
OOOQO Technosys Research Laboratories Ltd

OQOT
DDQDO

Postal Addiess Head Office Telephone

P. BOX 37 349 36 CHESHIRE STREET 798 304

PARNELL ALK'KLANrn PARNELL AUCKLAND 1 AUCKLAND

NEW ZEALANL .
NEW ZEALAND (4 Lines)

HOW TO START YOUR PEGASUS

Check your equipment.

1 pegasus
1 power supply
1 R.F. modulator
1 keyboard
1 T.V.

Plug positions

|©I_U JM© LUll®

fed*. 6.<tt» r>1

o
©

o t

1. Keyboard plug,Plug in so metal chips face inwards.

2 Power supply plug , You can only plug this in one way.

3. Cassette recorder plug.. You can plug this in one way only.

NOTE on play and record plugs,: blue is microphone and yellow

is ear.
4. RF modulator plug. You can plug this in one way only.

PLUGGING INTO TELEVISION.

1. Turn off television.
2. Remove aerial.
3. Replace with modulator connections.

4. Turn on television and turn to channel
5. Turn on Pegasus.

3 or 4

Tune in television by the use of the fine tuner.

If this does not work, try channels 1 to 4 on the

television each in turn adjusting first the television

fine tuner then by the use of a small flat screwdriver

through the hole in the modulator , the modulator tuning.

BEWARE THIS IS SENSITIVE.
Look for prompt, and menu.

Amber Pegasus 6809

TECHNOSYS RESEARCH LABORATORIES LTD.

8. Select by using the first letter of the item in the menu,

To select the menu type:
T for Tiny Basic
H for Hangman

G for Galaxy wars

M for Monitor
F for Forth
Controls of Galaxy Wars are:

F = up

K = Left

L » Right

9. To return to the Menu, hit the "Panic" button,

Handy Hint # 1

If you are unfamiliar with EPROMs the following information
may be of use to you.

Firstly ensure that mains power is OFF before changing EPROM.

Failure to do so may damage EPROM and/or Pegasus.

A screwdriver makes an excellent lever to gently pry the EPROM
loose.

When replacing EPROMs note that they must all be aligned with
the 'MON' {monitor EPROM , which should NEVER be removed).

Forth requires both sockets; Forth A in the socket that is

farthest from 'MON' and Forth B in the middle socket.

Tiny BASIC, however, will work in either of the two sockets.

Aatnber Pegasus - Introduction

Thank you for purchasing the Aamber Pegasus personal

computer. We hope that you will have many hours of fun and

learning from use of the computer. Experience with this, and

other computers will enable you to better cope with the changing

world that is ahead of us.

The machine that we are offering, while being approximately

half the price of competitive products, offers much more

capability in terms of expansion and ease of use. Initially

we are supporting four languages with the Pegasus, these

being ASSEMBLER, BASIC, FORTH and PASCAL. The computer can be

expanded to 48K bytes of RAM, has cassettes for mass storage,

and has the ability to interface to a wide range of peripherals,

including environment controllers, which will be available from

your dealer. The Pegasus is based on the popular Motorola 6809

microprocessor, which is generally considered to be the most

powerful 8 -bit micro in the world today. Because the processor

is so versatile, the kit is suitable for people new to the

computer world, as well as experienced users.

Once you have purchased the Pegasus, all you will require

to expand the system for your further needs will be available

from your local dealer, giving you the opportunity to let the

system grow as your finances permit. We see the computer as

being not only a starter kit, but also as the basis for a

highly versatile and powerful computer system.

As part of our policy of continuing support for our

products, you will receive a newsletter every six weeks,

written by the same people who designed and made this computer

a reality. The company is very interested in setting up

interaction between the designers and the users, and thus will

1-01

welcome correspondence, with the aim of receiving your

suggestions and ideas on future add-ons for the Pegasus.

Meritorious contributions will be published in the

newsletter, the subscription for which is incorporated in

the initial purchase price of the computer.

Now before using your computer, please read the manual!

Enjoy yourselves, good computing.

Managing Director

Technosys Research Laboratories Ltd,

1-02

Introduction to Hardware

Welcome to the wonderful world of the 6809 microprocessor.

The Pegasus uses the 6809 for two reasons. Firstly because of

its simple but powerful structure (in terms of both hardware

and software) , and secondly because it is the most advanced

microprocessor that is currently available for which there is an

adequate range of supporting chips (hardware) and supporting

software. We could, for instance, have used the 6 8 000, or the

Z8000, or even the 8086, all of which are more advanced processors,

but none of these have adequate support (meaning that add-ons

cost you very much more and take longer to become available.)

Alternatively, we could have used one of the 'good old* breed

of 6800, 8080, Z-80 or 6502 microprocessors, all of which have

excellent support, but which in terms of today's technology may

be best described as geriatric (all are in excess of five years

old) . This means that a product using these microprocessors

is obsolete before it is even released, and that add-ons,

although initially prolific, will rapidly cease to be

forthcoming as everyone jumps on the new technology 'bandwagon'

(as has already happened to the 8080 family)

.

Thus in chosing the 6809 for the Pegasus we have ensured

that the product you invest your precious dollars in will not

only be in the forefront of technology now, but will still be

current enough in five years to have a continuing flow of add-ons

and support.

This brings us to the primary design criterion behind

Pegasus - expandibility . To date, most offerings of this type

suffer one of two shortcomings. They are either cheap 'toys'

which are rapidly outgrown and then discarded for next year's

2-01

glossier model, or they are moderately sophisticated computers

with a price tag beyond the reach of most home or school users.

The toy becomes obsolete within a year and is hastily replaced

by a new model (incompatible with last year's of course!)

while the microcomputer may be expanded but starts at too high

a basic cost.

Pegasus breaks new ground in this field by offering a

simple low cost version to the hobbyist or school which may

be expanded on four fronts

:

(a) on the board (it starts out as a partially populated

single board design)

.

(b) with extra boards (the case has room for three

boards and any number may be added using the

international standard SS-50 bus)

.

(c) as a plug-in to an existing SS-50 mainframe

(i.e. as produced by Southwest Technical Products

Ltd, or Gimix Inc. etc.)

(d) as a node in a large scale network linking up to

160 such units to a central microcomputer with

fully shared resources (such a system will be released

by Technosys Research Laboratories late in 1981)

.

In its basic form, the Pegasus offers:

- IK bytes of RAM (560 reserved for video and system monitor)

- 32 characters by 0..16 lines (user selectable) video display

- full ASCII character set with Greek symbols (upper and

lower case with descenders)

- 4K bytes EPROM containing System Monitor

- audio cassette interface (for home cassette recorder)

- individual character video inversion

- full ASCII keyboard interface (hex keypad also available)

2-02

power supply (on-board regulator)

RF modulator (for connection to any home TV set)

large wire-wrap area for custom prototyping

real-time clock calibrated in hours, minutes and seconds,

with precision of 20 milliseconds

user vectored interrupts

On board expansion permits:

up to 4K bytes of RAM

up to 12K bytes EPROM { 20K modification also available)

additional dual parallel port for user interfacing

full SS-50 standard bus compatibility

user programmable character set, giving 128 different

characters in an 8 x 16 matrix, providing an effective

on screen graphics resolution of 256 x 256 points.

Additional boards give:

up to 48K bytes RAM

floppy disk interface

multiple parallel and serial interfaces

special functions (speech synthesis, recognition,

industrial control etc.)

The network system provides:

up to 12 major nodes per central microcomputer sharing

its disk, printer and processing resources

each major node may be a dumb terminal, or have local

intelligence (i.e. downloadable micro based unit)

the intelligent nodes may be Aamber Pegasi units, or the

forthcoming Aamber Intelligent Work Station (IWS) with

high resolution graphics and self contained keyboard and

screen

2-03

- any major node may be replaced by the Aamber network

controller, which forms the root of a tree for up to 16

additional units of the type described above. In this form

full terminal-terminal communications are supported, and

each Aamber Net may have local disk and printer resources

- see diagram

Thus the Pegasus may be used on its own or as part

of a much larger network system, and a prospective network

user (e.g. a school) may purchase a single unit to

evaluate, and use it in a network mode later without penalty.

This is true expandibility

.

The Pegasus has been developed in New Zealand, by

New Zealanders, for the New Zealand environment. No other

computer, in any form, can make this claim. It was

developed out of a need as expressed by people in industry,

education and commerce for a versatile, expandible machine

geared for the New Zealand situation. We feel that this

computer not only meets these needs, but goes one step further.

It was designed with the best features of currently available

units in mind (i.e. the Apple, Pet, TRS-8 0, Superboard etc.),

and we know that it is superior in capability and price terms

to anything else on the market - there would have been no

point in designing it, had it not been.

^J0L*^

Director of Hardware Research

Technosys Research Laboratories Ltd

January 1981

2-04

Technosys Research Laboratories Ltd.

Aamber Network System

Large scale low cost implementation for educational use

(Note: equally applicable to commercial and industrial fields)

dual 8"

floppy disk

16 Mbyte

fixed disk

system terminal

daisy wheel

printer

office admin

terminal

AAMBER

microcomputer

7TTT TTTT

modem to other schools

and central data base

any mixture up to
11 of these

Network Controller

/7TTT

dual minifloppy

dot matrix printer

cassette recorder

/

Aamber

Pegasus

custom interfaces

any mixture

of these up

to 16 per node

cassette recorder

Aamber

I.W.S

custom interfaces

© 1981 Technosys Research Laboratories Ltd

2-05

INTRODUCTION

Industrial Revolution

We are at the beginning of a new industrial revolution
that is likely to have a greater impact on our way of
life than any other single event in our industrial
development. This revolution was created in the semi-
conductor industry, which is centred in Southern California,
in an area affectionately known as 'Silicon Valley'.
It is the microelectronic revolution.

Complex electronic circuits are now being constructed on
tiny pieces of silicon (microelectronic 'chips') packaged
in plastic or ceramic packages (dual-in-line or 'Dips').
From the humble beginnings of the germanium transistor in
the late 1940 's, we have advanced to the present day
computer-on-a-chip, the microprocessor, containing the
equivalent of up to 100,000 transistors.

Evolution of Electronic Computers

DATE DESIGNATION SPECIAL DETAILS

1950 ENIAC - entirely vacuum tubes

- power hungry

- unreliable

- very expensive

1960 Beginning of semiconductor computers

1965 PDP-8 - minicomputer

- only $50,000

- moderate power consumption

- applicable to laboratories
and manufacturing
production lines

1972 8080 - first microprocessor
(microcomputer

)

- cheap

- low power consumption

- applicable to household
applicances

2-06 (c) i98i Technosys Research Laboratories Ltd

1980 Advanced Microprocessor
Components low cost

low power consumption

rivaling conven-
tional minicomputers
in processing power

There is a three tier separation of computer products

10,000,000

U If

a.

<

2 250,000

20.000

1000

IBM, Burroughs.

NCR, Umvac,
CDC, etc.

'Mainframe*'

computer systems

Digital Equipment

Corporation,

Data General.

Hewlett-Packard, etc.

"Minicomputer"'

systems

Alpha Micro Systems.

Apple Computer Corp ,

Vector Graphic.

Processor Technology, etc.

"Microcomputer"

systems

The theoretical three tiers into which the computer industry can be

divided In reality, many products fall into two of the classifications.

while continuous improvements keep altering products' classifica-

tions over time.

However, this price separation is misleading in terms of
computer capabilities:

1975 1980

Year

1990 1995

The computer industry divided into three tiers according to price.
However, price can be misleading: it does not always reflect comput-
ing capability.

2-07

1969' s $150,000 minicomputer is now equivalent to a $20,000
microcomputer and 1980' s $150,000 minicomputer is equivalent
to a mainframe. Mainframe, minicomputer and microcomputer are
rapidly becoming labels only, with the internal electronics,
and hence performance, rapidly blending. By 1990, it is
estimated only 10% of computers will be in the mainframe category
(e.g. future developments of Cray#|)while the remaining 90%
will be effectively microcomputers In physical size and cost (but
not performance!!) i.e. central processing on one chip and
only a handful of others for additional functions.

Differences between computer types are usually gauged by the
following:

speed - time to execute instructions
- instruction type - complexity of instructions

- physical size - a chip or many boards

cost

with microcomputers traditionally scoring poorly in the first two,
but extremely well in the latter two.

Consider the following analogy; one hundred years ago, the
stagecoach was the principle mode of transport. It could travel
at 25 mph carrying five passengers. Today, the Concorde can
travel at 1300 mph carrying 200 passengers. In electronic terms,
they are about the same because in only twenty years, electronic
logic capacity has increased by a factor of 100,000 and logic
speed by a factor of 1,000,000. Using the analogy, this would
correspond to a Concorde carrying 500,000 passengers at
20,000,000 mph (costing lc for an airline ticket).

Note that the microcomputer will never dominate all other computers
because of the relentless need to make computers more powerful
(for more advanced problems and ultimately intelligence)

.

Consequently for every advance in microelectronic technology, two
new products are produced :-

- a smaller cheaper version of "yesterdays'
computer

a more powerful today's computer

Advances in computer science and programming coupled with those
hardware advances can also produce breakthroughs into new types of
computers, i.e. distributed and network processing.

2-08

Microprocessor Evolution

It was a case of accidential birth. The 'father', a firm
called Datapoint wanted a computer-like chip to control
a new product, the intelligent terminal. The 'mother' , Intel,
contracted to build it and succeeded. However, their product
ran ten times slower than it was supposed to and Datapoint
refused to buy it, leaving Intel quite literally holding the
baby. Faced with shelving it or selling it, they called it
the 8008 and put it on the market with no particular use
in mind.
Overnight people realised they had a useful product and sales
rocketed, thus the era of the microprocessor arrived.

All along, the industry has faced one substantial problem;
how best to design and use these new chips. Advances in
design techniques and circuit fabrication are constantly
yielding more complex chips , but they are being designed for
an unknown market and indeed they are creating the market as
they are released. This is a hallmark of revolution, the
unpredictable future. All the industry can do is design chips
with features that it hopes will be desirable and then wait
for sales. Nobody knows what the ideal microprocessor is or
how it should be used and consequently, the microelectronics
industry is undergoing a tremendous upheaval, and the pace is
accelerating I

Microprocessor Family Tree

There are 3 major microprocessor manufacturers (excluding those
like Texas who produce custom controller devices) -

ZILOG INTEL MOTOROLA

1972

Time

8008^ - „

4>

Z-80

Z-8

Z8000

_ - - -- "8080

I
8085

I
8086

6800 } original 3

6809 } second
generation

I
68000 } advanced

'minicomputer-
like devices

1980

2-09

It all began with the 8008 as previously described and
Intel followed up with the 8080. Motorola and Zilog
realised there existed a viable market and introduced their
versions. From there, a natural evolution occurred to the
present day 'minicomputer-like' microprocessors.
Many other companies are also involved (i.e. Texas,
Fairchild, National, Synertek etc) , but many of their original
devices are not popular because of competition from the big 3

.

A definite split is taking place in microprocessor
architecture in terms of the size of information packets
handled by the logic elements. The original 3 handled
8 binary bits, the second generation handled a mixture of 8

and 16 bits and the third generation handled 16 and 32 bit
packets. Roughly speaking, computing power is proportional
to the packet size ('word'). Main frames handle up to
64 bit words, while mini's are usually in the 12 to 32

bit range.
.

NOTE that the family tree is just a skeleton, and many more
devices are produced by the big 3 and others which are
microprocessors, but which are tailored for specific
specialized roles (i.e. stand-alone controllers etc)

.

(Diagram of yP and its chips and packages etc on page 6)

2- 10

NUMBER SYSTEMS

GENERAL CONCEPTS

A microprocessor is merely a glorified collection of logic gates and as
such operates in exactly the same way as normal digital logic. All internal
operations are in binary i.e. base 2, with two allowed states:

logic 1 = high = on = true
logic - low = off = false
signified by the hinary digits 1 and

-• | v + 5 « r—*—
' * • T

logic 1 logic
lowever, our normal numbering system - decimal, has ten states siqnified bv
the digits 0-9 (base 10).

Large numbers are made up of multiples of these digits grouped together and
we ighted, I.e.

in dec imal 1 3

means 1 lot of t 3 lots of
ten one

This concept can be extended to the general case for any base and number
by:

a.b
1

+ ...+ a-jb
1

+ a
o
b° + a_

1

b"
1

•• + a .b"
1

where b = base
a = digit
i = digi t posi tion

i.e. consider 123 in decimal

this = (1 * 10
2

) + (2 * 10
1

) + (3 * 10°)

similarly the same number in octal (base 3)

would = (1 * 8
2

) + (2 * 8
1

) + (3 * 8°)

Computers always work internally in binary, but large base two numbers are
extremely difficult for himans to visualize, i.e. 11010010 does not have
immediately obvious significance.
Hence for convenience, we usually facilitate easy recognition and
manipulation. At first glance, decimal would be the obvious choice,
however, a little thought shows that binary to decimal conversion is

2-11

difficult and so we choose a base that is easily converted to and from

binary,

e.g. octal or hexadecimal

(base 8) (base 16)

Binary Octal Decimal hexadecimal

0000
0001 1 1 l

0010 2 2 2

0011 3 3 3

0100 4 4 4

0101 5 5 5

0110 6 6 6

0111 7 7 7

1000 10 8 8

1001 11 9 9

1010 12 10 A

1011 13 11 B

1100 14 12 C

1101 15 13 D

1110 16 14 E

mi 17 15 F

10000 20 16 10

note: Hexadecimal weighting - X X X X

16
3
16

2
16 he

i .e. A F 6 E o 9 i n
is (10 * 16) + (15 * 16

c
) + (6 * 16

l
) + (14 * 16

u
) in base 10

Hexadecimal (base 16) is generally the base used for microcomputers as 1t

offers easy binary to hexadecimal conversion and a very compact way of

representing long binary numbers.

Base conversion

We have previously seen how to convert from any base to decimal by writing

in the form -

ajb
1

+

i.e A F in hexadecimal = (10 * 16
1

) + (10 * 16°)

=10+16+15
175 in base 10

The reverse (decimal to another base) is accomplished similarly by

breaking the decimal numbers up into multiples of b

i.e 16 in decimal =2*8
= 20 in octal

2-12

The generalized process is as follows:

Write down the number and repeatedly divide by base
to which it 1s to be converted, recording the remainder
each time,

e.g. for (IU-iq into binary -

Operation Quotient Remainder

11/2

5/2

2/2

1/2

5

2

1

+ 1

+ 1

+

+ 1

therefore in binary = 10 11

This technique is just a failsafe method of determining a. for each b..

Note, for conversion between bases niether of which are decimal, it's often

easier (for humans) to convert to decimal first and then use the procedures

above.

However, for conversion between binary and octal or hexadecimal, there
exist quick methods, which can be seen by realizing that any octal digit
can be defined by three unique binary digits, and any hexadecimal digit can

be defined by four unique binary digits, i.e.

1 hex 1 hex 1 hex
digit digit digitiiii

binary digits - xxxxxxxxxxxx
j

i I i i

1 octal 1 octal 1 octal 1 octal

digit digit digit digit

such that 110111101001 in binary

can immediatly be written as (1101) (1110) (1001)
D E 9 in hex

or (110) (111) (101) (001)
6 7 5 1 in octal

Note that conversion to decimal as shown previously is painful 1n

compari son.

Obviously the reverse process from octal or hex to binary is just as easily

accomplished:

hex to binary octal to binary
F 3 C A 7 3 4 6

(1111) (0011) (1100) (1010) (111) (Oil) (110) (110)

Hence the choice of hex or octal over decimal to represent large binary
numbers in computer systems.

2-13

Note: The computer always works in binary alone - these and

other conversions are solely for our convenience
even in cases where they are done automatically by the

computer.

Base Arithmetic

All normal arithmetic operations; addition, subtraction, multiplication and
division can be performed in any number base, provided care is taken to do
carrys and borrows correctly for the base in which you are working.

Addition

Binary Hex

10110
+ 01111
100101
carry 2's

Subtraction

11101
- 10110
0011

1

borrow 2's

Multi plication

1011 F 2

* 1101 * 1 3

~T0TT TTS
1011 F 2

1011

10001111 1 1 F 6

Division

101.1
10 1011.0 3 F

10

0011

+
F

7

3 D E

5 A 1

1 b 9 / F

Ciarry 16
' s

F

E

A 3

1 9 D

1 8 9 3

orrow 16 's

10~0T~
10

You should try a few of these to ensure you understand how they work,

3 7.8
D A 9.

B D

1 D 9

1 B 8

2 1

2 1

2- 14

Two's Complement

It is difficult to produce hardware in computers to perform standard
subtraction. Instead subtraction problems are first converted to an
addition which can easily be done. The technique can be seen as follows:

for decimal 9-2=7

but i f the final carry is ignored 9 + 8 = 7 al so

and 8 is said to be the base complement (or tens
complement of 2 since 8 + 2 = 10

Using this concept any subtraction can be performed as an addition by

forming the base complement and adding (ignoring carry). The binary
equivalent of this is called two's complement and the logic for this is

extremely well suited for computers. The two's complement can easily be
formed by the following process.

