACH COLOR IS NUMBERED @ TO 3
210 DATA 1.2.2.3
220 DATA 2.2.3.3
230 DATA2.233
240 DATA 2330
250 DATA 2.3.3.0
260 DATA 3.3.0.0
270 DATA 3.3.0.0
280 DATA 3.0.0.1
290 DATA 3.0.0.1
300 REM
310 REM SET UP THE SHAPE
320 REM
330 FORIQTO 15

18

340 READ AB.C.D

350 POKE 512 +S$*16+1,A*64+B*16+C*4+D

360 NEXTI

370 REM

380 REM PLACE THE SHAPE ON THE SCREEN USING
390 REM THE CHOSEN COLOR TABLE

400 REM

410 POKE L*32+P.S+T1*64

I CcHAPTER 10 TAPE I

Tape Operation

The tape system is specially designed for the Imagination Machine. The key features

are:

1. Dual track tapes are used. One for standard audio recording or playback, and the
other for digital recording or playback.

2. Microphone jack built in for audio recording. Any standard cassette microphone
may be used.

3. Separate speaker built in for audio playback. Volume control is included.

4. Semi-automatic computer control. Record or playback of either audio or digital is
under computer control. Fast forward and rewind are manually operated.

5. High speed digital transfer rate —approximately 1500 bits per second.

6. Tape counter included to allow manual location (thru fast forward or rewind) of a
desired section of tape.

SAVING PROGRAMS

CSAVE is used to save program memory. It is not necessary to press the record
button on the tape deck since that is used only to record audio. Do not delay more
than 5 seconds when pressing the play/save button and the return key. For an 8K
system CSAVE takes abou 45 seconds.

During a CSAVE all keyboard functions are inoperative: CSAVE will save the entire
amount of random access memory.

Saving 512 Biock for Screen

In addition to the program memory, CSAVE first saves a block of 512 bytes. This will
be placed on the screen first when loading so pictures or messages can be stored.
There are 2 possible blocks that can be saved. The selected one is determined by
the contents of memory location 41452.

If (41452) = 0 then locations 512-1023 (screen memory) are saved.

If (41452) = 255 then locations 0-511 {scratch memory) are saved.

Saving Program Data
Since CSAVE always saves all memory.then all dimensioned variables are also saved on
tape.This can be used to save and revise data. Simply use a goto statement to start the
program after loading (run automatically clears all variables).
Note: After a reset is pressed, one RUN command is always necessary to initialize
certain system constants. Therefore we recommend that if you want to use a tape
with data, do the following sequence.

1 CLOAD

RUN 1st RUN after reset

Follow instructions to load

When OK appears

Type GOTO x where x is first statement of loaded program.

LOADING TAPES

CLOAD is the command for loading tapes. The first 512 bytes of the tape are always
put to screen memory. After that the next BK bytes are read to program memory. At
the end of loading there is a check sum to indicate all data is read correctly. If it was,
the word OK appears on the left side of the screen and the cursor returns. If anything
except OK appears, it was a bad load and the tape must be reloaded.

19

AUDIO RECORDING
One of the nicer features of the Imagination Machine is that you can_record your
voice, or even music, on the same tape as your computer program. To do this, plug a
microphone into the microphone jack on the body of the keyboard unit and press the
record key Now type in the following statement:

POKE 24578.62

This turns on the motor. Now talk or play music into the microphone. It is being re-
corded on the audio track of the tape without damaging or changing any programs
you may have placed on the program track.
To turn off the motor, type:

POKE 24578.38

AUDIO SHUTOFF
To stop the voice track on a program tape from playing through the speaker, type:
POKE 24578.54

MOTOR START/STOP

To start the cassette tape motor and listen to the audio track, type:
POKE 24578.62

To stop the cassette tape motor. type:
POKE 24578.38

- FuSNnhey |

RESERVED WORDS _
The following words can not be used as or contained variable names.