1. write down the desired no. to be two's complemented
2. change all the ones to zeros and all the zeros to ones

- this is called the one's complement (inversion)
3. add 1 to the right most digit (least significant)

e.g. minuend 11010 minuend 11010

subtrahend - 01001 or subtrahend + 10111

difference lUOUl difference 11UU01
ignore carry

Note - That the answer can be positive or negative depending

on whether the minuend or subrahend is larger.

This is signified by the left most digit (most
significant).

If it is a 1, then the answer is negative
if it is a 0, then the answer is positive

and the remaining digits represent its absolute value

e.g. Oil Oil
- 101 on
mr mr

borrow
implying
answer negative

this is the absolute value of the
answer in 2 's camp, form

digit is a 1 implying answer
negative, this is the sign of the
answer
(in decimal this gives 3-5 =-2)

This scheme yeilds the following range of numbers i f an 8 digit binary
value is used

2- 15

2's comp. (hex equiv.) Binary Hex Dec imal

0111
0111

mi
1110

(7 F)

(7 E)

0111
0111

nil
1110

0000
0000
mi
mi

0001
0000
mi
1110

(0 1)

(0 0)

(F F)

(F E)

0000
0000
-0000
-0000

0001
0000
0001
0010

1000
1000

0001
0000

(8 1)

(8 0)

-0111
-1000

mi
0000

7 F + 127

7 E + 126

1 + 1

-0 1 1

-0 2
~2

-7 F - 127
-8 - 128

Thus the normal 8 digit binary gives a range in decimal from to + 2 55

while 2's comp. binary gives a range in decimal from - 128 to + 127
(anything outside this range can be thought of as an overflow or underflow
and is handled especially by the computer)

The beauty of this scheme (signed binary representation) is that it
requires no special logic to take care of the sign; arithmetic operations
simple proceed as normal , and the result will have the correct sign. Try
this for yourself!

2-16

MICROPROCESSOR ORGANISATION

1. MEMORY ORGANISATION -

A computer processes information (data). All this data and the results
of processing must be stored somewhere in memory. Since the computer
works with binary data, the storage system must be bistable elements
capable assuming one or two logic states on demand. They must
furthermore have two essential properties -

1. Every stored binary digit must be held at some unique location,
(otherwise it cannot be told apart from other digits).

2. Each location must be accessible to the computer so that it can
read the information (or write 1n new information).

Microcomputers generally have two types of memory:

1. ROM - read only memory which cannot be changed (written) and is
thus non-volatile.

2. RAM - random access memory which can be read or written and is
volatile.

Note: RAM i s a misleading name as both RAM and ROM are randomly
accessable, i.e. any piece of information can be accessed
at any time without going through a long list.

Computers do not merely operate on one digit at a time, but group them
together into words , and all operations are performed on complete words.
Individual binary digits are known as bits .

Word lengths generally range from 4 bits to 64 bits depending on the
type of computer. With microprocessors, the most common size are 8 bit
words, which are given the name bytes .

8 bit word = 1 byte

bit numbering
most significant least significant

bit (msb) bit (lsb)

Larger microprocessors use 16 bit words i.e. 2 bytes long

high order byte low order byte

15 8 7

bit numbering

Note: 4 bit words are sometimes referred to as nibbles, but this is

2-17

usually only when their name is explained

Since information is accessed in memory and since the computer requires

information in word blocks, it follows that memories are organised into

word lengths. At each accessible location in memmory (each address),
there resides one word of information, and each word has a unique
address.

This does not mean that memory is always manufactured in word lengths.
Often memory is made with only one bit per location, so that the system
designer can arrange a number of chips in parallel to give the word size

he desires.

1 .e.

a single

8 -bit word

One Memory Modute

For any one address 8 chips are accessed and one bit of the byte comes
from each. In this manner, the same chips are just as suitable for 4 bit
microcomputer memories as 16 bit memories.

The overall number of locations that a computer can access are
collectively known as its address space . (65,536 for a typical
microprocessor i.e. 2)

However memory is rarely available at all of these locations. Sometimes
the locations are used for other things and often the system only
requires a small amount of memory, so this is physicaly located at the
desired address, while the other addresses are vacant.

The amount of memory in a system is often referred to in 1024 location
multiples; known as IK blocks of memory. This corresponds to 10 binary
bits being used for addresses, i.e. 2 to the power of 10 = 1024
Each different combination of the 10 bit binary number is used to
specify a different address.

similarly 2048 is a 2K (2
11

) block

and

16384 is a 16K

65536 is a 64K

(2
14

) block

(2
16

) block

Note: That each address within a block may contain
a single bit or a whole word depending on how

the microcomputer is organised

This is often denoted as follows:

2-18

IK x 1 means a 1024 block each location
containing 1 bit

4K x 8 means a 4096 block each location

containing 8 bits

2. DATA INTERPRETATION -

All information in memory is recalled and stored in the same way, and in

the same form (binary). Thus, the microcomputer must have some way of

interpreting the pattern of O's and l's to seperate the different types

of data and instructions. Ways that a word can be interpreted are as

fol 1 ows

:

a. pure numeric binary data
b. a data code subject to some arbitrary predefined interpretation

(i.e. character code)

c. an instruction code, which the microprocessor can
recognise as a command to perform some preset

operation (e.g ADD)

d. as with (a), but part of a multiword data unit with some

special weigting

1. Stand alone, pure binary data -

i .e an 8 bit word with decimal value from - 255.

2. Interpreted binary data -

For 8 bits words, it may be necessary to interpret them in pairs to give

16 bit values, thus extending the range of numbers that can be
represented from 255 to 65535. This can be extended to any lenght
required. Signed binary numbers also fall into these catagories as

discussed in appendix I. Another commonly used interpretation is binary

coded decimal or BCD. this special representation uses 4 binary bits to

represent each decimal digit (0 - 9),thus allowing easy manipulation of

decimal information by binary computers.

Binary (BCD) Decimal
0000
0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1011
not allowed

1111

0001 0000 10

0001 0001
etc

11

Note: the extra states corresponding to decimal 10 - 15 are not allowed

14

2-19

values in BCD representation.
Also that each byte contains two BCD digits (i.e. 00 - 99)

Although this representation makes storage and conversion easy it
complicates arithmetic because BCD digits cannot be added and subtracted
by normal binary rules.

3. Data Codes -

These are commonly used to allow the computer to store alphanumeric text
rather than just numbers. This is accomplished by devising a code that
assigns a distinct number in binary to each alphanumeric character.

A

standard code used is the American Standard Code for Information
Interchange usual 1 refered to as ASCII {see appedix II), which is a
seven bi t code

i.e. (41)
16

- (54)
16

correspond to A and Z

Note: The 8th bit is usually used for an error checking procedure known
as parity.

2-20

6809
PROGRAMMING

REFERENCE MANUAL

The following quick reference describes the sixty-seven instructions

executed by the Motorola 68 9 MPU. A few extra mnemonics have been

added to clarify certain programming practices. The BZS mnemonics

assembles into a BEQ, while the BZC assembles into a BNE instruction.

The assembler will compute offsets for branch instructions and generate

short or long branches as required relieving the programmer of the

necessity to explicitly code long branches.

6809 Software Architecture

The 6809 microprocessor is a stack-oriented, one-address

microprocessor containing two accumulators, four pointer registers,

a direct page register, and a condition flag register. With the

addition of more pointer registers and a powerful compliment of addressing
modes, the 6809 is a major improvement over the 6800/6802 processors.

Figure 1 is a programming model of the 6809.

E F H 1 N Z V c CCR

DPR

Accumulator A i Accumulator B

Accumulator D

Index Register
1

Index Register Y

Stack Pointer U

Stack Pointer S

Program Counter PC

Arithmetic

Registers

Pointer

Registers

Figure 1

Condition Code
Register

Direct Page
Register

Arithmetic Registers

The 6809 has two 8-bit accumulators that are used to perform
arithmetic and logic operations. For many operations the A and B

accumulators can be treated like a single 16-bit accumulator, providing
much improved performance in multiple-precision operations.

2-21

The 68 09 perforins all arithmetic operations in two's complement format.

Pointer Registers

The 6809 has four 16-bit pointer registers that are used as

base address registers for indexed-mode addressing. The various

combinations available with indexed mode addressing allows all

four pointer registers to be used as explicit stack pointers. In

addition, two pointer registers are also implicit stack pointers.

The U and S registers have a series of PUSH and PULL instructions to

facilitate stack programming. The S Stack pointer register is

implicitly used by the 6809 hardware for subroutine calls and

interrupts.

Program Counter

The 6809 maintains an internal 16-bit program counter. At any

given time, the PC may be thought of as a pointer to the next

instruction to be executed. Indexed addressing has two modes

available that utilize the program coutner as a base address pointer.

Condition Code Register

The condition Code Register is conceptually an eight-bit register

that contains the processor condition flags. The bit positions of

the condition flags are shown in figures 1 and 2. A detailed description

of each flag follows.

Bit is the carry flag (C) , and represents the binary carry-out

from an arithmetic or shift type operation. For these operations

this flag is an unsigned overflow. In general, load-type and logical

operations do not effect the carry bit.

Bit 1 is the two's compliment overflow flag (V), and is set by

an operation that causes two's compliment arithmetic overflow. Loads,

stores, and logical operations clear V, while arithmetic operations

set V appropriately.

Since all arithmetic operations are of limited precision (8 or

16 bits) it is possible to generate invalid results whrn performing

arithmetic operations. For example, when performing an 8-bit addition,

it is possible to add 751Q
(01001011

2
) to 85

10 (01010101 2
>
and 9et

the invalid result -96
1Q (10100000 2

^

2-22

+

What has occurred is that the carry out of the most significant

bit (the sign bit) is different from the carry into the sign *"*it,

hence the sign (and the value) of the result is invalid. It is

under these conditions that the two's compliment overflow flag is

set. As another example, consider performing an arithmetic left

shift on 96 1Q
(01100000 2

? • The result is -64 l0 (11000000
2
>.

Since the signed result is invalid, the V flag is set.

Bit 2 is the zero flag (ZJ and is set whenever the result of an

operation is zero. After compare operations, this bit represents

the equal condition. Arithmetic, load, store, and logical

operations set this bit appropriately.

Bit 3 is the sign (N) and is set whenever the most significant bit

of the result is set. For arithmetic operations this flag is set

if valid negative two's compliment result is obtained. Note that

two's compliment branches use both the N and V bits, and the

branch is taken whether the result is valid or not.

Bit 4 is the IRQ mask bit (I) . The processor will rot recognize

IRQ interrupts if this bit is set. The IRQ interrupt acknowledge

sequence sets the I bit to mask subsequent IRQ requests until the

IRQ service routine completes. An RTI instruction will restore the

state of the I flag from the stack.

Bit 5 is the half-carry bit (Hi . This bit is used after 8-bit

add operations to indicate the carry out of bit3 in the arithmetic

unit. This bit is used by the DAA instruction to perform packed decimal

(BCD) add adjust. In general, the H flag state is undefined after

non-add -perations, and add-type instructions on 16-bit quantities.

Bit 6 is the FIRQ interrupt mask bit (F) . This bit affects

the FIRQ interrupt in the same manner that the I bit affects IRQ.

2 -23

Bit 7 is the Entire State flag CE) f
and is used by the RTI

instruction to determine how much of the machine state to

load from the stack. Two saved states are defined: the entire

state (E = 1) in which all registers are pushed on the stack,

and the subset state (E ~
fi\ in which only the program counter and

the condition flags are pushed on the stack. In genera J. the state

of the E flag is undefined except after an interrupt.

Figure 2 bit J0- C -Carry Flag

bit 1- V -Two's Compliment Overflow Flag

bit 2- Z -Zero Flag

bit 3- N -Sign Flag

bit 4- I -IRQ Mask Flag

bit 5- H -Half-carry Flag

bit 6- F -FIRQ Mask Flag

bit 7- E -Entire State Flag

Direct Page Register

The Direct Page Register (DPR) is an 8-bit register that is

used to provide significant 8 bits of the 16 bit address

generated by instructions using direct addressing. This register

is initialized to zero at RESET time.

MEMORY ADDRESSING MODES

INHERENT

EXAMPLE : MUL

Inherent addressing includes those instructions which

have no addressing options.

ACCUMULATOR

EXAMPLE: CLRA, CLRB

Accumulator addressing includes those instructions which

operate on an accumulator.

2-24

ABSOLUTE

EXAMPLE

:

LDA $8/304

Absolute addressing refers to an exact 16-bit location

in the memory address space, and is especially useful

for transactions with peripherals (I/O) .

There are three programs-selectable modes of absolute

addressing, namely: Direct, Extended, and Extended

Indirect. Certain instructions (SWl ,SW2 , SW3) , and

the interrupts, use an inherent absolute address to

function similarly to Extended Indirect mode addressing.

These instructions are said to have "Absolute Indirect"

addressing.

DIRECT

EXAMPLE LDA CAT

Direct addressing uses the immediate byte of the

instruction as a one-byte pointer into a single

256-byte "page" of memory. (The term "page" refers

to one of the 256 possible combinations of the high-

order address bits.) The particular page in use

is fixed by loading the Direct Page Register with

the desired high-order byte (by transferring from or

exchanging with another register.) Thus, the effective

address consists of a high-order byte (from the

Direct Page Register) catenated with a low-order byte

(from the instruction)

.

This mode may allow economies of both program space

and execution time as compared to other absolute or

indexed modes.

EXTENDED

EXAMPLE

:

LDA CAT

Extended addressing uses a 16-bit immediate value

(and thus contained in the two bytes following the

last byte of the op code) as the exact memory address

value.

2-25

EXTENDED INDIRECT

EXAMPLE: LDA ($F000)

Extended indirect addressing uses a 16-bit immediate

value as an absolute address from which to recover the

effective address.

This mode is inherently used by interrupts to vector to

the handling routine? and may be used to create vector

tables in a customized system which allow the use of

standard software packages.

Although Extended Indirect is a logical extension of

Extended addressing, this mode is implemented using

an encoding of the post-byte under the indexed addressing

group

,

REGISTER

EXAMPLE

:

INDEXED

TFR X,Y

Register addressing refers to the selection of various

on-board registers.

The 6809 includes extremely powerful indexing capabilities.

There are five indexable registers (X,Y,S,U, AND PC) with

many options (constant-offset, accumulator offset using

A,B, or D, auto-increment or decrement or indirection.)

These options are selected by complex coding of the first

byte after the op code byte(s) of indexed-mode instructions.

Most 6800 indexed-mode instructions will map into an

equivalent two bytes on the 6809.

2- 26

CONSTANT-OFF SET INDEXED

EXAMPLE: LDA j5 ,X

Constant-offset indexing uses an optional two's complement

offset contained i neither the post byte of the

instruction as a bit-field or as a immediate value.

This offset may be an absolute quantity, a symbol, or

an expression and may range from zero to a 16-bit binary

value which may be specified either positive or negative

with an absolute value less or equal to 2 . The offset

is temporarily added to the pointer value from the

selected register (X,Y,U,S, OR PC); the result is the

effective address which points into memory.

A number of hardware modes are available to reduce the

number of instruction bytes for various options. The

majortiy of 6800 indexed-mode instructions will still

need only two bytes on the 6809.

The notation THERE, PCR causes the assembler to compute

the relative destance between the location of the

symbol THERE elsewhere inthe program counter. The

computed value is used as an immediate value in the

instruction, indexed from the program-counter. This

notation is painlessly position-independent.

Becuase a 16-bit offset is allowed, the (necessarily

absolute) address of the indexable data may be carried

as a constant value in the indexing instructions. This

would allow the ."index register" to be simultaneously

used for indexing and counting using LEA.

2-27

CONSTANT-OFFSET INDEXED INDIRECT

EXAMPLE: LDA (j3,X)

Constant-offset indexed indirect addressing functions

in two stages (like all indirects) . First an indexed

address is formed by temporarily adding the offset-

value contained in the addressing byte(s) to the value

from the selected pointer register (X,Y,S,I, or PC)

.

Second, this address is used to recover a two-byte absolute

pointer which is used as the "effective address".

This mode allow the programmer to use a "table of pointers"

data structure, or to do I/O through absolute values

stored on the stack.

ACCUMULATOR INDEXED

EXAMPLE: LDA A,X

Accumulator-indexed indirect addressing uses an

accumulator (A,B, or D) as a two's complement offset

which is temporarily added to the value from the

selected pointer register <X,Y,S, or U) to form the

effective address.

ACCUMULATOR INDEXED INDIRECT

EXAMPLE: LDA (A,X)

Accumulator-indexed indirect addressing uses an

accumulator (A,B, or D) as a two's complement offset

which is temporarily added to the value from the

selected pointer register (X,Y,S, or U) . The resulting

pointer is then used to recover another pointer from

memory (thus, the indirect designation) which is then

used as the effective address.

AUTO-INCREMENT

EXAMPLE :. LDA j3,X+ LDX ,X++

Auto-increment addressing uses the value in the selected

pointer register (X,Y,S or U) to address a one or two byte

value in memory. The register is then incremented by one

2-28

AUTO-INCREMENT Cont -

(single +) or two (two +'s) . No offset is permitted (a

constant offset of is enforced)

,

AUTO-INCREMENT INDIRECT

EXAMPLE: LDA (0 ,X++)

Auto-increment indirect addressing uses the value

in the selected pointer register (X,Y,S, or U) to

recover an address value from memory. This value

is used as the effective address. The register is

then incremented by two (++) ; the indirected increment

by one is invalid. No offset is permitted (a constant

offset of is enforced)

.

AUTO-DECREMENT

EXAMPLE: LDA J3
, -X LDX ,

—

X

Auto-decrement addressing first decrements the selected

pointer register (X,Y,D, or U) by one (-) or two (—

)

as selected by the user. The resulting value is then

used as the effective address. No offset is permitted

(a constant offset of is enforced)

.

AUTO-DECREMENT INDIRECT

EXAMPLE: LDA (0,—X)

Auto-decrement indirect addressing first decrements

the selected pointer register by two (—) . Auto-

decrement by one indirect is prohibited in the assembly

language. The resulting value is used to recover a

pointer value from memory; this value is used as the

effective address. No offset is permitted (a constant

offset of is enforced)

.

2-29

RELATIVE

EXAMPLE

:

BRA POLE

(Short) Relative addressing adds the value of the

immediate byte of the instruction (an 8 -bit two's

complement value) to the value of the program counter

to produce an absolute address. This addressing mode

is always postion-independent

,

LONG RELATIVE

EXAMPLE : BRA CAT

Long Relative addressing adds the value of the immediate

bytes of theinstructions (a 16-bit two's complement

value) to the value of the program counter to produce

an absolute address. This addressing mode is always

position-independent

,

SWTPC 68/0 9 QUICK REFERENCE

ABX

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODE:

Add ACCB into IX

Add the 8-bit unsigned value in Accumulator B

into the X index register.

Not Affected

Inherent

ADC

DESCRIPTION

CONDITION

CODE:

ADDRESSING

MODES

:

Add With Carry

Adds the carry flag and the memory byte into an

8-bit register.

H,N,Z,V,C

Immediate, Direct, Indexed, Extended

2-30

ADD

DESCRIPTION:

CONDITION

CODE:

ADDRESSING

MODES

:

Add Without Carry

Adds memory into register.

H,N,Z,V,C

Immediate, Direct, Indexed, Extended

AND

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Logical AND

Performs the logical "AND" operation between

the contents of a register and the contents of memory.

N,Z,V

Immediate, Direct, Indexed, Extended

ANDCC

DESCRIPTION:

CONDITION

CODES:

addressing;

MODES

:

Logical AND Into Condition Code Register

Performs a logical "AND" between the condition

register and the immedate byte and places the result

in the condition code register.

The fianl state of the condition codes is governed

by the immediate code register.

Immediate

ASL

DESCRIPTION

Arithmetic Shift Left

Shifts all bits of the operand one place to the

left. Bit fS is loaded with a zero. Bit 7 of the

operand is shifted into the carry flag.

CONDITION

CODES: N,Z,V,C

ADDRESSING

MODES: Accumulator, Direct, Indexed, Extended

2-31

ASR Arithmetic Shift Right

DESCRIPTION: Shifts all bits of the operand right one place. Bit

7 is held constant,

CONDITION

CODES: N,Z,C

ADDRESSING

MODES: Accumulator, Direct, Indexed, attended

BCC

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES :

Branch on Carry Clear

Tests the state of the C bit and causes a branch

if C is clear.

Not Affected,

Relative, Long R&lative

BCS

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

:

Branch on Carry Set

Tests the state of the C bit and causes a branch

if C is set.

Not Affected

Relative, Long Relative

BEQ

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Branch on Equal

Used after a subtract or compare operation, this

instruction will branch if the register is equal to

the memorv operand.

Not Affected

Relative, Long Relative

2-32

BGE Branch on Greater or Equal

DESCRIPTION: Used after a subtract or compare operation on signed

binary values, this instruction will branch if the

register was greater than or equal to the memory !

operand,

CONDITION CODES

CODES: Not Affected

ADDRESSING

MODES: Releative, Long Relative

BGT

DESCRIPTION:

CONDITION

CODES:

ADDRESSING

MODES

:

Branch on Greater

Used after a subtract or compare operation on signed

binary values, this instruction will branch Jf the

register was greater than the memory operand.

Not Affected

Relative, Long Relative

BHI

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Branch if Higher

Used after a subtract or compare operation on

unsigned binary values this instruction will branch

if the register was higher than the memory operand.

Not Affected

Relative, Long Relative

BHS

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Branch if Higher or Same

When used after a subtract or compare on unsigned

binary values, this instruction will branch if register

was higher than or same as the memory operand.

Not Affected

Relative, Long Relative

2-33

BLE

DESCRIPTION:

CONDITION

CODES:

ADDRESSING

MODES

:

Branch on Less or Equal

Used after a subtract or compare operation on signed

binary values, this instruction will branch if the

register was less than or equal to the memory operand,

Not Affected

Relative, Long relative

BLO

DESCRIPTION;

CONDITION

CODES:

ADDRESSING

MODES

:

Branch on Lower

When used after a subtract or compare on unsigned

binary values, this instruction will branch if the

register was lower than the memory operand.

Not Affected

Relative, Long Relative

BLS

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

:

Branch on Lower or Same

Used after a subtract or compare operation signed

binary values, this instruction will branch if the

register was lower than or the same as the memory operand.

Not Affected

Relative, Long Relative

BLT

DESCRIPTION

C ONDITION

CODES :

ADDRESSING

MODES

:

Branch on Less

Used after a subtract or compare operation on signed

binary values, this instruction will branch if the

register was less than the memory operand.

Not Affected

Relative, Long Relative

2-34

BIT

DESCRIPTION:

CONDITION

CODES:

ADDRESSING

MODES:

Bit Test

Performs the logical "AND" of the contents of a

register and the contents of memory and modifies

condition codes accordingly. The contents of the

register are not affected.

N,Z.V

Immediate, Direct, Indexed, Extended

BMI

DESCRIPTION

CONDITION

CODES:

ADDRESSING

MODES:

Branch on Minus

Used after an operation on signed binary values, this

instruction will branch if the result is negative.

Not Affected

Relative, Long Relative

BNE

DESCRIPTION

CONDITION

CODES:

ADDRESSING

MODES

:

Branch Not Equal

Used after a subtract or compare operation, this

instruction will branch if the register is not equal

to the memory operand.

Not Affected

Relative, Long Relative

BPL

DESCRIPTION;

CONDITION

CODES

:

ADDRESSING

CODES

:

Branch on Plus

Used after an operation signed binary values, this

instruction will branch if the result is positive.

Not Affected

Relative, Long Relative

2-35

BRA

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Branch

Causes an unconditional branch

Not Affected

Relative, Long Relative

BRN

DESCRIPTION:

CONDITION

CODES:

ADDRESSING

MODES

:

Branch never

Does not cuase branch. This instruction is

essentially a NO-OP.

Not Affected

Relative, Long Relative

BSR

DESCRIPTION;

CONDITION

CODES

:

ADDRESSING

MODES

:

Branch to Subroutine

The program counter is pushed onto the atack, and

control is passed to the subroutine.

Not affected

Relative, Long Relative

BVC

DESCRIPTION:

CONDITION

CODES :

ADDRESSING

MODES

:

Branch on Overflow Clear

Tests the state of the V bit and causes a branch

if the V bit is set

Not Affected

Relative, Long Relative

2-36

BVS

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

;

Branch on Overflow Set

Tests the state of the V bit and causes a branch if

the V bit is clear.

Not Affected

Relative, Long Relative

BZC

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES :

Branch on Zero Clear

Tests the state of the Z bit and cuases a branch if

the Z bit is clear.

Not Affected

Relative, Long Relative

BZS

DESCRIPTION:

Branch on Zero Set

Tests the state of the Z bit and causes a branch

if the Z bit is set.

CLR

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES:

Clear

The register or memory is loaded with 00000000. The

C-flag is cleared for 6800 compatibility.

N,Z,V,C

Accumulator, Direct, Indexed, Extended

CMP

DESCRIPTION

CONDITION

CODES:

ADDRESSING

MODES

:

Compare Memory to a Register

Compares the contents of M to the contents of the

specified register and sets appropriate condition codes

N,Z,C,V

Immediate, Direct, Indexed, Extended

2-37

COM

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

:

Complement

Replaces the contents of a register or memory with

its one's complement. The carry flag is set for

6800 compatibility.

N,Z,V,C

Accumulator, Direct, Indexed, Extended

CWAI

DESCRIPTION

CONDITION

CODE:

ADDRESSING

MODE:

Clear and Wait for Interrupt

The CWAI instruction ANDs and immediate byte with the

condition code register (which may clear interrupt

masks), stacks the entire machine state on the hardware

stack then looks for an interrupt. When a (non-maks)

interrupt occurs, no further machine states will be

saved before: vectoring to the interrupt handling routine,

Possibly Cleared by the immediate byte.

Immediate

DAA

DESCRIPTION:

CONDITION

CODES:

ADDRESSING

MODE:

Decimal Addition Adjust
"

This instruction can be used after the addition of

two binary-coded decimal numbers to insure that the

result is in the proper binary-coded decimal format,

and that the carry bit is set correctly. This instruction

should be used after an ADD or an ADC instruction, with

the result held in the A register.

N,Z,C

Inherent

2-38

DEC

DESCRIPTION!

CONDITION

CODES

:

ADDRESSING

MODES

:

Decrement

Subtract one from the operand. The carry flag is not

affected, thus allowing DEC to be a loop-counter in

multiple"-precision computations.

N,Z,V

Accumulator, Direct, Indexed, Extended

JMP

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Jump

Program control is transferred to the effective address.

Not Affected

Direct, Indexed, Extended

JSR

DESCRIPTION

CONDITION

CODES:

ADDRESSING

MODES

:

Jump to Subroutine

Program control is transferred to the Effective Address

after storing the return address on the system stack.

Not Affected

Direct, Indexed, Extended

LD

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Load Register from Memory

Load the contents of the addressed memory into the

register.

N,Z,V

Immediate, Direct, Indexed, Extended

2-39

LEA

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODE:

Load Effective Address

Form the effective address to data using the

memory addressing mode. Load that address, not the

data itself into the pointer register.

LEAX and LEAY affect Z to allow use as counters and

for 6800 INX/DEX compatibility. LEAU and LEAS do

not affect Z to allow for cleaning upVto the stack

while returning Z as a parameter to a calling routine,

and for 6800 INS/DES compatibility.

Indexed.

LSL

DESCRIPTION:

Logical Shift Left

Shifts all bits of the opprand one place to the left.

Bit is loaded with a zero. Bit 7 is shifted into the

carry flag.

CONDITION

CODES

:

ADDRESSING

MODES

:

N.Z,V,C

Accumulator, Direct, Indexed, Extended

LSR

DESCRIPTION

:

Logical Shift tight

Perfroms a logical shift right on the operand,

zero into bit 7 and bit0 into the carry flag.

Shifts a

2-40

LSR Cont:-

CONDITION

CODES

:

ADDRESSING

MODES

:

N,Z,C

Accumulator, Direct, Indexed, Extended

MUL

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Multiply Accumulators

Multiply the unsigned binary numbers in the A and B

registers and place the result in the D register.

Z,C

Inherent

NEG

DESCRIPTION

CONDITION

CODES:

ADDRESSING

MODES

:

Negate

Replaces the operand with its two's complement ,

Note that 80-, c is replaced by itself and only in this

case is V set. The value 0#16
is also replaced by itself

and only in this case is C cleared.

N,Z,V,C

Accumulator, Direct, Indexed, Extended

NOP

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

No Operation

This is a single-byte instruction that causes only the

program counter to be incremented. No other registers

or memory contents are affected.

Not Affected

Immediate, Direct, Indexed, Extended

2-41

OR

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

:

Inclusive OR

Perfroms an "Inclusive OR" operation between the

contents of a register and the contents of memory and

the result is stored in the register.

N,Z,V

Immediate, Direct, Indexed, Extended

ORCC

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODE:

Inclusive OR into condition code register

Perfroms an "Inclusive OR" operation between the

condition code register and the immediate byte and

the result is placed in the condition code register.

This instruction may be used to Set interrupt masks.

The final state of the condition codes is determined

by the immediate byte specified.

Immediate

PHSH

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Push Registers on the System Stack

Any subset of the MPU registers are pushed onto the

system stack.

Not Affected

Register

PSHU

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Push Registers on the User Stack

Any subset of the MPU registers are pushed onto the

user stack.

Not Affected

Register

2-42

ROL

DESCRIPTION

Rotate Left

Rotate all bits of the operand one place left through

the carry flag; this is a nine-bit rotation.

CONDITION

CODES

:

ADDRESSING

MODES

:

N,Z,V,C

Accumulator, Direct, Indexed, Extended

ROR

DESCRIPTION:

Rotate Right

Rotates all bits of the operand right one place

through the carry flag; this is a nine-bit rotation,

CONDITION

CODES

:

ADDRESSING

MODES:

N,Z,C

Accumulator, Direct, Indexed, Extended

RTI

DESCRIPTION:

CONDITION

CODES:

ADDRESSING

MODES :

Return from Interrupt

The saved machine state is recovered from the

hardware stack and control is returned to the

interrupted program.

Recovered from Stack

Inherent

2-43

RTS

DESCRIPTION;

CONDITION

CODES:

ADDRESSING

MODES

:

Return from Subroutine

Program control is returned from the subroutine to the

calling program. The return address is pulled from

the stack.

Not Affected

Inherent

SBC

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

:

Subtract with Borrow

Subtracts the contents of memory and the borrow from

the contents of a register, and places the result

in that register.

N,Z,V,C

Immediate, Direct, Indexed, Extended

SEX

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Sign Extended

This instruction transforms a signed binary eight-

bit value in the B register into a signed binary

sixteen-bit value in the D register.

N,Z

Inherent

ST

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Store Register Into Memory

Writes the contents of an MPU register into a

a memory location.

N,Z,V

Direct, Indexed, Extended

2-44

SUB

DESCRIPTION:

CONDITION

CODES :

ADDRESSING

MODES

:

Subtract Memory from Register

Subtracts the value in memory from the contents of

a register.

N,Z,V,C

Immediate, Direct, Indexed, Extended

SWI

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

:

Software Interrupt

All of the MPU registers are pushed onto the

hardware stack and control is transferred through

the SWI vector.

Not Affected

Inherent

SWI 2

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Software Interrupt 2

All of the MPU registers are pushed onto the

hardware stack and control is transferred through

the SWI 2 vector.

Not Affected

inherent

SWI 3

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

:

Software Interrupt 3

All of the MPU registers are pushed onto the hardware

stack and control is transferred through the SWI3

vector

.

Not Affected

Inherent

2-45

SYNC

DESCRIPTION:

CONDITION

CODES;

ADDRESSING

MODES

:

Synchronize to External Event

When a SYNC instruction is executed, the MPU enters

a SYNCING state, stops processing instructions, and

waits on an interrupt. When an interrupt occurs, the

SYNCING state is cleared and processing continues. If

the interrupt is enabled, the processor will perform

the interrupt routine. If the interrupt is masked, the

processor simply continues to the next instruction.

Not Affected

Inherent

TFR

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

:

Transfer Register to Register

Transfer a Source to a destination register. Registers

may only be transferred between registers of like

size; i.e., 8-bit to 8-bit, and 16 ti 16.

Not Affected

Register

TST

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

:

Test

Set condition code flags N and Z according to the

contents of the operand and clear the V flag.

N,Z,V

Accumulator, Direct, Indexed, Extended

2-46

680 9 STACKING ORDER

FFFF

SP(or US)

10,

S

8,S

6,S

4,S

3,S

2,S

1,S

0, s

PC,

PC H

u/s.

u/sH

*l

xh

DPR

B

CCR

PUSH ORDER

I

!
PULL FROM STACK

TOP OF STACK

PUSH ONTO STACK

I

Figure 7: 6809 Push/Pull and Interrupt Stacking Order

2-47

SOFTWARE INCOMPATABILITIES WITH 6800/6802

1, The new stacking order on the 6809 exchanges the order of

ACCA and ACCB; this allowa ACCA to stack as the MS byte of the

pair.

2, The new stacking length on the 6809 invalidates previous 6800

code which displayed IX or PC from the stack.

3, Additional stacking length on the 6809 stacks five more bytes

for each NMI , IRQ, or SWI when compared to 6800/6802.

4, The 6809 stack pointer points directly at the last item placed on

the stack, instead of the location before the lsot itme as in

6800/6802. In general this is not a problem since the most-

usual method of pointing at the stack in the 6800/6802 is to

execute a TSX. The TSX increments the value during the transfer,

making X point directly at the last item on the stack.

The stack pointer may thus be initialized one location higher

on the 6809 than in the 6800/6802; similarly, comparison values

may need to be one location higher.

Any 6 8 00/6 8 02 program which does all stack manipulation through

X (i.e., LDX #CAT, TXS instead of LDS #CAT) will have an exactly

correct stack translation when assembled for 6809.

5, The 6809 uses the two high-order condition cose register bits.

Consequently, these will not, in general, appear as l's as on

the 6800/6802.

6. The 6809 TST instruction does not affect the C flag, while

6800/6802 TST does clear the flag.

2-48

SOFTWARE IMCOMPATABILITIES WITH 6800/6802

7. The 6809 right shifts (ASR,LSR,ROR) do not affect V; the 6800/6802

shifts set V = b
?

+ bg.

8. The 6809 H-flag is not defined as having any particular state after

subtract-like operations (CMP, NEG, SBC, SUB); the 68Q9/6800

clear the H-flag under these conditions.

9. The 6800/6802 CPX instruction compared MS byte, then LS byte;

consequently only the Z-flag was set correctly for branching. The

6809 instruction CMPX set all flags correctly.

10. The 6809 instruction LEA may or may not affect the Z-flag depending

upon which register is being loaded; LEAX and LEAY do affect the

Z-flag while LEAS abd LEALJ do not. Thus, the User Stack does not

emulate the index registers in this respect.

2-49

6809
PROGRAMMING

REFERENCE MANUAL

The following quick reference describes the sixty-seven instructions

executed by the Motorola 68 9 MPU. A few extra mnemonics have been

added to clarify certain programming practices. The BZS mnemonics

assembles into a BEQ, while the BZC assembles into a BNE instruction.

The assembler will compute offsets for branch instructions and generate

short or long branches as required relieving the programmer of the

necessity to explicitly code long branches.

6809 Software Architecture

The 6809 microprocessor is a stack-oriented, one-address

microprocessor containing two accumulators, four pointer registers,

a direct page register, and a condition flag register. With the

addition of more pointer registers and a powerful compliment of addressing
modes, the 6809 is a major improvement over the 6800/6802 processors.

Figure 1 is a programming model of the 6809.

E F H 1 N Z V c CCR

DPR

Accumulator A i Accumulator B

Accumulator D

Index Register
1

Index Register Y

Stack Pointer U

Stack Pointer S

Program Counter PC

Arithmetic

Registers

Pointer

Registers

Figure 1

Condition Code
Register

Direct Page
Register

Arithmetic Registers

The 6809 has two 8-bit accumulators that are used to perform
arithmetic and logic operations. For many operations the A and B

accumulators can be treated like a single 16-bit accumulator, providing
much improved performance in multiple-precision operations.

2-21

The 68 09 perforins all arithmetic operations in two's complement format.

Pointer Registers

The 6809 has four 16-bit pointer registers that are used as

base address registers for indexed-mode addressing. The various

combinations available with indexed mode addressing allows all

four pointer registers to be used as explicit stack pointers. In

addition, two pointer registers are also implicit stack pointers.

The U and S registers have a series of PUSH and PULL instructions to

facilitate stack programming. The S Stack pointer register is

implicitly used by the 6809 hardware for subroutine calls and

interrupts.

Program Counter

The 6809 maintains an internal 16-bit program counter. At any

given time, the PC may be thought of as a pointer to the next

instruction to be executed. Indexed addressing has two modes

available that utilize the program coutner as a base address pointer.

Condition Code Register

The condition Code Register is conceptually an eight-bit register

that contains the processor condition flags. The bit positions of

the condition flags are shown in figures 1 and 2. A detailed description

of each flag follows.

Bit is the carry flag (C) , and represents the binary carry-out

from an arithmetic or shift type operation. For these operations

this flag is an unsigned overflow. In general, load-type and logical

operations do not effect the carry bit.

Bit 1 is the two's compliment overflow flag (V), and is set by

an operation that causes two's compliment arithmetic overflow. Loads,

stores, and logical operations clear V, while arithmetic operations

set V appropriately.

Since all arithmetic operations are of limited precision (8 or

16 bits) it is possible to generate invalid results whrn performing

arithmetic operations. For example, when performing an 8-bit addition,

it is possible to add 751Q
(01001011

2
) to 85

10 (01010101 2
>
and 9et

the invalid result -96
1Q (10100000 2

^

2-22

+

What has occurred is that the carry out of the most significant

bit (the sign bit) is different from the carry into the sign *"*it,

hence the sign (and the value) of the result is invalid. It is

under these conditions that the two's compliment overflow flag is

set. As another example, consider performing an arithmetic left

shift on 96 1Q
(01100000 2

? • The result is -64 l0 (11000000
2
>.

Since the signed result is invalid, the V flag is set.

Bit 2 is the zero flag (ZJ and is set whenever the result of an

operation is zero. After compare operations, this bit represents

the equal condition. Arithmetic, load, store, and logical

operations set this bit appropriately.

Bit 3 is the sign (N) and is set whenever the most significant bit

of the result is set. For arithmetic operations this flag is set

if valid negative two's compliment result is obtained. Note that

two's compliment branches use both the N and V bits, and the

branch is taken whether the result is valid or not.

Bit 4 is the IRQ mask bit (I) . The processor will rot recognize

IRQ interrupts if this bit is set. The IRQ interrupt acknowledge

sequence sets the I bit to mask subsequent IRQ requests until the

IRQ service routine completes. An RTI instruction will restore the

state of the I flag from the stack.

Bit 5 is the half-carry bit (Hi . This bit is used after 8-bit

add operations to indicate the carry out of bit3 in the arithmetic

unit. This bit is used by the DAA instruction to perform packed decimal

(BCD) add adjust. In general, the H flag state is undefined after

non-add -perations, and add-type instructions on 16-bit quantities.

Bit 6 is the FIRQ interrupt mask bit (F) . This bit affects

the FIRQ interrupt in the same manner that the I bit affects IRQ.

2 -23

Bit 7 is the Entire State flag CE) f
and is used by the RTI

instruction to determine how much of the machine state to

load from the stack. Two saved states are defined: the entire

state (E = 1) in which all registers are pushed on the stack,

and the subset state (E ~
fi\ in which only the program counter and

the condition flags are pushed on the stack. In genera J. the state

of the E flag is undefined except after an interrupt.

Figure 2 bit J0- C -Carry Flag

bit 1- V -Two's Compliment Overflow Flag

bit 2- Z -Zero Flag

bit 3- N -Sign Flag

bit 4- I -IRQ Mask Flag

bit 5- H -Half-carry Flag

bit 6- F -FIRQ Mask Flag

bit 7- E -Entire State Flag

Direct Page Register

The Direct Page Register (DPR) is an 8-bit register that is

used to provide significant 8 bits of the 16 bit address

generated by instructions using direct addressing. This register

is initialized to zero at RESET time.

MEMORY ADDRESSING MODES

INHERENT

EXAMPLE : MUL

Inherent addressing includes those instructions which

have no addressing options.

ACCUMULATOR

EXAMPLE: CLRA, CLRB

Accumulator addressing includes those instructions which

operate on an accumulator.

2-24

ABSOLUTE

EXAMPLE

:

LDA $8/304

Absolute addressing refers to an exact 16-bit location

in the memory address space, and is especially useful

for transactions with peripherals (I/O) .

There are three programs-selectable modes of absolute

addressing, namely: Direct, Extended, and Extended

Indirect. Certain instructions (SWl ,SW2 , SW3) , and

the interrupts, use an inherent absolute address to

function similarly to Extended Indirect mode addressing.

These instructions are said to have "Absolute Indirect"

addressing.

DIRECT

EXAMPLE LDA CAT

Direct addressing uses the immediate byte of the

instruction as a one-byte pointer into a single

256-byte "page" of memory. (The term "page" refers

to one of the 256 possible combinations of the high-

order address bits.) The particular page in use

is fixed by loading the Direct Page Register with

the desired high-order byte (by transferring from or

exchanging with another register.) Thus, the effective

address consists of a high-order byte (from the

Direct Page Register) catenated with a low-order byte

(from the instruction)

.

This mode may allow economies of both program space

and execution time as compared to other absolute or

indexed modes.

EXTENDED

EXAMPLE

:

LDA CAT

Extended addressing uses a 16-bit immediate value

(and thus contained in the two bytes following the

last byte of the op code) as the exact memory address

value.

2-25

EXTENDED INDIRECT

EXAMPLE: LDA ($F000)

Extended indirect addressing uses a 16-bit immediate

value as an absolute address from which to recover the

effective address.