ABS MUSIC
ASC NEXT
CALL ON
CHR$ OPEN
CLOAD PEEK
COLOR PLOT
CSAVE POKE
DATA PRINT
DIM READ
END RESTORE
FOR RETURN
GOSUB RND
GOTO RUN
HLIN SGN
IF SHAPE
INPUT SPC
INT STEP
KEYS STOP
LEN TAB
LET THEN
LIST TO
USING

20 VLIN

I A rPENDIX B I

ASCIil CODES AND TOKENS

The following are codes used to place alphanumerics on the screen:

Decimal Will Appear Decimal Will Appear
0 @ 32 Space
1 A 33 !
2 B 34
3 C 35 #
4 D 36 $
5 E 37 %
6 F 38 &
7 G 39
8 H 40 (
9 | 41)

10 J 42 *
11 K 43 +
12 L 44

13 M 45 -

14 N 46 .

15 (o] 47 /
16 P 48 0
17 Q 49 1

18 R 50 2
19 S 51 3
20 T 52 4
21] 53 5
22 \Y .54 6
23 W 55 7
24 X 56 8
25 Y 57 9
26 V4 58 :

27 [59 .

28 AN 60 <
29 1 61 -
30 t 62 >
31 - 63 ?

I APPENDIX C

MACHINE LANGUAGE REFERENCE

The Imagination Machine contains a machine language monitor. You can use
the monitor to create, display, change, and execute machine language programs.
To use this appendix, you must be able to write programs in 6800 machine
language. You must also have a working knowledge of hexadecimal notation.

CALL 28672

This BASIC statement takes you out of BASIC. You are now talking to the Ima-
gination Machine Monitor. The Monitor puts a “***" at the beginning of each line
on the screen, When you see the “"*”, you can enter one of the three monitor
commands:

D nnnn where nnnn is a hexadecimal address

G nnnn where nnnn is a hexadecimal address

M nnnn where nnnn is a hexadecimal address

21

D nnnn — DISPLAY MEMORY
This command will disptay the 16 bytes of memory beginning at address nnnn,
To display the next 16 bytes, press the *'/” key. To end the command, press the
RETURN key.
Example: * D 9B3C
* 9B3C20E0 B6 A0 58 BD 9A B6 CE
A0 9C 7E 9A 28 7C A0/
* 9B4C AA 20D4 86 04 CE ADAAOC
69 00 09 8C 80 9C 26 (Return)

G nnnn — GOTO MEMORY ADDRESS

This command acts much like the BASIC GOTO statement except the value
NNNRN is a four digit hexadecimal memory address. The computer immediateiy
begins executing the machine language program at that address,

*G 8894

Address 8894 is the start of the Imagination Machine's BASIC. This is how you
reenter BASIC. If you had a BASIC program in memory when you called the
monitor, it should still be there,

M nnnn — MODIFY MEMORY
This command immediately displays the contents at memory address nnnn.
You can do one of four things:
reply with the /" key and the command proceeds by displaying the
next position in memory.,
reply with e key and the command proceeds to display the pre-
vious memory position,
reply with the RETURN key and the command is ended.
reply with a two-digit hexadecimal number and the RETURN key and
the command stores this new number in the current memory posi-
tion, Then you can press Return, or 1 with the results as above.
If the M command cannot change the memory location, it will respond with a '? ",

I ~rrenoix D I

ERROR MESSAGES
The following is a list of error messages. If they occur during a program state-
ment, the statement number as well as the message is displayed.

ARITHMETIC OVERFLOW

The result of a computation is greater than 999999999.9999. This problem can
be eliminated by using the |F statement to test and limit the sizes of the variables
in the equation before doing the computation,

DIMENSION
Something is wrong in Dimension Statement (size is zero or greater than 99, etc.).

DIVISION BY ZERO

The result of dividing by zero is undefined. The computer cannot proceed. This
problem can be prevented by checking the value of a diviser with an |IF statement
before doing the division,

EXPRESSION

The expression is not properly formed. Examples are PRINT PEEK 123 — paren-
thesis not use around expression of a function. PRINT 234+3} — missing an open
parenthesis, PRINT 1 <2 — improper operator symbol in an expression,

EXPRESSION MISSING

An expression is expected to be located in a statement but is not found.
E xample: A = {Return Key)

For H =

22

EXPRESSION TOO LONG

You did nothing wrong. All computer languages have limits, and you just ran up
against one of ours. This will occur if an expression has more than 8 nested
brackets or parenthesis.