This mode is inherently used by interrupts to vector to

the handling routine? and may be used to create vector

tables in a customized system which allow the use of

standard software packages.

Although Extended Indirect is a logical extension of

Extended addressing, this mode is implemented using

an encoding of the post-byte under the indexed addressing

group

,

REGISTER

EXAMPLE

:

INDEXED

TFR X,Y

Register addressing refers to the selection of various

on-board registers.

The 6809 includes extremely powerful indexing capabilities.

There are five indexable registers (X,Y,S,U, AND PC) with

many options (constant-offset, accumulator offset using

A,B, or D, auto-increment or decrement or indirection.)

These options are selected by complex coding of the first

byte after the op code byte(s) of indexed-mode instructions.

Most 6800 indexed-mode instructions will map into an

equivalent two bytes on the 6809.

2- 26

CONSTANT-OFF SET INDEXED

EXAMPLE: LDA j5 ,X

Constant-offset indexing uses an optional two's complement

offset contained i neither the post byte of the

instruction as a bit-field or as a immediate value.

This offset may be an absolute quantity, a symbol, or

an expression and may range from zero to a 16-bit binary

value which may be specified either positive or negative

with an absolute value less or equal to 2 . The offset

is temporarily added to the pointer value from the

selected register (X,Y,U,S, OR PC); the result is the

effective address which points into memory.

A number of hardware modes are available to reduce the

number of instruction bytes for various options. The

majortiy of 6800 indexed-mode instructions will still

need only two bytes on the 6809.

The notation THERE, PCR causes the assembler to compute

the relative destance between the location of the

symbol THERE elsewhere inthe program counter. The

computed value is used as an immediate value in the

instruction, indexed from the program-counter. This

notation is painlessly position-independent.

Becuase a 16-bit offset is allowed, the (necessarily

absolute) address of the indexable data may be carried

as a constant value in the indexing instructions. This

would allow the ."index register" to be simultaneously

used for indexing and counting using LEA.

2-27

CONSTANT-OFFSET INDEXED INDIRECT

EXAMPLE: LDA (j3,X)

Constant-offset indexed indirect addressing functions

in two stages (like all indirects) . First an indexed

address is formed by temporarily adding the offset-

value contained in the addressing byte(s) to the value

from the selected pointer register (X,Y,S,I, or PC)

.

Second, this address is used to recover a two-byte absolute

pointer which is used as the "effective address".

This mode allow the programmer to use a "table of pointers"

data structure, or to do I/O through absolute values

stored on the stack.

ACCUMULATOR INDEXED

EXAMPLE: LDA A,X

Accumulator-indexed indirect addressing uses an

accumulator (A,B, or D) as a two's complement offset

which is temporarily added to the value from the

selected pointer register <X,Y,S, or U) to form the

effective address.

ACCUMULATOR INDEXED INDIRECT

EXAMPLE: LDA (A,X)

Accumulator-indexed indirect addressing uses an

accumulator (A,B, or D) as a two's complement offset

which is temporarily added to the value from the

selected pointer register (X,Y,S, or U) . The resulting

pointer is then used to recover another pointer from

memory (thus, the indirect designation) which is then

used as the effective address.

AUTO-INCREMENT

EXAMPLE :. LDA j3,X+ LDX ,X++

Auto-increment addressing uses the value in the selected

pointer register (X,Y,S or U) to address a one or two byte

value in memory. The register is then incremented by one

2-28

AUTO-INCREMENT Cont -

(single +) or two (two +'s) . No offset is permitted (a

constant offset of is enforced)

,

AUTO-INCREMENT INDIRECT

EXAMPLE: LDA (0 ,X++)

Auto-increment indirect addressing uses the value

in the selected pointer register (X,Y,S, or U) to

recover an address value from memory. This value

is used as the effective address. The register is

then incremented by two (++) ; the indirected increment

by one is invalid. No offset is permitted (a constant

offset of is enforced)

.

AUTO-DECREMENT

EXAMPLE: LDA J3
, -X LDX ,

—

X

Auto-decrement addressing first decrements the selected

pointer register (X,Y,D, or U) by one (-) or two (—

)

as selected by the user. The resulting value is then

used as the effective address. No offset is permitted

(a constant offset of is enforced)

.

AUTO-DECREMENT INDIRECT

EXAMPLE: LDA (0,—X)

Auto-decrement indirect addressing first decrements

the selected pointer register by two (—) . Auto-

decrement by one indirect is prohibited in the assembly

language. The resulting value is used to recover a

pointer value from memory; this value is used as the

effective address. No offset is permitted (a constant

offset of is enforced)

.

2-29

RELATIVE

EXAMPLE

:

BRA POLE

(Short) Relative addressing adds the value of the

immediate byte of the instruction (an 8 -bit two's

complement value) to the value of the program counter

to produce an absolute address. This addressing mode

is always postion-independent

,

LONG RELATIVE

EXAMPLE : BRA CAT

Long Relative addressing adds the value of the immediate

bytes of theinstructions (a 16-bit two's complement

value) to the value of the program counter to produce

an absolute address. This addressing mode is always

position-independent

,

SWTPC 68/0 9 QUICK REFERENCE

ABX

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODE:

Add ACCB into IX

Add the 8-bit unsigned value in Accumulator B

into the X index register.

Not Affected

Inherent

ADC

DESCRIPTION

CONDITION

CODE:

ADDRESSING

MODES

:

Add With Carry

Adds the carry flag and the memory byte into an

8-bit register.

H,N,Z,V,C

Immediate, Direct, Indexed, Extended

2-30

ADD

DESCRIPTION:

CONDITION

CODE:

ADDRESSING

MODES

:

Add Without Carry

Adds memory into register.

H,N,Z,V,C

Immediate, Direct, Indexed, Extended

AND

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Logical AND

Performs the logical "AND" operation between

the contents of a register and the contents of memory.

N,Z,V

Immediate, Direct, Indexed, Extended

ANDCC

DESCRIPTION:

CONDITION

CODES:

addressing;

MODES

:

Logical AND Into Condition Code Register

Performs a logical "AND" between the condition

register and the immedate byte and places the result

in the condition code register.

The fianl state of the condition codes is governed

by the immediate code register.

Immediate

ASL

DESCRIPTION

Arithmetic Shift Left

Shifts all bits of the operand one place to the

left. Bit fS is loaded with a zero. Bit 7 of the

operand is shifted into the carry flag.

CONDITION

CODES: N,Z,V,C

ADDRESSING

MODES: Accumulator, Direct, Indexed, Extended

2-31

ASR Arithmetic Shift Right

DESCRIPTION: Shifts all bits of the operand right one place. Bit

7 is held constant,

CONDITION

CODES: N,Z,C

ADDRESSING

MODES: Accumulator, Direct, Indexed, attended

BCC

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES :

Branch on Carry Clear

Tests the state of the C bit and causes a branch

if C is clear.

Not Affected,

Relative, Long R&lative

BCS

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

:

Branch on Carry Set

Tests the state of the C bit and causes a branch

if C is set.

Not Affected

Relative, Long Relative

BEQ

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Branch on Equal

Used after a subtract or compare operation, this

instruction will branch if the register is equal to

the memorv operand.

Not Affected

Relative, Long Relative

2-32

BGE Branch on Greater or Equal

DESCRIPTION: Used after a subtract or compare operation on signed

binary values, this instruction will branch if the

register was greater than or equal to the memory !

operand,

CONDITION CODES

CODES: Not Affected

ADDRESSING

MODES: Releative, Long Relative

BGT

DESCRIPTION:

CONDITION

CODES:

ADDRESSING

MODES

:

Branch on Greater

Used after a subtract or compare operation on signed

binary values, this instruction will branch Jf the

register was greater than the memory operand.

Not Affected

Relative, Long Relative

BHI

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Branch if Higher

Used after a subtract or compare operation on

unsigned binary values this instruction will branch

if the register was higher than the memory operand.

Not Affected

Relative, Long Relative

BHS

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Branch if Higher or Same

When used after a subtract or compare on unsigned

binary values, this instruction will branch if register

was higher than or same as the memory operand.

Not Affected

Relative, Long Relative

2-33

BLE

DESCRIPTION:

CONDITION

CODES:

ADDRESSING

MODES

:

Branch on Less or Equal

Used after a subtract or compare operation on signed

binary values, this instruction will branch if the

register was less than or equal to the memory operand,

Not Affected

Relative, Long relative

BLO

DESCRIPTION;

CONDITION

CODES:

ADDRESSING

MODES

:

Branch on Lower

When used after a subtract or compare on unsigned

binary values, this instruction will branch if the

register was lower than the memory operand.

Not Affected

Relative, Long Relative

BLS

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

:

Branch on Lower or Same

Used after a subtract or compare operation signed

binary values, this instruction will branch if the

register was lower than or the same as the memory operand.

Not Affected

Relative, Long Relative

BLT

DESCRIPTION

C ONDITION

CODES :

ADDRESSING

MODES

:

Branch on Less

Used after a subtract or compare operation on signed

binary values, this instruction will branch if the

register was less than the memory operand.

Not Affected

Relative, Long Relative

2-34

BIT

DESCRIPTION:

CONDITION

CODES:

ADDRESSING

MODES:

Bit Test

Performs the logical "AND" of the contents of a

register and the contents of memory and modifies

condition codes accordingly. The contents of the

register are not affected.

N,Z.V

Immediate, Direct, Indexed, Extended

BMI

DESCRIPTION

CONDITION

CODES:

ADDRESSING

MODES:

Branch on Minus

Used after an operation on signed binary values, this

instruction will branch if the result is negative.

Not Affected

Relative, Long Relative

BNE

DESCRIPTION

CONDITION

CODES:

ADDRESSING

MODES

:

Branch Not Equal

Used after a subtract or compare operation, this

instruction will branch if the register is not equal

to the memory operand.

Not Affected

Relative, Long Relative

BPL

DESCRIPTION;

CONDITION

CODES

:

ADDRESSING

CODES

:

Branch on Plus

Used after an operation signed binary values, this

instruction will branch if the result is positive.

Not Affected

Relative, Long Relative

2-35

BRA

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Branch

Causes an unconditional branch

Not Affected

Relative, Long Relative

BRN

DESCRIPTION:

CONDITION

CODES:

ADDRESSING

MODES

:

Branch never

Does not cuase branch. This instruction is

essentially a NO-OP.

Not Affected

Relative, Long Relative

BSR

DESCRIPTION;

CONDITION

CODES

:

ADDRESSING

MODES

:

Branch to Subroutine

The program counter is pushed onto the atack, and

control is passed to the subroutine.

Not affected

Relative, Long Relative

BVC

DESCRIPTION:

CONDITION

CODES :

ADDRESSING

MODES

:

Branch on Overflow Clear

Tests the state of the V bit and causes a branch

if the V bit is set

Not Affected

Relative, Long Relative

2-36

BVS

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

;

Branch on Overflow Set

Tests the state of the V bit and causes a branch if

the V bit is clear.

Not Affected

Relative, Long Relative

BZC

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES :

Branch on Zero Clear

Tests the state of the Z bit and cuases a branch if

the Z bit is clear.

Not Affected

Relative, Long Relative

BZS

DESCRIPTION:

Branch on Zero Set

Tests the state of the Z bit and causes a branch

if the Z bit is set.

CLR

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES:

Clear

The register or memory is loaded with 00000000. The

C-flag is cleared for 6800 compatibility.

N,Z,V,C

Accumulator, Direct, Indexed, Extended

CMP

DESCRIPTION

CONDITION

CODES:

ADDRESSING

MODES

:

Compare Memory to a Register

Compares the contents of M to the contents of the

specified register and sets appropriate condition codes

N,Z,C,V

Immediate, Direct, Indexed, Extended

2-37

COM

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

:

Complement

Replaces the contents of a register or memory with

its one's complement. The carry flag is set for

6800 compatibility.

N,Z,V,C

Accumulator, Direct, Indexed, Extended

CWAI

DESCRIPTION

CONDITION

CODE:

ADDRESSING

MODE:

Clear and Wait for Interrupt

The CWAI instruction ANDs and immediate byte with the

condition code register (which may clear interrupt

masks), stacks the entire machine state on the hardware

stack then looks for an interrupt. When a (non-maks)

interrupt occurs, no further machine states will be

saved before: vectoring to the interrupt handling routine,

Possibly Cleared by the immediate byte.

Immediate

DAA

DESCRIPTION:

CONDITION

CODES:

ADDRESSING

MODE:

Decimal Addition Adjust
"

This instruction can be used after the addition of

two binary-coded decimal numbers to insure that the

result is in the proper binary-coded decimal format,

and that the carry bit is set correctly. This instruction

should be used after an ADD or an ADC instruction, with

the result held in the A register.

N,Z,C

Inherent

2-38

DEC

DESCRIPTION!

CONDITION

CODES

:

ADDRESSING

MODES

:

Decrement

Subtract one from the operand. The carry flag is not

affected, thus allowing DEC to be a loop-counter in

multiple"-precision computations.

N,Z,V

Accumulator, Direct, Indexed, Extended

JMP

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Jump

Program control is transferred to the effective address.

Not Affected

Direct, Indexed, Extended

JSR

DESCRIPTION

CONDITION

CODES:

ADDRESSING

MODES

:

Jump to Subroutine

Program control is transferred to the Effective Address

after storing the return address on the system stack.

Not Affected

Direct, Indexed, Extended

LD

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Load Register from Memory

Load the contents of the addressed memory into the

register.

N,Z,V

Immediate, Direct, Indexed, Extended

2-39

LEA

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODE:

Load Effective Address

Form the effective address to data using the

memory addressing mode. Load that address, not the

data itself into the pointer register.

LEAX and LEAY affect Z to allow use as counters and

for 6800 INX/DEX compatibility. LEAU and LEAS do

not affect Z to allow for cleaning upVto the stack

while returning Z as a parameter to a calling routine,

and for 6800 INS/DES compatibility.

Indexed.

LSL

DESCRIPTION:

Logical Shift Left

Shifts all bits of the opprand one place to the left.

Bit is loaded with a zero. Bit 7 is shifted into the

carry flag.

CONDITION

CODES

:

ADDRESSING

MODES

:

N.Z,V,C

Accumulator, Direct, Indexed, Extended

LSR

DESCRIPTION

:

Logical Shift tight

Perfroms a logical shift right on the operand,

zero into bit 7 and bit0 into the carry flag.

Shifts a

2-40

LSR Cont:-

CONDITION

CODES

:

ADDRESSING

MODES

:

N,Z,C

Accumulator, Direct, Indexed, Extended

MUL

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Multiply Accumulators

Multiply the unsigned binary numbers in the A and B

registers and place the result in the D register.

Z,C

Inherent

NEG

DESCRIPTION

CONDITION

CODES:

ADDRESSING

MODES

:

Negate

Replaces the operand with its two's complement ,

Note that 80-, c is replaced by itself and only in this

case is V set. The value 0#16
is also replaced by itself

and only in this case is C cleared.

N,Z,V,C

Accumulator, Direct, Indexed, Extended

NOP

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

No Operation

This is a single-byte instruction that causes only the

program counter to be incremented. No other registers

or memory contents are affected.

Not Affected

Immediate, Direct, Indexed, Extended

2-41

OR

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

:

Inclusive OR

Perfroms an "Inclusive OR" operation between the

contents of a register and the contents of memory and

the result is stored in the register.

N,Z,V

Immediate, Direct, Indexed, Extended

ORCC

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODE:

Inclusive OR into condition code register

Perfroms an "Inclusive OR" operation between the

condition code register and the immediate byte and

the result is placed in the condition code register.

This instruction may be used to Set interrupt masks.

The final state of the condition codes is determined

by the immediate byte specified.

Immediate

PHSH

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Push Registers on the System Stack

Any subset of the MPU registers are pushed onto the

system stack.

Not Affected

Register

PSHU

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Push Registers on the User Stack

Any subset of the MPU registers are pushed onto the

user stack.

Not Affected

Register

2-42

ROL

DESCRIPTION

Rotate Left

Rotate all bits of the operand one place left through

the carry flag; this is a nine-bit rotation.

CONDITION

CODES

:

ADDRESSING

MODES

:

N,Z,V,C

Accumulator, Direct, Indexed, Extended

ROR

DESCRIPTION:

Rotate Right

Rotates all bits of the operand right one place

through the carry flag; this is a nine-bit rotation,

CONDITION

CODES

:

ADDRESSING

MODES:

N,Z,C

Accumulator, Direct, Indexed, Extended

RTI

DESCRIPTION:

CONDITION

CODES:

ADDRESSING

MODES :

Return from Interrupt

The saved machine state is recovered from the

hardware stack and control is returned to the

interrupted program.

Recovered from Stack

Inherent

2-43

RTS

DESCRIPTION;

CONDITION

CODES:

ADDRESSING

MODES

:

Return from Subroutine

Program control is returned from the subroutine to the

calling program. The return address is pulled from

the stack.

Not Affected

Inherent

SBC

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

:

Subtract with Borrow

Subtracts the contents of memory and the borrow from

the contents of a register, and places the result

in that register.

N,Z,V,C

Immediate, Direct, Indexed, Extended

SEX

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Sign Extended

This instruction transforms a signed binary eight-

bit value in the B register into a signed binary

sixteen-bit value in the D register.

N,Z

Inherent

ST

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Store Register Into Memory

Writes the contents of an MPU register into a

a memory location.

N,Z,V

Direct, Indexed, Extended

2-44

SUB

DESCRIPTION:

CONDITION

CODES :

ADDRESSING

MODES

:

Subtract Memory from Register

Subtracts the value in memory from the contents of

a register.

N,Z,V,C

Immediate, Direct, Indexed, Extended

SWI

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

:

Software Interrupt

All of the MPU registers are pushed onto the

hardware stack and control is transferred through

the SWI vector.

Not Affected

Inherent

SWI 2

DESCRIPTION:

CONDITION

CODES

:

ADDRESSING

MODES

:

Software Interrupt 2

All of the MPU registers are pushed onto the

hardware stack and control is transferred through

the SWI 2 vector.

Not Affected

inherent

SWI 3

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

:

Software Interrupt 3

All of the MPU registers are pushed onto the hardware

stack and control is transferred through the SWI3

vector

.

Not Affected

Inherent

2-45

SYNC

DESCRIPTION:

CONDITION

CODES;

ADDRESSING

MODES

:

Synchronize to External Event

When a SYNC instruction is executed, the MPU enters

a SYNCING state, stops processing instructions, and

waits on an interrupt. When an interrupt occurs, the

SYNCING state is cleared and processing continues. If

the interrupt is enabled, the processor will perform

the interrupt routine. If the interrupt is masked, the

processor simply continues to the next instruction.

Not Affected

Inherent

TFR

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

:

Transfer Register to Register

Transfer a Source to a destination register. Registers

may only be transferred between registers of like

size; i.e., 8-bit to 8-bit, and 16 ti 16.

Not Affected

Register

TST

DESCRIPTION

CONDITION

CODES

:

ADDRESSING

MODES

:

Test

Set condition code flags N and Z according to the

contents of the operand and clear the V flag.

N,Z,V

Accumulator, Direct, Indexed, Extended

2-46

680 9 STACKING ORDER

FFFF

SP(or US)

10,

S

8,S

6,S

4,S

3,S

2,S

1,S

0, s

PC,

PC H

u/s.

u/sH

*l

xh

DPR

B

CCR

PUSH ORDER

I

!
PULL FROM STACK

TOP OF STACK

PUSH ONTO STACK

I

Figure 7: 6809 Push/Pull and Interrupt Stacking Order

2-47

SOFTWARE INCOMPATABILITIES WITH 6800/6802

1, The new stacking order on the 6809 exchanges the order of

ACCA and ACCB; this allowa ACCA to stack as the MS byte of the

pair.

2, The new stacking length on the 6809 invalidates previous 6800

code which displayed IX or PC from the stack.

3, Additional stacking length on the 6809 stacks five more bytes

for each NMI , IRQ, or SWI when compared to 6800/6802.

4, The 6809 stack pointer points directly at the last item placed on

the stack, instead of the location before the lsot itme as in

6800/6802. In general this is not a problem since the most-

usual method of pointing at the stack in the 6800/6802 is to

execute a TSX. The TSX increments the value during the transfer,

making X point directly at the last item on the stack.

The stack pointer may thus be initialized one location higher

on the 6809 than in the 6800/6802; similarly, comparison values

may need to be one location higher.

Any 6 8 00/6 8 02 program which does all stack manipulation through

X (i.e., LDX #CAT, TXS instead of LDS #CAT) will have an exactly

correct stack translation when assembled for 6809.

5, The 6809 uses the two high-order condition cose register bits.

Consequently, these will not, in general, appear as l's as on

the 6800/6802.

6. The 6809 TST instruction does not affect the C flag, while

6800/6802 TST does clear the flag.

2-48

THEORY OF OPERATION - TECHNICAL SUMMARY

Page numbers refer to the circuit diagrams.

Page.l

An AC supply of between 6 and 15 volts is rectified and clamped

to between and 5 volts by the diode resistor combination.

The 74LS14 Schmitt inverter provides rectangular pulses from

this at 50Hz.

A falling edge then triggers both halves of a 74LS123 monostable

producing a 1ms low going vsync pulse from one and a 2ms low

going pulse from the other. These pulses are synchronized to

hsync by one half of the 74LS74 ensuring that vsync and hsync

are locked together. The rising edge of this second pulse clocks

the other half of the 74LS74 to produce an active high output

delayed by 1ms from the termination of vsync. This in turn is

gated with hsync by a 74LS32 OR gate to produce firq interrupt

pulses to the processor once every hsync pulse while the output

of tbe 74LS74 remains high. This is cleared under software

control at the completion of each video frame via the clr bit

of the 6821 PIA.

The hsync pulse is derived from the master microprocessor clock

(e) which is divided by 64 by two 74LS93 counters. Their outputs

are gated by a 74LS21 and 74LS00 to produce an 8us hsync pulse

every 64us as required for video synchronization.

© 1981 Technosys Research Laboratories Ltd.

3-01

Page.

2

The 6809 microprocessor has a 4MHz crystal providing a master

clock (e) of 1MHz. Reset is accomplished at power on by an RC

delay network and two 74LS14 Schmitt inverters. The non-maskable

interrupt is utilized as an abort feature by coupling it to the

on board PANIC push button. This button is debounced by an RC

network and two more Schmitt inverters.

The main address and data buses are buffered by a 74LS24 5 and

two 74LS241's to provide expansion capability via the SS-50 bus

edge connector.

Page.

3

The system chip selects are provided by three 74LSl39's and some

additional gating. Initially the top two address lines, al4 and

al5 are decoded into four 16k blocks which are further decoded

by the other gates. The bottom 16k block is decoded by another

half of a 74LS139 and al2 and al3 to provide four 4k blocks.

The bottom two of these (rom2 and rom3) may be used for two

optional roms (see memory map) . Note that the position of these

two roms is selectable by jumpers on board.

The top 16k block is further decoded by half a 74LS139 and al2

and al3 to provide 4k block selects for roml , rom2 , and rom3

.

Roml is the system monitor rom and occupies the top 4k of the

memory map, rom2 and rom3 are the optional roms described above.

The middle 4k of this 16k block is used for I/O operations

and is further divided by another half 74LS139 to give chip

selects for pial, pia2 and char ram,

3-02

Note that these only occupy half of the 4k I/O block, the other

half being reserved for I/O on additional boards. The next 16k

block down is only partially utilized. The top 4k of it is

decoded by half a 74LS139 to give four chip selects for rami

through ram4 {Ik each) . These are the onboard ram chips, and

the upper half of rami is used for video character storage.

The rest of the circuitry, the 74LS21, 74LS08 and 74LS00 are used

to provide a sel strobe when none of the onboard devices are

selected.

Page.

4

Rornl, rom2, and rom3 select 2532 EPROMS as described above. The

6821 PIA is dedicated to system usage. Its lines are used to

control the keyboard, cassette and video circuitry. Eight lines

of port A are used for two purposes. During video scan they

control which row of each character is being displayed and

during keyboard scan they set up which row of the key matrix

is being scanned. The remaining two lines of port A are used

for the cassette interface. One proyldes serial data out via

an RC network to the recorders microphone input and the other

receives data in from the recorders earphone output. This data

is first clipped by diodes and then squared by the 74LS14 and

74LS04.

Three lines of port B are used to provide the video control

signals page, char and blank. A fourth control pulse, clr,

is provided by the pia*s handshaking output. The remaining

four port B data lines are configured as inputs from the

keyboard columns. These are also fed to the 74LS20 so that any

3-03

low transition (keypressed) will result in a pia handshaking

interrupt.

Page.

5

The second (optional) pia is completely available to the user

and all port lines are brought out to an edge connector.

The expandable on board ram consists of six 2114 T s selected

by ram2 through ram4

,

Page .6

The 74LS20 and the 74LS08 gating provides a select pulse to the

2114 ram chips if one of three conditions is met. Firstly if

page is low (signifying an access to the character generator

ram) , secondly in rami is low (signifying a normal processor

ram access) and thirdly if any access to (F600 - F7FF)., occurs
16

(signifying a video scan cycle) . The read/write to this ram

is organized so that only reads occur during page access via

the 74LS00 gating (see software theory of operation)

.

The 74LS245 gates the rami access in the normal fashion. During

video access data from the ram is fed to the programmable character

generator ram and the rom character generator (66710) . These

provide the necessary video data and character row selects

are derived from the pia as previously described,

On the programmable character ram, bit seven of the input data

selects between the ram chips (via a 74LS86) and the r/Iw is

3-04

gated via a 74LS32 so that it is always high {read) except for

when the char ram select is active.

Page.

7

The outputs from the two character generators are selected by

the char line from the pia via two 74LS157 multiplexers. The

selected output (char rom if char is low, char ram if char is

high) is then loaded into a 74LS165 shift register. The clock

timing for the shift register is generated by the 74LS04 and the

series of RC networks, synchronized to the master clock (e)

.

The 74LS245 data buffer provides microprocessor access to the

programmable character generator ram.

Page.

8

The 74LS157 multiplexes the eight columns of the keyboard (each

with a pullup resistor) to four lines fed to the key inputs of

the system pia. This is controlled by the pia's asc line.

The most significant data bit from the video ram is fed to half

the 74LS74 which is clocked by the shift register load pulse.

This synchronizes it with each new byte of video data. The

output from this flip flop is then used to selectively invert

video data via a 74LS86. This provides individual polarity control

of the on screen characters.

Another 74LS32 is used to control blanking of video data via the

blank signal from the system pia. Video data and sync are combined

by a 4066 to produce composite video output.

3-05

Aamber Pegasus

Pagei

SJH 1/81 V1.0

r.2

r.1 1 .
6

(vac) D|
was— t—r^>°-

« 12 ^ ^
5v

(vsync >

+5v<»-

0D

CEl>

(hsync >
-

(_£_>

2 4 14 3

1 ic.6

6 7

-*»+5v

16 3
8

i£j 2

4 14^V
¥7c.1 Jr

5v

12 11

9 ic^ 10

6 7

y- c - 2 ^5v

6 ~-H
ic.2

ic.46 imi>-i^

3 7
2 4 14

• » -*>+5v

rt
ic.3

2 3 10

ic.7 5
9 mi^'b

12 14

ic.4

v
+ 5v

0

-s>+5v

m
11 12 1

14 2 3 10

UZE

h5v

3-06
(c) 1981 Technosys Research Laboratories Ltd

Aamber Pegasus

+ 5v

A

Page 2

SJH 1/81 V1.0

+ 5v
A

d.3!

H

o WM/-
r.7 J_

C reset)

r.5

7^1
c.3 " icj id

c^>

c.5
1
X

x.11 I

c.6
T
I

d.4£
10 11 12^113

id id

p. 6

~~lV
< mr)

34 1 2

39

37 36 40

ic.10
33

38

31-24 7 8 23 32 4 3

C r/w >

n^i

v
45 v

12 3 4 5 6 7 ft 9

19 jdl 2°

18T7 16 15 14 13 12 11

118136154172

r.8

•JM—*>+5v

CZEZ)
mm »+5v

p.9

1—< dma >

^m—*>+5v
MO

1 C jrg)

-iWM—»+5v
P.11

1 (firq)

-Nm—*>+5v
r.12

CEED

19

20,

ic.12
LSM\

2 7 14 5 16318

+ 5v

®Zd7)

10

11 8 13 6 15 4 17 2

1
ic.13

19

10
L^"

20lu
912 7 14 5 163li

u

<az©

1
+5v

(JB-jg)

(c) 1981 Technosys Research Laboratories Ltd. 3-07

Aamber Pegasus

Page 3_

SJH 1/81 V1.0

G5D

3-08 (c) 1981 Technosys Research Laboratories Ltd.

Aamber Pegasus

Page £

SJH 1/81 V1.0

C rom1 >

(rom2)-

(r<?m3 y

O

C irq >

+5v-«a-

d.5

+ 5v

I

37

38
20

22

24
1

+5v
4

24 21 12

20
ic 18

20 id9

20
ic.20

18

19

22
23 \

8

1

1311 10 9 17161514

2627 282930 3132 33 36 35 2321

25

34
ic.21

b&i.\

18

40 39 2-9 13 12 11 10 19 14-17

—<>
%
13

Zd.6 i4

ic.9

id

Ccassout)—\\
c.7

Ccassin)—
\\

CpaO-paT)
AAAnA

r.14
ntmr- *>+5v

QJ

ID
(V
JZ.

c

-Q

i

O

< P»a1)

-< r/w)m
C reset)

—tr_l/6
ic-22

<E3D

c.8 (c) 1981 Technosys Research Laboratories Ltd. 3-09

Aarnber Pegasus

Page 5

5JH 1/81 V1.0

C ram2 >

C ram3 >

C ram4 >

o
I

C irq >

•5v<«- 20

22

24

1

5v

8
9

ic.23 ,„:

8 ic.24

8 ic.25

8 ic.26

8 ic.27

8,

7

6

5

15

4

16

3

17

2

ic.28 1

1 12 13 14(1D(12>(13(14)

38
2627282930313233 35 36

25

37

40 39 2

ic.29

9 10 - 17 18

r\

LJ

(uaQ-ua7) (ufa0-ub7)

34

23

21

•^

—

CM

(V

o

<ZIZ>

< reset)

< r/w)

3-10 (c) 1981 Technosys Research Laboratories Ltd.

Aamber Pegasus

Page 6

SJH 1/81 V1.0

C r/w)
12 13

(EoZED

(c) 1981 Technosys Research Laboratories Ltd. 3-H

Aamber Pegasus

Page 7

SJH 1/81 V1.0

GD

3-12 (c) 1981 Technosys Research Laboratories Ltd.

Aamber Pegasus

Page 8_

SJH 1/81 V1.0

(A

any
QD-

k.47

ic.33

C load >
+5v-q^y-

csd-

(blank >

(vsvnc>

(h§ync>

C asc >

n5n ic.47

*>+5v

j | r.26

video)

m*r
r.27 av.1

a
i

1 2

14

12

ic.45 ^
1 3

81516 10

ET

T

rr
rrr
TTT-r

i i j i I

SI

r.28 - r.35

5v

5v+ 5V-0- 1 Z
Z Z

:::c.12-c.31

(c) 1981 Technosys Research Laboratories Ltd. 3-13

AAMBER PEGASUS

Parts list

IC.l 74LS14

IC.2 74LS32

IC.3 74LS0O

IC.4 74LS21

IC.5 74LS123
1

IC.6 74LS74

IC. 7 74LS93

IC.8 74LS93

IC.9 74LS04

IC.10 MC6809

IC.ll 74LS245 *

IC.12

IC.13

74LS241 *SS-50'bus
expansion

74LS241 *

IC.14 74LS139

IC.15 74LS139

IC.16 74LS139

IC.17 74LS08

IC.18 TKS25 32

IC.19 1^1525 32 *

IC.2 TMS2532 *

IC.21 MC6821

IC.22 74LS20

IC.23 MC2114-30

* denotes optional components

IC.24 MC2114-30

IC,25 MC2114-30

IC.26 MC2114-30

IC.27 MC2114-30

ICv2 8 MC2114-30

IC.29 MC 6 8 2

1

IC.30 74LS245

IC31 MC2114-30

IC.32 MC2114-30

IC.33 74LS86

IC.34 MC2114-30

IC.35 MC2114-30

IC.36 MC6 6 710

IC.37 MC2114-30

IC.38 MC2114-30

IC.39 74LS157

IC.40 74LS165

IC.41 74LS157

IC.42 74LS245

ICJ4 3 74LS04

IC.44 MC14066

IC.45 74LS157

IC.46 74LS74

IC.47 74LS32

AAMBER PEGASUS

Parts List

R.l 100

R.2 100

R.3 8.2K

R.4 27K

R.5 10 OK

R.6 lm

R.7 IK

R.8 - 12 IK

R.13 IK

R-14 470

R.15 4.7K

R.16 - R.22 IK

R.23 IK

R.24 390

R.25 470

R.26 390

R.27 2.7K

R.28 -R.36 IK

all resistors *sw carbon all values in ohms

D.l - D. 7 IN4148

X.l 4.0 MHz Crystal

C.l

C.2

C. 3

C.4

C.5

C.6

150nf mylar

330nf mylar

o.l uf disc ceramic

luf 35v tantalum

27pf disc ceramic

27pf disc ceramic

C.7 1 uf 35v tantalum

C/8 O.luf disc ceramic

C.9 47pf disc ceramic

C.10 330pf disc ceramic

C.ll 68uf 16v tantalum

C.12 - C.3b O.luf disc ceramic

SOFTWARE IMCOMPATABILITIES WITH 6800/6802

7. The 6809 right shifts (ASR,LSR,ROR) do not affect V; the 6800/6802

shifts set V = b
?

+ bg.

8. The 6809 H-flag is not defined as having any particular state after

subtract-like operations (CMP, NEG, SBC, SUB); the 68Q9/6800

clear the H-flag under these conditions.

9. The 6800/6802 CPX instruction compared MS byte, then LS byte;

consequently only the Z-flag was set correctly for branching. The

6809 instruction CMPX set all flags correctly.

10. The 6809 instruction LEA may or may not affect the Z-flag depending

upon which register is being loaded; LEAX and LEAY do affect the

Z-flag while LEAS abd LEALJ do not. Thus, the User Stack does not

emulate the index registers in this respect.

2-49

E- 3. 14/4/81

FORTH REFERENCES

BYTE August 1980

Dr. DOBB'S JOURNAL January 1981

USING FORTH FORTH, Inc.
2309 Pacific Coast Highway,
Hermosa Beach
California, 90254

FORTH DIMENSIONS Forth Interest Group
P.O. Box 1105
San Carlos, California
94070

FORTH

The following pages begin an introduction to the

language FORTH . This section of the manual should

familiarise you with stack operations, simple integer

calculations and elementary programming development. For

more comprehensive programming, the magazines or books

in the reference list should be consulted.

Using FORM : 1) Switch your computer on

2) You should see a display including the words

FORTH 1.1

3) press F

4) The message Pegasus 6809 FORTH should appear.

5) Now you are ready to begin reading the FORTH manual.

To EXIT FORTH 1) Type M3N {press RETURN)

2) You are now back to the Select mode.

TO REENTER FORTH

1) You should be in the Select mode

2) Type M .

G 0011. (the . should return you to FORTH)

3) ONLY use this method if you have previously
been in FORTH since switch on.

PANIC! 1) If for some reason (usually an illegal loop operation)

the computer 'hangs-up' and will not respond, all is not

lost. Press the NMI button inside the computer and

then reenter FORTH as above.

~1-

A Gentle Introduction to Pegasus Forth

Forth as a language is very different from most other

computer languages, such as Basic or Pascal. It requires a

structured approach, (having no GOTO statement) ,
yet has all

the convenience of an interactive interpreter. An expert's

definition of Forth might be:

threaded, extensible, interactive, tree-structured,

self-implementing, interpretive language.

Stack Concepts

Forth is a stack language. A stack can be defined as. a

collection of data items, usually byte (8 bit) or word (16 bit)

quantities, which are pointed to by a register known as a stack

pointer, and are arranged so that the last item placed on to the

stack is the first to be removed. Stacks usually grow from high

memory addresses down to low memory addresses, and are contiguous

Any form of data may be placed on a stack, including

numbers, characters, or addresses which point to data. If you

have used a calculator with Reverse Polish Notation (RPN, e.g.

Hewlett Packard) , you will be at home with Forth. Such a

calculator operates something like Forth in its use of a stack,

and post-fix notation (or RPN) , to evaluate expressions.

For instance, to evaluate (3*4)+(6*2), where the

asterisk '*' is the standard computer symbol for multiplication,

we would enter into the computer

:

|
3 4*62*+. (CR)

with a space separating each symbol, or word.

Evaluating from left to right: 3 is stacked, then 4, then the

multiplication operator multiplies the two numbers, removing

them from the stack, and leaving 12 on the top. Then 6 and 2

are stacked and multiplied, leaving another 12 on top of the 12

already there. The two products are then added, leaving 2 4 on

the stack, which is then removed from the stack and printed with

the '
.

' operator

.

After the RETURN key is typed, the computer will respond

24 ok

It is a convention with Forth that when the top item of the

stack is operated upon, then it is destroyed.

As ;m example, let's write a email program to evaluate

the polynomial

3x
2

-+ 4x - 7

for x=2 and x=7

.

We type in the following:

: POLY DUP DUP * 3 * SWAP 4 * + 7 - . ,*

The colon word * : ' means that a definition is to follow - the

definition is terminated by the semicolon word '
;

*

.

POLY is the name of the Forth word that we are defining - any

name of up to 31 characters is acceptable here, and it can include

any character except the space or RETURN, including control codes

or special punctuation characters.

DUP is a Forth word that duplicates the top of stack, and

Slaves the result on the stack. Executed twice, this makes two

copies of the number on the top of the S stack.

The * operator is used to multiply these two copies,

destroying them and leaving the result on top. The result is

then multiplied by 3, leaving a nev; result, then SWAPped

with the original number, x, which is multiplied by 4. Then the

two terms are added, 7 is subtracted, and the result printed.

The program is now written, so let's run it:

2 POLY <CR) 13 OK

7 POLY (CR) 16 8 OK

It's as simple as that!

POLY is now a Forth word, that will be there until we turn off

^Pe Pegasus, or until we' tell it to

FORGET POLY (CR)

in which case all definitions subsequent to and including POLY

will be destroyed (unless they are saved on cassette first)

.

Arithmetic Operations

In normal operation, this version of FORTH uses

16-bit signed arithmetic which allows integers from

-32768 to +32767 to be used. You can develop methods to

work with numbers outside this range, but only this range

will be assumed for now.

CALCULATIONS

Reverse Polish Notation (RPN) is used in calculations.

For example

:

6+5*2 is entered as 5 2 * 6 +

{Note: * is the symbol for multiplication)
{ * is done before +)

To print the answer, (which is stored on top of the stack)

the FORTH word . is used (i.e. a full stop)

Type in 5 2*6+.
The answer 16 should be printed in the same line followed by OK,

Exercises : {The answers are on the following page)

Change these operations to RPN; then use FORTH

to print the answers.

(a) 7*2 + 3 + 4

(b) 7*2+3*4
(c) 7 * (2 + 3) * 4

(d) 72 t 9 (use / on the keyboard for division)

(e) (64 + 6) 4- 7

ANSWERS

(a) 7 2*3+4 +

(b) 7 2* 3 4* +

(c) 2 3+7*4*

(d) 72 9 / .

{e) 64 6 + 7 / .

(+ adds the 2 and 3)

(first * multiplies the answer by 7)

(second * then multiplies by 4)

Note: Other answers are possible. For example (a) could be done

3 4 7 2* + +.
In this case, all numbers were put on the stack, and

then the operations were performed.

Similarly: (c) 7 4 2 3+**.
(e) 7 64 6 + / .

-1-

FORTH PROGRAMMING

Screen Operations

Although you must understand how the stack operates to do calcula-

tions, you can do much more with FORTH than imitate a programmable

calculator. This section will show you how to define words -to out-

put text, numbers and graphics onto the video screen.

The PEGASUS monitor uses control codes to move the cursor and pro-

vide other screen functions. Some of the frequently used codes

are given below.

FUNCTION ASCII number
(decimal)

clear screen J-2

cursor on 6

cursor off 15

set inverse video 1

clear inverse video 2

set cursor position -U
delete current line 21

Since the functions may be used often in one program, you are

advised to define words for these tasks.

The FORTH word EMIT will output the ASCII number at the top of

the stack to the screen. If the number is from 32 to 127, EMIT
will put a letter, digit or other character onto the screen. Try

typing in these commands to see how the word EMIT can be used,

65 EMIT
75 EMIT (remember to press RETURN key at
49 EMIT end of each line)
4 2 EMIT

Look at the table ASCII characters . You will find the characters

A, K, 1, * beside the numbers you used above.

Use the word EMIT to put these characters on the screen P, p,) ,
#.

If you use numbers less than 32, one of the screen functions will

be activated instead. Try these

12 EMIT
15 EMIT
6 EMIT
1 EMIT
2 EMIT

You are now ready to define words to do these functions whenever

you wish.

-2-

ASCII CHARACTER TABLE

The members from to 31 are reserved for special screen

function controls.

CHARACTER ASCII CHARACTER ASCII
(decimal) (decimal)

Space 32 g 64

i
. , 3 3 A 65

ii 34 B 66

35 C 67

$ 36 D 68

% 37 E 69

& 38 F 70

i 39 G .