FOR — NEXT
A NEXT statement was executed when no FOR statement had been executed.
Check your program. You have forgotten to supply the FOR statement or the
logic of your program is incorrect., Somehow you branched to a NEXT statement
without first going through its FOR statement. Fix the logic of your program
before continuing,
Example: 10 next |

RUN

IF — THEN
The comparison in the IF statement is wrong. For example, {F A*B THEN 100.
Fix the statement before running the program.

ILLEGAL MASK SIZE

The format defined for a PRINT USING statement is incorrect. For example,
there may be more than 9 ' « 's to the left of the decimal place, or more than 4
to the right, Correct the PRINT USING format, called a mask, before running the
program,

ILLEGAL VARIABLE

This is a catchall error message when the interpretor finds something wrong with
a variable. Some examples are:

A variable name starts with an illegal symbol — i.e., a number (1A=3). You have
used more than 26 variable names. You used a dimensioned variable name that
was not dimensioned,

MEMORY FULL

You ran out of memory. This will usually occur in a DIM Statement. If so, then

reduce the allocation in a DIM statement or shorten your program,

Memory storage is as follows:

1. A numeric variable takes 7 Bytes. A dimensioned numeric array takes 7
Bytes for each element. Ex — DIM H (365) takes 7* 365 Bytes.

2. Each line takes 2 Bytes for a line # plus 1 Byte for an end of line symbol.

3. All keywords (ie — PRINT, FOR, etc.) take 1 Byte.

4, Actual allowable user storage is 7166 Bytes.

A second reason for Memory Full can be due to your program’s continuous

execution of a FOR statement with no NEXT statement, or continuous execut-

ing a GOSUB with a RETURN,

NO — GOSuB

A RETURN statement was executed without a GOSUB having been executed.
You have a logic error in your program, Make sure you do not use a GOTO or
fatl into a Subroutine. Fix the problem before running the program.

NO LINE = — REFERENCED
You are trying to GOTO a line number which doesn’t exist in your program,
Correct the statement before running your program again.

PRINT DELIMETER

There is an error’ in your PRINT statement. Check to see that each of the items
being printed are separated by a comma or semi-colon, Correct the statement
before running your program,

QUOTE MISSING
The right quote in a String Constant is missing. Correct the statement before
running the program again.

23

READ — DATA

Either you have executed a READ statement when there is no DATA statement,
or there is an error in the DATA statement, If there is an error in the DATA
statement, correct it before running the program again.

If you are executing a READ statement, then either you forgot to include a
DATA statement or you have tried to READ more variables than you have data
in DATA statements. Make sure you have supplied all of the data in the DATA
statements,or that you haven’t executed a READ statement more times than you
had intended,

WHAT

This is a catch-all, It usually means that one of the items in the line should have
been a keyword but wasn't recognized as such. Carefully check the line and
correct all errors before running the program again,

> 999999999.9999

You have a constant which has more than four decimal places or which is greater
than 999999999.9999 or less than —999999999.9999. You will have to change
your program so that numbers outside of this range are unnecessary.

24

WP clectronicsinc.

Printed in Hong Kong

	APF BASIC Manual - 01 (Cover)(150 dpi).tif
	APF BASIC Manual - 02.tif
	APF BASIC Manual - 03.tif
	APF BASIC Manual - 04.tif
	APF BASIC Manual - 05.tif
	APF BASIC Manual - 06.tif
	APF BASIC Manual - 07.tif
	APF BASIC Manual - 08.tif
	APF BASIC Manual - 09.tif
	APF BASIC Manual - 10.tif
	APF BASIC Manual - 11.tif
	APF BASIC Manual - 12.tif
	APF BASIC Manual - 13.tif
	APF BASIC Manual - 14.tif
	APF BASIC Manual - 15.tif
	APF BASIC Manual - 16.tif
	APF BASIC Manual - 17.tif
	APF BASIC Manual - 18.tif
	APF BASIC Manual - 19.tif
	APF BASIC Manual - 20.tif
	APF BASIC Manual - 21.tif
	APF BASIC Manual - 22.tif
	APF BASIC Manual - 23.tif
	APF BASIC Manual - 24.tif
	APF BASIC Manual - 25.tif
	APF BASIC Manual - 26.tif
	APF BASIC Manual - 27.tif
	APF BASIC Manual - 28.tif