71

(
40 H 72

)
41 I 73

* 42 J 74

+ 43 K 75

44 L 76

45 M 77

/
46 N 78

/ 47 79

48 P .
80

1 49 Q 81

2 50 R 82

3 51 S 83

4 52 T 84

5 53 U 85

6 54 V 86

7 55 w 87

8 56 X 88

9 57 Y 89

. 58 z 90

t
59 C 91

< 60 \ 92

61
]

93

> 62 /\
94

•p 63 95

CHARACTER
)

ASCII
(decimal)

96

a 97

b 98

c 99

d 100

e 101

f 102

9 103

h 104

i 105

3
106

k 107

1 108

m 109

n 110

o 111

P 112

q 113

r 114

s 115

t 116

u 117

V 118

w 119

X 120

y 121

z 122

{

1

123

124

}
125

126

127

Note the difference between the digit and the letter O

-3-

The easy ones are:

CLS 12 EMIT ;

CO 6 EMIT ;

CX 15 EMIT ;

10 1 EMIT ;

IX 2 EMIT ;

(leave a space after : and after EMIT)

-clears screen
-turns cursor on
-turns cursor off
-turns inverse video on
-turns inverse video off

Type in these 5 definitions, then test each one by typing the .

word you have defined, (e.g. try CLS then CX then CO etc.)

The word to set the cursor at a certain place on the screen is

more difficult to define. The screen has 16 lines, 32 columns
wide. The figure below shows how these are numbered.

columns01234567
lines

29 30 31

1

2

3

4
i

14
15

If you want to put the cursor at column 20 of line 5 you must
use EMIT three times.

11 EMIT

prepares to set
position

2 EMIT

column
number

5 EMIT

line
number

All this must be done even before you can put anything there,

To put the letter 'A' (ASCII 65) at this position, type in:

11 EMIT 2 EMIT 5 EMIT 65 EMIT
Vv _

sets position prints A

You can define a word CPOS to set the cursor for you. (type this

in)

: CPOS 11 EMIT SWAP EMIT EMIT
j

Now to print A in column 20, line 5, type:

20 5 CPOS 65 EMIT (a bit easier?)

-4-

HOW AND WHY CPOS WORKS :

CPOS expects two numbers to be on the stack, the column number

and the line number.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

I

STACK

5

20
x
x

11
5

'

20
X

5

20
x
X

20
5

x
X

5

x
X
X

X
X
X

11

20

OPERATION

—line number entered last
—column number entered first

CPOS 11 puts 11 on stack

EMIT - first EMIT uses 11 to
prepare to set the position

SWAP - we need column number first

EMIT - column number now used

EMIT line number now used

The stack has used the two numbers 20 and 5 to set the cursor
position and it is now ready for further entries.

Now, use CLS and then CPOS four times to put four x's, one below
the other, starting at column 25 on line 4.

You still have to type a lot to just to get one letter onto the

screen. If you want several words, or a line of characters, there

are other ways instead of using EMIT.

-5-

PRINTING TEXT The F0RTH word to print text is . " followed by

a space. The word " ends the text to be printed.

Example Define a word Wl that will print PEGASUS,

; Wl ." PEGASUS" •

Now to print PEGASUS starting at column 20 line 5, type

20 5 CPOS Wl

If you don't want . OK printed after PEGASUS, then include CR

(carriage return) after Wl

20 5 CPOS Wl CR

Let's define a TASK now that will combine several of our new words.

: PRINT CPOS Wl CR J

This new definition will expect two numbers, column number, and

line number.

Example 20 5 PRINT

How Print Works

Step 1. 20, then 5, are placed on stack

2. Cursor put at column 20 line 5 (CPOS)

3. PEGASUS is printed (Wl)

* 4. Cursor goes to next line (CR)

5. OK printed and Forth ready for new commands.

Exercises (clear the screen after each exercise)

1. Use 10 and IX to print PEGASUS in inverse video

2. Use 10 9 SPACES IX to print 9 white blocks (SPACES is a FORTH word)

3. Define a TASK to print PEGASUS near the middle of the screen

in normal video, with a white border, top bottom and sides,

(break TASK into several parts, and then combine for final

definition - test each part as you define them)

Some of the passible answers for these tasks are given on the following

page.

-6-

POSSIBLE ANSWERS

1. PRINT1 CPOS 10 Wl IX CR ; to use type 20 5 PRINTl

9SP CPOS 10 9 SPACES IX CR ; to use type 20 5 9SP

3. You should break this task into several parts

(a) TB 10 6 9SP ;
- top border

(b) Define another word

: ISP CPOS 10 1 SPACES IX CR ;

Use ISP to provide the left and right borders

LB 10 7 ISP ;
- left border

RB 18 7 ISP ;
- right border

(c) : PG 11 7 PRINT ;
- prints PEGASUS

(d) : BB 10 8 9SP ;
- bottom border

Now put all these parts together.

: TASK CLS TB LB PG RB BB ;

To use, type TASK

-7-

COMBINING MATHS AND TEXT PRINTING

This section will describe a task using defined words for

(aO 1 finding the cube of a number

(b) calculating cubes of 10 numbers

(c) printing headings and putting results in chart form.

(a) If you want to cube a number, you need 2 duplicate numbers to

multiply with the original

: CUBE DUP DUP * *
;

Type. 5 CUBE . (the . is needed to print the result)

Make sure you understand how CUBE works.
(note: The stack can only store numbers from -32768 to 32767

32 CUBE will cause stack to overflow)

(b) We must use a DO - LOOP to do a calculation
more than once. Let's define a word to print the numbers
from 1 to 10

.

: COUNT 11 1 DO I . CR LOOP ;

Type CLS COUNT to test.

How COUNT works

11 1 - loop starts at 1 but stops at 10 ,
NOT 11

DO - Start of Loop

I .
- prints this number

CR - begins new line

LOOP - end of loop

When the list was printed, the of 10 was not in the one's
column. Redefine COUNT using 6 ,R instead of -. and try COUNT
now. (6 .R - sets up a block -of 6 spaces with the one's
column on right.

Exercise

If we want to print a list of cubes, we can use a loop
similar to COUNT.

; 10CUBES 11 1 DO I CUBE 6 . R CR LOOP ,*

The only difference is that I is cubed before it is printed

-8-

Next combine these ideas into one loop that will print the number
and its cube,

: CUBECHART 11 1 DO 4 SPACES I 6 . R 10 SPACES I CUBE 6 .R

CR LOOP ;

'4 SPACES provides spaces on the left mar*gin of the chart;

10 SPACES gives a gap between the numbers and their cubes

,

(c) Finally, we need a word to print a heading for each
column. You can now do this yourself.

Exercise Use what you learned about text printing and CUBECHART
to do the following.

1

.

Clear the screen

2. Print on line CUBES FROM 1 TO 10

3. Print on line 2 in inverse video

NUMBER CUBE

4. Print columns for number and its cube.

-9-

POSSIBLE ANSWERS

LO ." CUBES FROM 1 TO 10"
;

Wl . " NUMBER" ;

W2 ." CUBE" ;

L2 3 SPACES 10 Wl IX 13 SPACES IO W2 IX ;

CHART CLS CX LO CR CR L2 CR CUBECHART CO ;

Your answer may have different methods of printing line and 2

If it works, it's right!

FORTH DICTIONARY WORDS .

DEFINING WORDS

(a) New words are defined with a COLON DEFINITION,

: begins the definition

ends the definition

Example: : CLS 12 EMIT ;

(b) Variables may be stored for later use.

VARIABLE NUM defines NUM with an initial value

2 5 NUM I changes value to 25
(.' is pronounced "store")

MUM @ puts the value of NUM onto the stack

(§ is pronounced "fetch")

NUM ? prints the value of NUM

(NOTE- ? is the same as @ .)

(c) Constants may be defined for later use.

50 CONSTANT N defines N with the initial value 50

The value of N cannot be changed once it is defined.

N puts the value of N onto the stack

N . prints the value of N

NOTE: Observe the differences in putting the values of

variables and constants onto the stack and for printing

their values.

VARIABLE CONSTANT

Definition VARIABLE NUM 50 CONSTANT N

Change value 25 NUM I fixed value

value onto stack NUM @ N

print value NUM @ . N .

or NUM ?

PROGRAMMING ADVICE

* A list of FORTH WORDS is given in the FORTH HANDY

REFERENCE pages.

* A new WORD may be defined using previously defined words

by using : to begin a definition (leave a space after
the colon)

: to end the definition

EXAMPLE

:

CLS 12 EMIT to clear the screen

CLS is the new word to be defined. To use the
word, type CLS

* A WORD can be any string of up to 31 characters bounded

by spaces,

* Keep WORDS simple in operation. Test each new word after

you define it. Then build further words from these simpler

words until the full TASK is developed,

* All FORTH WORDS must be bounded by spaces,

For numbers 5 2 6 enters three numbers

5 26 enters two numbers (5 and 2 6 }

SOME FORTH MESSAGE STATEMENTS

WORD NOT FOUND You have not defined a word used

or you have misspelt the word

REDEF: ISN'T UNIQUE Just a warning that a word has

been defined before, You may continue

with the new definition,

CONDITIONALS NOT PAIRED You forgot one of the words that

are used to end DO
f

IF, or BEGIN

structures

.

NUMBER BASES

Calculations may be done in any number base.

DECIMAL sets all operations to base 1.0

HEX base 16

n BASE !
base n, where n is 2, 3, 4, etc

Number Base Conversions:

To change 20 (decimal) to other bases, try this;

VARIABLE NUM define NUM with an initial value

DECIMAL 20 NUM ! stores number in base 10

HEX NUM ? prints the value in base 16

2 BASE I NUM ? prints the value in base 2

To change IE (hex) to other bases;

VARIABLE NUM

HEX IE NUM 1

DECIMAL NUM ?

8 BASE I NUM ?

2 BASE ! NUM ?

MEMORY UTILISATION WORDS

Each address location in the computer can store

1 byte of 8 bits . One byte can represent numbers from

to 255; thus ASCII characters may be stored as 1 byte,

1 cell is 2 bytes for a total of 16 bits.

One cell can represent numbers from to 65535 or

numbers from -32768 to 32767

FORTH uses this last range of numbers.

IN MOST CASES: 1 byte is used for ASCII characters

1 cell is used for numbers

(a) @ (pronounced "fetch")

@ replaces a memory address with the number in the
cell starting at this address.

C@ replaces an address with the contents in the
byte at this address.

Examples : NUM @

NUM was defined as a location for
a variable.

NUM puts the address on the stack,

I replaces this address with the
value of the variable.

HEX BFOO C@

C@ replaces the hex address BFOO
with the value in this address.
This value is now on the stack.

(b) .' (pronounced "store")

I and C work in the same way as @ and C@

but contents are stored into cells or bytes.

Examples: 25 NUM 1

HEX 41 BFOO C: (puts 41 (hex) into BFOO)

(c) CMOVE is used to move bytes from one address to another.

The screen addresses are from:

BEOO to BFFF in HEX

48640 to, 49151 in DECIMAL

HEX BEOO BF00 20 CMOVE moves 20 (hex) bytes starting

at BEOO to 20 (hex) bytes

, starting at BF00 .

In DECIMAL the operation becomes:

DECIMAL 48640 48896 32 CMOVE

(e) FILL ERASE BLANKS

A comment is required about ASCII characters shown

on the screen. The ASCII code for A is 65 (decimal)

If 65 is stored into the screen memory address, an INVERSE

A will appear.

If 193 (i.e. 65 + 128) is stored into this screen memory

address, then a normal A will appear

In HEX the comparable values are

41 inverse A

CI normal A (Cl = 41 + 80)

FILL This word is used to fill an area of memory with a

single character of your choice. For example

HEX BF00 1 41 FILL 1 location at BF00 is filled
with an inverse A

HEX BF00 0D Cl FILL 0D (hex) locations are filled
with a normal A

In DECIMAL, these operations become:

DECIMAL 48896 1 65 FILL

DECIMAL 48896 13 193 FILL

ERASE and BLANKS These words fill an area of memory with
nulls (i.e. ASCII 0) or blanks (ASCII 32
in decimal, 20 in hex)

In HEX

BF00 40 ERASE is the same as BF00 40 FILL

BF00 40 BLANKS is the same as BF00 40 20 FILL

FORTH HANDY REFERENCE
Slack Inputs and outputs are shown; lop of stack on tight.

This card lollows usage ol the Forth Interest Gioup
(S F. Bay Area); usage aligned with the Forth 78
International Standard.

For more inlo: Forth Interest Group
P.O. Bo* 1105
San Carlos, CA 94070.

eiend key n. n1, . . . 16-bit signed numbers
d. d1, . 3?-bit signed numbers
u 16-bit unsigned number
addr address
b 8-bit byte

c 7-bit escii character value

(boolean flag

STACK MANIPULATION
DUP (n - n n)

DROP In-)
SWAP (n1 n2 - n2 n1)

OVER (n1 n2 - n1 n2 n1)

ROT { n1 n2 n3 - n2 n3 nl

-DUP (n - n ?)

>R (n - >

R> (- n)

R (- n >

Duplicate top of stack.

Throw away top ol stack.

Reverse top two Btack Hems
Wake copy ot second Hem on lop.

Rotate third Item to top.

Duplicate only if non-zero.

Move top Item to "return stack" for temporary storage (use caution).

Retrieve item from return stack,

Copy lop of return stack onto stack.

NUMBER BASES
DECIMAL (

HEX
BASE

)

(-)

(- addr)

Set decimal base.

Set hexadecimal base.

System variable containing number base.

ARITHMETIC AND LOGICAL
+ (n1 n2 — sum)

D+ (dl d2 - sum)

-
(nl n2 - diff)

t
(n1 n2 — prod)

1 (n1 n2 — quol)

MOD (n1 n2 — rem)

/MOD (nl n2 - rem quot)

•/MOD (n1 n2 n3 - rem quot)

V (nl n2 n3 — quol)

MAX (n1 n2 — max >

MIN (n1 n2 - min)

ABS (n — absolute)

DABS (d — absolute)

MINUS (n - -n)

DMINUS (d - -d)

AND (n1 n2 — and >

OR (n1 n2 - or)

XOR (rt1 n2 - xor)

Add.

Add double-precision numbers.
Subtract (n1-n2).

Multiply,

Divide (n1/n2).

Modulo f/e. remainder from division).

Divide, giving remainder and quotient.

Multiply, then divide (n1*n2/n3), with double-precision intermediate.

Like */MOD, but give quotient Only.

Maximum.
Minimum.
Absolute value.

Absolute value of double-precision number.
Change sign.

Change sign of double-precision number.
Logical AND (bitwise). /

Logical OR (bitwise).

Logical exclusive OR (bitwise).

COMPARISON
<
>

o<
0=

(n1 n2 - f)

(n1 n2 - t)

(n1 n2 - I)

(n - f >

True If nl less than n2.

True if n1 greater than n2.

True if top two numbers era equal.

True If lop number negative.

True If top number zero (/.»., reverses truth value)

MEMORY
• (addr — n)

I (n addr —)

C(e> (addr - b)

C! (b addr -)

? (addr -)

+1 (n addr —)

CMOVE (Irom lou -
FILL (addr u b —
ERASE (addr u —)

BLANKS (addr u —)

Replace word address by contents

Store second word at address on top

Fetch one byte only.

Store one byte only.

Print contents of address.

Add second number on stack to contents of address on top.

Move u bytes in memory.
Fill u bytes in memory with b. beginning at address.

Fill u bytes In memory with zeroes, beginning at address

Fill u bytes in memory with blanks, beginning at address

CONTROL STRUCTURES
DO LOOP

LEAVE
DO +LOOP

IF . . (true) . . ENDIF
IF . . . (true) . . ELSE

. . . (false) . . . ENDIF
BEGIN . . . UNTIL
BEGIN . . . WHILE

. . . REPEAT

do: (end+1 start

(— index)

(.'."
)

do: (end+1 start

-Hoop: (n —)

i»: (f —)

if: t t -)

—
) Set up loop, given index range.

Place current index value on stack.

Terminate loop at next LOOP or +LOOP.
—

) Like DO . . . LOOP, but adds stack vbIub (instead of always '1
') to index.

If top of stack true (non-zero), execute (Note: Forth 78 uses IF . . . THEN]

Same, but if false, execute ELSE clause. |Note: FonYr 78 uses IF... ELSE. . .THEN]

until: (I
-

while: (I -
Loop back to BEGIN until true at UNTIL [Note: Forth 78 uses BEGIN .

.

Loop while true at WHILE: REPEAT loops unconditionally to BEGIN
(Note: Forth 78 uses BEGIN . . . IF . . . AGAIN.)

END]

TERMINAL INPUT-OUTPUT
(n -)

.R (n fieldwidth —)

D. (d -)

OR (d fieldwidth -
)

CR (-)

SPACE (-)

SPACES (n -)

."
.< - >

DUMP ('addr u -)

TYPE (addr u -)

COUNT (addr — addr+1 u

7TERMINAL (-1)
KEY (- c)

EMIT (c -)

EXPECT (addr n —)

WORD '
< C - . J

Print number.

Print number, rlght-|ustlfied In field

Prinl double -precision number.

Print double-precision number. right-justified in field.

Do a carriage return

Type one space
Type n spaces
Print message (terminated by ").

Dump u words starling at address.

Type string ot u characters starting at address.

Change length-byte string lo TYPE form.

True 11 lerminal break request present

Read key. put ascii value on stack.

Type ascii value from stack.

Read n characters (or until carriage return) from input to address.

Read one word from Input stream, using given character (usually blank) as delimiter.

INPUT-OUTPUT FORMATTING
NUMBER (addr - d)

<# (- \

* (d - d)

#S (d-,O0)
SIGN (n d - d)

#> '
(d - addr u)

HOLD (c -)

Convert string at addiess to double-precision number.

Start output string.

Convert next digit of double-precision number and add character to output string

Convert all significant digits of double-precision number to output string.

Insert sign of n into output string.

Terminate output string (ready tor TYPE).

Insert ascii character into output string

DISK HANDLING i (To be
LIST screen -)

LOAD screen —)

BLOCK block - addr)

B/BUF - n)

BLK - addr)

SCR - addr
)

UPDATE -)

FLUSH -)

EMPTY-BUFFERS -)

available later)
List a disk screen.

Load disk screen (compile or execute)

Read disk block to memory address

System constant giving disk block size in bytes.

System variable containing current block number.

System variable containing current screen number,

Mark last buffer accessed as updated.

Write all updated butters to disk.

Erase all buffers.

DEFINING WORDS
: xxx

VARIABLE xxx

CONSTANT xxjc

CODE xxx
;CODE

<BUILDS .

.

(-)

(-)

(n -)

xxx: (- addr)

(n -)

xxx: (— n)

{ -)

I -)

DOES> does: (- addr)

Begin colon definition of xxx.

End colon definition.

Create a variable named xxx with initial value n; returns address when executed.

Create a constant named xxx with value n; returns value when executed.

Begin definition of assembly-language primitive operation named xxx.

Used to create a new defining word, with execution-time "code routine" for this data

type in assembly.

Used to create a new defining word, with execution-time routine for this data type in

higher-level Forth

CONTEXT - addr)

CURRENT - addr)

FORTH -)

EDITOR -
)

ASSEMBLER -)

DEFINITIONS -)

VOCABULARY xxx -)

VLIST -)

Returns address of pointer to context vocabulary (searched first).

Returns address of pointer to current vocabulary (where new definitions are put)

Main Forth vocabulary (execution of FORTH sets CONTEXT vocabulary)

Editor vocabulary; sets CONTEXT.
Assembler vocabulary: sets CONTEXT.
Sets CURRENT vocabulary to CONTEXT.
Create new vocabulary named xxx.

Print names of all words in CONTEXT vocabulary.

MISCELLANEOUS AND SYSTEM
(I -)

FORGET xxx -)

ABORT -)

* xxx [- addr)

HERE - addr)

PAD — addr)

IN - addr)

SP@ - addr)

ALLOT n -)

,
n -)

Begin comment, terminated by right paren on same line; space after (.

Forget all definitions back to and including xxx.

Error termination of operation.

Find the address of xxx in the dictionary; if used in definition, compile address

Returns address of next unused byle in the dictionary.

Returns address of scratch area (usually 68 bytes beyond HERE).

System variable containing offset into input butler, used. e.g.. by WORD
Returns address of top stack item.

Leave a gap of n bytes in the dictionary.

Compile a number into the dictionary

Forth Interest Group, P.O. Box 1105, San Carlos, CA 94070

A BEGINNERS GUIDE TO

PEGASUS TINY BASIC

INTRODUCTION

This book will teach you how to communicate with your Pegasus

Computer. You will learn how to speak its language so that by

giving it meaningful instructions yon . can make it do what you

want it to do. That's all programming is, by the way.

There are many computer languages. Your Pegasus understands

a language called Tiny BASIC which is a simplified form of

BASIC {BASIC stands for Beginner's All-purpose Symbolic Instruction

Code)

.

Tiny is perhaps the best language for the beginning microcomputer

programmer. It is easily learned (as you will soon see) and

programs may be developed quickly. For the more experienced

programmer Tiny can form the basis of a system whose sophistication

may be indefinitely extended.

So lets get started. Get to know your Pegasus. It can do an

infinite number of things for you.

F-l

CHAPTER 1

GETTING STARTED

In this chapter we will introduce you to your Pegasus- You will

learn how to use your keyboard and how to control the output display

on your T.V screen.

Connect your computer by referring to the appropriate section in

your Computer Operation Manual.

Switch it on and you will be greeted by the following heading on

your television screen:

AAMBER Pegasus 6809

Technosys Research Laboratories

Tiny Basic 1.0

Monitor 1 .

Select one of the above:

Press T and your Pegasus will be 'ready' to go.

Do you see the flashing light? This is called the cursor and

it indicates to you where on the screen the characters you type

in on the keyboard will be displayed.

Try it. Type the following exactly as shown below:

PRINT "HI, I'M YOUR PEGASUS COMPUTER"

When you reach the end of the line on the screen, keep on typing.

The last part of the message will appear on the next line automatically,

(Notice that the screen can display a maximum of 32 characters)

.

F-2

Now check your line. Is it alright?

If you made a mistake, no problem. Simply press the BACK SPACE

key and you will observe the last character you typed will

disappear. Press again, and the next will disappear, and so on...

This is what you should see on the screen;

Ready

PRINT "HI, I'M YOUR PEGASUS COMP

UTER"

Now press RETURN. This key tells the computer that you have finished

the line. The computer then proceeds to execute it.

Your screen will then display;

Ready

PRINT "HI, I'M YOUR PEGASUS COMP

UTER"

HI, I'M YOUR PEGASUS COMPUTER

Ready

As you can see, the computer has obeyed your command and is 'Ready'

for more.

Now type

:

PRINT "2 2"

and press return. The computer obeys and prints your message:

2 2

How about some answers! Alright, try it without the quotation marks:

PRINT 2 . 2 (RETURN)

This time the computer prints something different - the answer to the

expression 2 2.

F-3

Experiment further by typing the following:

PRINT 3+4 (RETURN)

PRINT "3+4" (RETURN)

PRINT "3+4 EQUALS", 3+4 (RETURN)

PRINT 8/2, "IS 8/2" (RETURN)

PRINT "6/2" (RETURN)

PRINT 6/2 (RETURN)

This demonstrates that the computer sees everything you type

as either strings or numbers. If it is in quotation marks

it is a string. If it is not in quotes it is a number. The

computer sees it exactly as it is. The number might be in the

form of a numerical expression (e.g. 3+4) in which case the

computer reduces it to a single value.

By now it is likely that the computer has printed some unknown

messages on your screen. If it hasn't, type the following,

deliberately mispelling the word PRINT : PRIINT "HI" (RETURN)

The computer prints

:

ERROR #4

This indicates that the computer has detected a syntax error.

You will have to type the line again properly.

There are other types of errors too. Try:

PRINT 5/0 (RETURN)

The computer prints

:

ERROR #8

This indicates an impossible division by zero command.

F-4

So whenever, Tiny BASIC detects an error while executing a line

it generates an error message. A listing of error numbers and their

corresponding meanings is given in Appendix 1.

F-5

CHAPTER 2

NUMBERS, VARIABLES, AND EXPRESSIONS

Before we go on it is important that we understand the meanings

of numbers, variables and expressions.

NUMBERS

Pegasus Tiny BASIC is an integer BASIC, which means that all

numbers in it have no fractional part e.g. 3.7, 4.02 and

3.1415926 are not integers.

Besides this there are two operating modes - signed and unsigned.

When you first switch the machine on the computer automatically

goes into the signed mode. In this mode integers in the range

-32768 to 32767 are only allowed.

You can change to the unsigned mode by using the USIG statement.

Type:

USIG (RETURN)

In this mode integers in the range to 65535 are only allowed.

To return to the signed mode use the SIG statement. Type:

SIG (RETURN)

If you input a number outside the allowed range, or the intermediate

or final result to a calculation is outside the allowed range, then

an error message will be returned.

F-6

VARIABLES

In Tiny BASIC a variable is represented by a single capital letter

(A to Z) which directly corresponds to a location in the computer

memory - we call this the name of the variable. The value of the

variable is the number stored there.

For example, assign the variable A the value of 13 and the variable

B the value of 7 by typing:

LET A = 13 (RETURN)

LET B = 7 (RETURN)

As LET is used very often in computer programs, the computer will

understand you if you leave out the keyword LET altogether. From

now on that's what we'll do.

OK. Now have the computer print out your numbers:

PRINT A,'\",B

Notice the use of commas in that print statement.

Your computer will remember your assigned values for A and B as

long as it is switched on, or until you decide to change them.

Do this by typing:

A = 15 (RETURN)

Then, when you ask it to print A it will print 15.

EXPRESSIONS An expression is a combination of one or more

numbers, variables or functions joined by operators.

You are probably most familiar with the mathematical operators

which are:

F-7

+ addition

- subtraction

* multiplication

/ division

Let '5 say we want to divide the sum of 9 and 6 by 3. You might write

this as:

9 + 6/3
Now, try it on your computer.

Type:

PRINT 9+6/3 (RETURN)

Is this the right answer to your problem? No, it isn't!

This is because your computer has first worked out 6 divided

by 3 (that's 2) and added this to 9 to give 11.

This demonstrates the way the computer works out arithmetic

problems. The computer looks at the expression and does

multiplication and division first. Then it does addition

and subtraction.

So, to get the computer to solve the problem differently, you'll

have to use parentheses. Type it as:

PRINT (9 + 6) /3 (RETURN)

That's better. The computer solves the expression in

parentheses first before doing anything else.

What will your computer print as the answers to the following

problems

:

F-8

PRINT 12 - (6-4) /2

PRINT 12-6-4/2

PRINT (12 - 6 - 4) /2

PRINT (12 "6) - 4 /2

PRINT 12 - (6 - 4 / 2)

Check by typing them out.

Now, what happens if you type in:

^JRINT (12 - (6 - 4)) / 2 (RETURN)

If the computer sees a problem with more than one set of parentheses

it solves the inside parentheses first and then moves to the

outside parentheses.

In other words, it does this
t

(12 - (6 - 4) /2

I 6-4 = 2

_ (12 - 2) /2• I — 12 i- 2 = J.Q

10/2

I »~ 10/2 = 5

Can you imagine any problem with interger division ? What is 13/5 ?

Try it:

PRINT 13/5 (RETURN)

It gives 2 which is the whole number part of the result. If you want
the remainder use the MOD operation.

Try it:

PRINT 13 MOD 5

It gives 3. You can use MOD just like you use *,/,+, and -.

F-9

There are other classes of operators available in Pegasus Tiny BASIC

besides the mathematical operators - we'll look into these in

later chapters.

As stated in the definition you can also include variablesin expressions.

Try it by typing:

PRINT A/3 + B (RETURN)

(Remember A was 15 and B was ?)

This feature is particularly useful in programs as we will soon see.

F-10

CHAPTER 3

INTRODUCTION TO PROGRAMMING

Type

:

NEW (RETURN)

This is just to erase anything that might be in the Computer memory.

Now type this line (don't forget the line number, 10);

10 PRINT "HI, I'M YOUR PEGASUS COMPUTER"

Press RETURN. Nothing happened, did it?

What you have just done is to type your first program. Next, type:

RUN (RETURN)

And now you have just run it. Type RUN again - and yes, it runs again.

Add another two lines to the program .

Type:

2 PRINT "GIVE ME A NUMBER"

30 PRINT "AND I WILL DOUBLE IT"

Then Type

:

LIST (RETURN)

Your computer obeys by listing your program. Your screen should

look like this:

10 PRINT "HI, I'M YOUR PEGASUS CO

MPUTER

20 PRINT "GIVE ME A NUMBER"

30 PRINT "AND I WILL DOUBLE IT"

Don't attempt to type in a number because the computer isn't ready

for it. Add the line:

4 INPUT T (RETURN)

F-l-1

Add one more line:

50 PRINT "2 TIMES ",T," IS ",2*T

Now list again, and your program should look like this:

10 PRINT "HI, I'M YOUR PEGASUS C

OMPUTER

20 PRINT "GIVE ME A NUMBER"

30 PRINT "AND I WILL DOUBLE IT"

4 INPUT T

50 PRINT "2 TIMES " ,T," IS ",2*T

Now run it. The input statement prompts you with a question mark.

Type in a number (integers only, remember, which the computer will

label T) and then (RETURN)

Didn't you do well! This is what you should have got (it depends

on your number of course)

;

HI I'M YOUR PEGASUS COMPUTER

GIVE ME A NUMBER

AND I WILL DOUBLE IT

? 9

2 TIME 9 IS 18

Run the program a few more times, inputting different numbers.

OK. Add another line. Type:

60 GOTO 10 (RETURN)

And run it.... the program runs over and over again without stopping,

That last GOTO statement tells the computer to go back to line 10:

10 PRINT "HI, I'M YOUR PEGASUS COMPUTER"

20 PRINT "GIVE ME A NUMBER"

30 PRINT " AND I WILL DOUBLE IT"

4 INPUT T

F-12

50 PRINT "2 TIMES ",T," IS ",2*T

60 GOTO 10

This is called a loop, and in this program it will cause it to run

perpetually. However, you can get out of it by pressing the BREAK

key, then any number and RETURN

Change line 60 so that it goes to another line number. How do we

change a program line? Simply by re-typing it, using the same line

number . Type

:

60 GOTO 50

Your program listing should then look like:

10 PRINT "HI, I'M YOUR PEGASUS C

OMPUTER

2 PRINT "GIVE ME A NUMBER "

30 PRINT "AND I WILL DOUBLE IT"

4 INPUT T

50 PRINT "2 TIMES ",T," IS ",2*T

60 GOTO 50

Run it.... OK, press the BREAK key when you have seen enough.

There is a more desirable way of getting out of the loop. Why not

get the Computer to politely ask you if you want to end it?

Change line 60 to the following:

60 PRINT " DO YOU WANT IT DONE AGAIN?"

And add these lines

:

70 R = INKEY : IF R = O GOTO 7

80 IF R = 89 GOTO 20

Then run the program. .. .type your number then type Y and the

program loops back again. If you type anything else (e.g . "N"

)

the program stops

.

F-13

This is what the program looks like:

10 PRINT "HI, I'M YOUR PEGASUS C

OMPUTER"

20 PRINT ''GIVE ME A NUMBER"

30 PRINT "AND I WILL DOUBLE IT"

40 INPUT T

50 PRINT "2 TIMES " ,T," IS " ,2*T

60 PRINT "DO YOU WANT IT DONE AGAIN?"

70 R - INKEY: IF R =0 GOTO 7

80 IF R - 8 9 GOTO 20

What are these new lines?

Line 60 simply printed a question.

Line 7 is infact 2 lines, the two statements being separated by

the colon ":". The first part assigns the ASCII equivalent of

the key depressed on the keyboard to the varia e R. (ASCII is the

Standard Code for Information Intercha If no key is

pressed then R is assigned 0. The second part of the line tests for

this condition and loops back to INKEY if it is true. However, as

soon as a key is depressed it gets out of the loop and proceeds to

the next line . .

.

Line 80 tells the computer to go to line 20 IF tand only IF) the

Y key (THAT'S ASCII 8 9) has been depressed. If not, the program

ends as there are no more lines after this.

This chapter has covered a lot of important concepts of Pegasus Tiny

BASIC. Don't worry if some things are not absolutely clear.

Experiment with your computer and above all, enjoy it.

F-14

CHAPTER 4

MORE PROGRAMMING

In this chapter we will practise using functions and statements

in Pegasus Tiny BASIC.

Type this:

10 FOR x = 1 TO 10

20 PRINT "X =", X

3 NEXT X

40 PRINT "FINISHED"

Run the program.

See how it has printed X for X = 1 to 10.

Now replace line 10 with the following:

10 FOR X = 5 TO 8

And run again.

Lets look at the program listing:

10 FOR X = 5 TO 8

2 PRINT "X=", X

30 NEXT X

4 PRINT "FINISHED"

It's clear that line 10 determines the starting and ending values

of the variable X. Line 30 tells the computer to get the next

number - the NEXT X - and to jump back to the line following the

FOR ... TO... line (i.e. line 20) until it reaches the last number.

At this stage it goes straight on to execute the final statement.

We can further investigate the path of program execution by using the

TRON statement. Try it. Type:

TRON

and press RETURN.

F-15

Now run the program again. This statement has turned on a trace,

which provides a line number listing for statements as they are

executed. The trace should look like this:

<TlO> <20>X = 5

<30> <20> X = 6

<30> <20> X = 7

<30> <^20? X = 8

<30> <40> FINISHED..

See how the program keeps jumping from line 30 to line 20 until

it eventually goes from line 30 to line 40 and stops.

To turn the trace off, type:

TROFF

and RETURN

If you like, run your program again to see if the trace has gone.

An extra feature of the FOR... TO... statement is that you can

specify the actual STEP size. Change line 10 to:

10 FOR X = 2 TO 10 STEP 2

And run the program. See how X goes from 2 to 1Q in steps of 2,

Before, when we didn't specify the step size it assumed STEP 1.

What will happen if line 10 is replaced with:

10 FOR X = 3 TO 10 STEP 3

Try it . . . and see that it loops back only for x£-10.

How about:

10 FOR X = 10 TO 1 STEP -1

Yes, it counts backwards too.

F-16

Now try a new program - that's right, type NEW and RETURN - then

type

:

10 FOR X - 1 TO 3

20 PRINT "X = " , X

3 FOR Y = 1 TO 2

4 PRINT "Y = " ,Y

5 NEXT Y

60 NEXT X

Run it.... This is what you should get:

X = 1

Y = 1

Y - 2

X = 2

Y = 1

Y = 2

X = 3

Y = 1

Y = 2

Notice how it loops within another loop.

Programmers call this a "nested loop ".

Now for something completely different.

Type in this new program:

10 S = RND /26

20 PRINT "GUESS THE NIMBER"

30 INPUT G

4 IF G = 5 THEN GOTO 70

50 PRINT "NO, TRY AGAIN"

60 GOTO 30

70 PRINT "YES, THAT'S IT"

F-17

And run it... guess numbers between and 9 inclusive (the division

by 26 in line 10 gives us this range)

.

The new statement type encountered here is the IF... THEN conditional

statement. The statement tests the expression G = 5 and IF

false will skip immediately to the next line; but IF that

statement is true THEN it executes the next statement GOTO 70.

The condition is often the result of a relational operation.

In Tiny BASIC these are:

= Equal to

<> Not equal to

* Less than

> Greater than

< = Less than or equal to

>= Greater than or equal to

These are often combined with logical operators, AND, OR, NOT

to perform quite complex tests
?

here's an example:

600 IF A = OR (C<il27 AND D<>0) GOTO 100

This will cause a branch to line 100 if A is equal to or if

both C is less than 127 and D is not equal to zero.

This type of expression essentially evaluates to for false and

-1 for true.

Besides being used for true/false evaluation, logical operators

can operate on binary numbers. For example, type:

F-18

PRINT 6 AND 7 (RETURN)

This gives decimal 6 which is 0110 ANDed with 0111.

So far we have been looking at relatively short programmes . Before

long, no doubt, you will be so proficient with your Pegasus that

you will be writing quite long and complex programs.

We'll now look at some expressions which will help us to keep things

in order. Type and RUN the following:

10 ptRINT "EXECUTING THE MAIN PROGRAM"

2 GOSUB 4 00

30 PRINT "NOW, BACK IN MAIN PROGRAM"

4 END

4 00 PRINT "EXECUTING THE SUBROUTINE"

410 RETURN

Line 20 tells the Computer to go the the Subroutine beginning at

line 400. RETURN tells the Computer to continue execution with

the line following the GOSUB expression. The END expression is

necessary to separate the main program from the subroutine.

Subroutines are written for operations that are frequently required.

They result in economy of effort when it comes to writing programs.

One final point - you can use the REM statement to place remarks

and comments thoughout your program. Anything following the REM

statement is ignored. These remarks are often placed at different

points in a program, particularly at the beginning of subroutines

to explain how uncleafc or complicated sections of the program work.

F-19

Here is a final program that illustrates these points.

Try it.

10 REM THIS PROGRAM RAISES A

2 REM NUMBER TO AN EXPONENT

30 INPUT "NUMBER"N

4 INPUT "EXPONENT "E

50 GOSUB 1000

6 PRINT: PRINT N," EXPONENT ",E," IS " ,

A

7 END

80 REM //

1000 REM THIS SUBROUTINE DOES

1010 REM THE ACTUAL EXPONENTIATION

1015 IF E=0 THEN A=l : RETURN

1020 A=l

1030 FOR X=l TO E

1040 A=A*N

1050 NEXT X

1070 RETURN

By now you should feel to be in complete control of your Pegasus

Try writing some programs of your own.

Good luck, and have fun!

F-20

|t YOU HAVE READ 'a beginners guide to pegasus tiny basic

THEN YOU WILL LOVE

"A Gentle Introduction to Pegasus Tiny Basic"

now available in your Aamber Pegasus Manual!!

F-21

A Gentle Introduction to Pegasus Tiny Basic

The BASIC Language

BASIC is the most common computer language in the world today.

The word BASIC is an acronym, that stands for:

Beginner's All-purpose Symbolic Instruction Code.

BASIC is a computer program that was originally developed

at Dartmouth College in the U.S. as a means of teaching students

the principles of computer fundamentals, as well as making it easier

to write more computer programs. BASIC itself is usually written

in machine code assembler, although higher-level languages have

been used

.

Bells and Whistles

Hundreds of BASIC interpreters (i.e. programs that will accept

and interpret a program written in BASIC) have been written since

the first version, and each one is usually unique in its features

and limitations. Theoretically anyone with enough knowledge and

time can write a BASIC interpreter, although not many people do.

When they do, however, each likes to add their personal touch,

in the form of special features, and this is known as adding Bells

and Whistles. (We have not stinted in this tradition.) Thus,

although BASIC is so common, there are many different dialects.

Where Do I Start?

At the beginning, of course! We'll look at the idea that a

computer program is like a recipe. Let's make a milkshake, for example

Fetch container.

Fetch milk.

Pour milk into container.

Fetch flavoured powder.

Add powder to milk in container.

Pick up container.

Shake!

Oops

!

Put down container.

Clean up mess.

F-22

Put lid on container.

Shake."

Take lid off.

Drink milkshake.

End of recipe.

A trivial, yet useless example. Each line, or statement,

is a command, or instruction (apart from 'Oops*, which is a comment,

or perhaps invective) . The statements were executed sequentially,

starting from the top. Note that each statement leaves out a very

large amount of detail - like what sort of container is used, where

the milk came from, what flavour powder was used - even whether it

was enjoyed or not!

fc Computer programs are quite like this in their lack of detail -

a great deal is implicit or assumed. Computer programs are much

simpler, however, in the actions that they describe, in that the

tasks a computer performs are (usually) logical and straightforward

(unlike the 'real' world of gravity and spilt milk.)

Using Numbers

BASIC, like many other computer languages, is designed to work

with numbers. Usual operations in BASIC are addition, subtraction,

multiplication and division (+,-,*,/). There are two ways that

numbers are used in BASIC - constants and variables.

A constant has a value which it keeps for as long as the

>rogram runs. Typical constants are 7, 24, 0, -32768, 2000.

Variables are symbols for memory cells that may contain numbers.

In Pegasus Tiny BASIC, we use the letters A through to Z to represent

these variables. Thus, we can refer to a variable in a computer

program without having to know its value. When a computer program

is first RUN, all the variables A to Z will have a value of zero.

Number Size

Pegasus Tiny BASIC is an integer BASIC, which means that all

numbers in it have no fractional part. E.g. 3.7, 4.02 and 3.1415926

are not integers. Further, the Pegasus has 16 bit signed two's

complement and 16 bit unsigned numbers, which means that for signed

numbers you are limited to -32768 to 32767, while unsigned integers

have a range of to 65535. Any outside this range will cause an error,

F-23

Number Representation

Numbers are stored internally in binary, but to make it easier

for people to handle them, we have provided two forms of integer

format: numbers may be output (printed) in decimal or hexadecimal

(base 16). For instance, if variable A contains 19, then we can

print the two forms thus

:

PRINT A, " ",HEX(A)

which will print out

19 13

For inputting numbers, they must always be in decimal, but may be

signed or unsigned. Hexadecimal numbers may be used directly in

a program by preceding them with a dollar sign ($), e.g.:

PRINT $13

will print

19

on your television screen. Both signed and unsigned numbers

may be used, and may be selected with two statements,

SIG and USIG , which stand for SIGned and UnSIGned.

Signed numbers have a range of -32768 to +32767, while unsigned

are in the range of to 65535. Note that an unsigned number

greater than 32767 will be printed as a negative number if the

program switches back to signed mode.

Arithmetic

In Tiny BASIC, arithmetic may be done with 'expressions'.

An expression is a group of tokens, each of which has a definite

value associated with it, that is built up using a set of possible

operators, and is solved as an algebraeic expression that returns

a single numeric value. Now that we've confused you, let's clear

it up with some examples

:

A*3+7*R

(3+Q) - (21/L+ (8*1)) note that parentheses must match

2+2

1 yes, a number is an expression too

$4F OR 51 note the Boolean operator

ABS(-R) functions are expressions too

A variable or constant by itself may also be considered an

expression, and expressions may consist of other expressions,

as long as they are logically organised, and the number of left

and right parentheses match correctly. Unlike some BASICS, nearly

any complexity of expression may be used.

F-24

Operators

Constants, functions, variables and expressions may be

• related by operators to form a new expression. All the operators

work with 16 bit integers, and return 16 bit integers as results.

+ Simple addition

subtraction

* multiplication

/ division

MOD modulus, same as taking remainder after a division

instead of the quotient. E.g. 7 MOD 6 yields 1.

+ unary plus, e.g. +7 by itself

unary minus, e.g. -12

NOT returns one's complement, e.g. NOT $F012 returns $0FED

t AND logical AND, may also be used as Boolean connector

OR logical OR, similar to AND

Note that expressions are no good unless you do something with them,

using one of the statements available. The simplest statement to

use is the assignment statement, LET. This is used for assigning

values to variables, e.g.

LET Q=I+9 Tne ,= ' means 'is assigned'

L=17*(8+T) MOD 15 The LET is optional

1=1+1

The last statement is of particular interest since it illustrates

how a variable is fetched, incremented, and then stored back in

|to the same memory cell again. The '=' sign does not mean 'equals',

but means 'is assigned the value of*. Note that

3=A or 3=7 are illegal, and will give an error message.

Spaces may be used freely in expressions, however they may not

be imbedded inside function or statement names.

A quick way of using your Pegasus for math is to use the

PRINT statement in conjunction with an expression. Remember

that the question mark, '?', is shorthand for PRINT. For instance,

? 7*8 gives 56. When expressions are evaluated, they are executed

in an order defined by the OPERATOR PRECEDENCE. This means that

values that are conjoined by certain operators will be executed

before others in an expression. The precedence order is:

1st constants, variables

2nd functions (includes special @ function)

3rd unary - or + , NOT

F-25

4th operators * / MOD AND

5th operators + - OR

The order of evaluation may be changed by using parentheses.

Some examples are given for your enjoyment:

3+4 * 2 + 5 resolves to 16

(3+4) * (2+5) evaluates to 49

A special class of operator, the relational operator, is covered

in the section on Booleans.

6th relational operators (lowest precedence)

.

Booleans

A Boolean expression is similar to an arithmetic

expression, apart from the use of the relational operators.

| Any relation evaluates to for FALSE and non-zero for TRUE.

The most usual non-zero value found will be -1 (hex $FFFF)

.

The relational operators are:

Equality

> Greater than

< Less than

>~ Greater than or equal to

<=- Less than or equal to

<> Not equal to

Boolean expressions may be mixed with arithmetic expressions,

leading to results like:

A=B=C+1

Boolean expressions may be used with the IF statement, e.g.

' IF Q=7 THEN END

IF T THEN GOTO L

Here, L is treated as an unsigned line number that the program

.will GOTO if T is non-zero.

F-26

Statements and the Editor

Program lines in BASIC are usually organised in a strictly

sequential manner, using line numbers in the range of 1 to 65535.

A program will consist of a series of lines, where each line consists

of one or more statements (separated by the colon ':'), and is

executed sequentially, except where a special statement will change

the flow of program logic. Here is a sample program that

will print out the integers from between 1 and 10.

10 1=0 : REM I is assigned a value of zero

20 1=1+1 : REM I is incremented

30 PRINT I : REM Print out the value contained in I

4 IF 1=10 THEN STOP : REM Stop when I reaches 10

50 GOTO 20

Follow the program through by hand, or better still, try

it on your Pegasus! When typing the program in, terminate each

line with the RETURN key, and correct typing mistakes by using

the BACK SPACE key. If you notice a mistake on a line that you

have already typed in, simply re-type the correct version (with

the same line number) , and the old line will be automatically

replaced. To remove a line entirely, just type the line number

by itself, followed by the RETURN key.

Experiment with your own programs to print out different

sorts of number sequences, until you are fully satisfied with

the material covered so far. If you have trouble stopping a

program once you have started it, tap the BREAK key.

F-27

Summary of Statements

PRINT expressions, string constants

This statement will evaluate and print results of

expressions, as well as printing string constants.

A string constant is a collection of characters

delimited by double quotes, e.g.

"FRED NURKE WAS HERE"

"THAT'S all FOLKS"

Expressions will be evaluated, and the results printed,

with no leading or trailing spaces. String constants

and expressions MUST be separated by commas. Upon

completion of the print statement, the cursor will move

to the beginning of the next line, unless the PRINT

statement is terminated with a comma. The cursor

may be positioned to anywhere on the screen at any stage

in the PRINT by using the form [x,y] . For example,

PRINT [10 , 2] , "HELLO "
,

will move the cursor to column 10, line 2, and print

"HELLO", leaving the cursor immediately after the 'O'.

The vertical position 'y' is optional, but if it is

included then it must be separated from the 'x' column

position by a comma. There are three functions that may

only be used with the PRINT statement, since all of them

produce some sort of output, without returning a value.

These output functions are detailed below:

CHR(expression)

This will output the ASCII character that is represented

by the result of the expression. The result is forced

into the range of to 255 (decimal) , or $00 to $FF (hex)

.

If the number is greater than 127, then the character

will be inverted. Note that characters in the range of

to 31 and 128 to 159 will not print, but will cause one

of the control functions to be executed.

HEX (expression)

The expression is evaluated, range to 255, and the

appropriate hex number is output, range $00 to $FF.

F-28

RAW (expression)

This function is very similar to CHR, except that

values in the range of to 31 and 128 to 159 will

have a special character output, without executing

the appropriate control function.

Note that all functions that require an expression

in brackets, must not have a space before the

left parenthesis. (The RAW function is associated

with the RAWON and RAWOPF statements, covered later

in this document.) Examples of their use are given

below, for you to try on your Pegasus.

PRINT "Print a hex number :" ,HEX(19) ,CHR (10) , RAW (0)

PRINT CHR($46) ,CHR($52) ,RAW($45) ,CHR($44)

PRINT "There are ",Q," beans in the box."

PRINT CHR(12) : REM Clear screen

PRINT RAW (12) : REM Output Greek letter 'nu'

LIST starting line, ending line

Program lines may be listed out, either as individual

lines, subranges of lines, or the entire program.

The expressions are both optional, and are unsigned

numbers always. If a line is specified that is not

in the program, then the nearest one to it will be used.

This is the only case in which such leniency is tolerated.

If you try to force Tiny Basic to use the 'nearest'

line number in other statements, then a small quantity

of plastic explosives attached to your Pegasus will

be detonated, removing your typing fingers.

YOU HAVE BEEN WARNED.

Note that the starting and ending lines may be expressions,

and the LIST statement may be part of a BASIC program.

RUN expression

The RUN statement will initialize all variables, then start

program execution at the line number specified. If no

number is specified, the program will start at the beginning.

F-29

INPUT string constant" input list

This statement, unlike many others, can only be executed

with a line number as part of a program. Its purpose

is to request numbers from the user for input to the

program. The string constant (if specified) will be printed

out as a prompt to the user before input is requested,

and must not be followed by a comma. When each

input expression (yes, expressions can be input) is

typed, it must be terminated with a RETURN key.

Only one string constant may be specified, and if

used it must be immediately after the INPUT.

FOR variable = start value TO end value STEP step-size

This is the standard BASIC looping statement. This

will cause all statements between the FOR and its

appropriate NEXT to be executed repeatedly until

the variable's value reaches or exceeds the end value.

Note that the step size may be positive or negative.

If the step is not given, it will default to one.

NEXT variable name

Terminating statement for FOR loops

.

GOTO expression

The expression will be evaluated to an unsigned 16 bit

integer, and if a line is found with a matching line

number, then that line will be executed next.

GOSUB expression

The expression will be evaluated, and the subroutine

which starts with the matching line number will be

called, returning to after the GOSUB statement

when it reaches and executes the RETURN statement.

GOSUBs may be nested to any depth, depending upon

free ram space for the stack

.

RETURN

This statement indicates the logical end of

a BASIC subroutine.

EXIT

The EXIT statement will return you back to the

Pegasus Menu selection mode.

NEW

STOP

END

CONT

F-30

This statement will zero all variables, as well

as deleting all program lines.

The STOP statement will cause program execution

to terminate, returning to the line edit mode.

Execution may be continued with the CONT statement,

as long as the program has not been changed.

Any other immediate mode statement may be executed

however.

The END is similar to the STOP statement, except

that the CONT statement will not continue program

execution after an END.

The CONT will cause program execution to continue,

as defined by the STOP and END statements.

REM

Any user remarks may appear after this statement,

since they will be ignored by the BASIC interpreter.

The REMark is terminated by the end of line or a colon.

LET variable name = expression

The assignment operation assigns the value of

an expression to the named variable. Only variables

and the special function ' @' may be used on the

left side of the '=' sign.

IF expression THEN statement or expression

The IF statement will evaluate the first expression,

and if it is zero, then the remainder of the statement

will be skipped, going to the next line. Upon a true

state, then the part after the THEN will be executed

if it is a statement, or if it is an expression, then

it will be evaluated, and a GOTO will be executed.

TRON
F-31

This statement will bring the trace mode into

effect, whereby each line number will be printed

out as the line is executed, following the flow

of program execution as the RUN proceeds.

TROFF

SIG

This statement will turn the trace mode off.

This forces the system to accept and print only

signed numbers, in the range of -32768 to +32767.

A point to note here is this example:

PRINT HEX($B010/256) will yield Bl, instead of

the expected value of BO. This is because although

the hex number is unsigned, SIGned mode is in effect,

and must be disabled using USIG before the correct

result may be achieved.

USIG

SAVE

LOAD

The system can accept unsigned integers, in the

range of to 65535, for input, output, and arithmetic

expressions . Note that this mode is checked when

determining whether the result of an expression's

outside its range.

BASIC programs are saved on cassette tape, with a

filename that you may specify (8 characters only)

The BLUE tagged lead goes into the MIC jack,

while the YELLOW lead goes into the . EAR jack.

Previously SAVEd programs may be loaded from cassette

tape. The filename and load area will be printed.

POKE expression , expression

The first value resolves as an unsigned 16 bit address,

which gives the location to poke the second value into.

F-32

LINES expression

This statement controls the number of lines

displayed on the screen. The expression must resolve

to a number in the range of 1 to 16, or an error

will stop execution of the program. Reducing the

number of lines displayed has the result of

speeding up program execution proportionally.

RAWON

RAWOFF

This statement will turn on the RAWMODE flag.

This means that any control code that is echoed

to the screen through the normal PRINT routine,

or through typing in lines, will cause a special

character from the character generator ROM to

be printed, without executing the control function,

Turns RAWMODE off,

CLS

This statement, when executed, will clear the

video display screen, and move the cursor

to the top left hand corner.

F-33

BASIC Functions

Pegasus Tiny BASIC has a number of functions,

each of which may be used in expressions, (apart from the

ones specified in the PRINT statement description)

.

Note that there must be no spaces between the function name

and the left parenthesis.

ABS (expression)

Takes absolute value of the argument.

PEEK (expression)

Returns byte at address given by expression.

FREE

Returns number of free bytes available in

system RAM.

RND

Returns pseudo-random number in the range to 255

USR(expression)

Calls a machine language routine subroutine in memory

at the address specified by the expression - the

function value returned reflects the state of the

X register, and may be data or an address pointing

at more data.

@(expression)

Special function that implements a one dimensional

integer array that utilises all available RAM space.

The function may be used anywhere that a variable name

is used, including in assignment statements. Unlike

variables, the @ array is not cleared by the NEW statement

The array index is unsigned, starts at zero,

and its size is FREE/2-1.

INKEY

This function will scan the keyboard to see if a key

has been pressed - if one has, then its ASCII value

in the range of 1 to 12 7 will be returned, else

if no key has been pressed then zero will be returned.

F-34

Information for Experts

The variables, since they are in fixed locations in RAM,

(in the 4K system only) , can be accessed by machine code

subroutines by referencing directly their addresses.

There are 26 variables, and they start at $B03C.

Nearly all tokens in Tiny BASIC have a shorthand form,

for instance, '?' means PRINT, and 'e' means PEEK (

.

Try finding out what the rest are - this information will

be published in the newletter.

When a program is executing on the Pegasus, it may be

stopped in its tracks by using the BREAK key on the keyboard.

This is functionally equivalent to the program encountering

a STOP statement.

Output that is being sent to the screen may be paused by use

of the ESCAPE key, on the upper left of the keyboard. Tapping

once will stop, tapping again will start.

If inverse video characters are required inside strings,

they may be effected by tapping the blank key on the extreme

lower right of the keyboard. Tapping the key again will

remove the inverted state. Note that only characters inside

double quotes will remain inverted. Inverted characters may

also be generated by setting the most significant bit of the

byte for the ASCII character (ASCII equivalent greater than 128)

RAWMODE may be set and reset by tapping the blank key on lower

right of keyboard, second one in. When in effect, any control

characters typed will appear as a special printing character,

without the appropriate control function being executed.

Note that the RETURN key, being a control code, will not work

as it should until the RAWMODE flag is turned off by tapping

the second blank key again. This feature allows you to insert

control codes into strings, and then the output of those control

codes as characters or functions may be governed by use of

the BASIC statements RAWON and RAWOFF.

BASIC may be re-entered from the monitor after using the PANIC

button by jumping to $0D offset from its start.

F-T5

Basic Error Numbers and Messages

Whenever a syntax or execution error occurs, then an error

number will be printed out, each number matching to one of

the error messages given below:

(1) Out of Memory

This means that there is insufficient RAM space

between the program end and the stack to perform

the last operation.

(2) Invalid Line Number

A line number was specified that either does not

exist, or is illegal.

(3) Next Without For

A NEXT statement was found without the appropriate

FOR statement.

(4) Syntax Error

This is a general error that occurs whenever there

is incorrect syntax in a program line.

(5) Return Without Gosub

A RETURN statement was executed, but the system

did not find a GOSUB to return to.

(6) Immediate Mode Illegal

A statement was executed in immediate mode that

is illegal for that mode.

(7) Overflow Error

The results of an arithmetic operation exceed

the current range specified.

(8) Divide by Zero

An attempt was made to divide a number by zero.

(9) Screen length Error

The LINES statement must have an argument in the

range of 1 to 16 only.

APPENDIX I

196 8 ASCII

ASCII CHARACTER CODES

American Standard Code for Information Interchange. Standard

No. X3.4 -1968 of the American National Standards Institue

beO
b5
b4

B3 b
2
b -,b

1

10

11

10

10 1

110

111

10

10 1

10 10

10 11

110

110 1

1110

1111

1 1

1 1

12 3 4

11111110 1

5 6 7

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

DLE

DC1

DC2

DC 3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

SP

$

%

&

I

1

2

3

4

5

6

7

8

9

>

7

A

B

C

D

E

F

G

H

I

J

K

L

M

N

P

Q

R

S

T

U

V

w

X

Y

z

[

\

]

A

a

b

c

d

e

f

g

h

i

J

k

1

m

n

P

q

r

s

t

u

V

w

X

y

z

{

DEL

5-01

GLOSSARY

ACIA Abbreviation for Asynchronous Communications Interface Adapter. An

INTEGRATED CIRCUIT used in computers to transfer data to and from the
computer in a serial fashion.

ACCUMULATOR Register within the CPU that is used to perform arithmetic and

logical operations on data. The Aamber 6809 has two 8-bit accumulators.

ADDRESS Each accessible location in memory has an address associated with it
which is used when reading data from, or writing to, a memory location. The

maximum number of addressable locations is referred to as the address

space.

ASCII Abbreviation for American Standard Code for Information Interchange;

this assigns a distinct number in BINARY to every alphabetical character,
as well as a number of punctuation and special codes. It is a seven bit

code. See appendix for a full description.

ASSEMBLER Program used to assemble SOURCE CODE into OBJECT CODE. This is

usually a process of one to one translation.

ASYNCHRONOUS Data sent by this method is sent only when transmitting device is

ready, i.e., at no specific times. This differs from SYNCHRONOUS in that
timing is not important.

BACKUP Copy; duplicate. Backup of programs is important because machine
media is not always reliable.

BAUD A measure of transmission speed in BITS per second. For example, 300
baud equals a speed of 300 BITS per second. Most transmitted characters
contain a total of 10 bits so 300 baud equals 30 characters per second.

BCD Abbreviation for Binary Coded Decimal; uses 4 BINARY BITS to

represent the decimal digits 0-9.

BIDIRECTIONAL An electrical signal path that is capable of both transmitting
and receiving on the same path.

BINARY A number base used in digital computers, only two are allowed
states:

1 = high = on = true = +5V and = low = off false = OV

BIT The smallest unit of storage capacity in a computer. A bit can be
equal to either a or a 1. A bit is a shortened form of Binary diglT.

BOOT (bootstrap) A technique or device designed to bring itself into a

desired state by means of its own action. For example a machine routine

whose first few instructions are sufficient to bring the rest of itself
into the computer from an INPUT device.

BUFFER A device used to compensate for a difference in signal level or drive

capability when transmitting from one drive to another. The term is also

5-02

used to describe a temporary storage area in a computer.

BUS A series of electrical signals, usually available on a connector(s),
which contains all of the electrical information necessary to connect an
external device to the main parts of a computer or device.

BYTE A group of BINARY digits treated as a logically connected entity.
Most common size is 8 bits.

CAPACITOR An electrical component capable of storing charge.

CARRIAGE The device in a printer or typewriter that travels along the PLATEN
to print characters. Carriage Return is the command that causes the
carriage to return to the left-hand side.

CMOS Abbreviation for Complementary Metal Oxide Semiconductor. These
devices are fast switching gates,and have yery low current consumption.
They are very susceptible to static electricity and the pins should not be
handled. For this reason the pins are placed in a conductive material e.g.
conductive foam or aluminium foil.

CONDITION CODE Single BIT used as a FLAG in the CPU. These are often set or
reset according to the results of a logical or arithmetic operation.

CPU Abbreviation for Central Processor Unit. It is the portion inside a

computer that performs all logic and arithmetic operations.

CRT Cathode Ray Tube. The glass screen (picture tube) of a computer
terminal .

DB-2 5 CONNECTORS The standard 25 pin connectors used to connect external serial
and parallel devices to the computer. The connectors are 'D' shaped and are
of two varieties: DB-2 5P (plug type) and DB-25S (socket type).

DIODE Component that allows current to flow through it in one direction
only.

DISKETTE A flat circular plate of Mylar with a magnetic surface on which data
can be stored and retrieved.

DYNAMIC MEMORY In dynamic memory a bit is remembered by a charge on capacitance.
This charge leaks away and so the memory needs extra circuitry to perform a

refresh regularly. This memory is cheaper and smaller as each chip does not
require as many TRANSISTORS as, say, static memory.

EPROM An abbreviation for Erasable Programmable Read Only Memory. A
non-volatile memory INTEGRATED CIRCUIT which can be programmed by the user
and can only be erased by prolonged ultraviolet light.

FIFO Abbreviation for first in, first out. Some data structures operate on
this principle.

FILES A collection of related records, program material or text, treated as
a unit.

FIRQ Abbreviation for Fast Interrupt Request, similar to IRQ, but only a

5-03

subset of the machine state is saved on the stack.

FIRMWARE This is a cross between hardware and software e.g. hardware that can

be programmed such as EPROMS.

FLAG A single bit that the CPU sets and clears, to remember if an action

or condition has occurred.

FLOPPY DISK The storage medium (diskette) for a disk unit which is flexible and

removable. Common sizes of floppy disks are eight inches and five inches in

diameter.

FULL DUPLEX Method of transmission where each end can simultaneously transmit
and receive. Data is echoed back to the transmitting device after going
through the receiving device.

GROUND Or Earth; an electrical term meaning at a potential of zero volts.

HANDSHAKE Sequence of events requiring mutual consent of conditions on two or
more ends, prior to change. The process where digital signals are
transferred by means of a sequence of status and control signals.

HARD DISK The storage medium for a disk which is not flexible. Hard disks are
very expensive but are capable of storing much more data, and accessing 1t
at a much faster rate.

HARD SECTORED A method of disk formatting in which the hardware of the disk

drive sends out a signal for each encountered sector on the disk. A hard
sectored FLOPPY DISKETTE has one sensing hole in the disk for each series

of sectors.

HARDWARE The INTEGRATED CIRCUITS, TRANSISTORS, connectors, plugs, circuits
and other mechanical and electrical parts that make up a computer.

HEATS INK Piece of alloy, or other metal, connected to certain components to

aid in the dissipation of heat, preventing over-heating.

HEXADECIMAL Representation of numbers in base 16. The digits used are - 9 and

letters A - F. The A - F correspond to base 10 numbers 10 - 15, with 10 in

hex corresponding to 16 in decimal:

e.g. 34 HEX = 52 DECIMAL

HALF DUPLEX This occurs when a TERMINAL is on-line to a computer, and must echo
characters typed locally.

INDEXING A method of addressing using data contained in one of the CPU's

pointer registers and an offset contained in memory, the offset is added to

the registers contents (base address) to give the effective address.

INDUCTOR Device for storing electrical energy in the form of a magnetic
field.

INPUT The Process of getting data into the computer for processing, common
input devices are tapes, disks and keyboards.

INTERFACE Something that connects one device to another. An interface board in

5 -04

a computer is used to connect an external device (peripheral) to the main
BUS of the computer.

INTERGRATED CIRCUIT Collection of logic gates and circuit elements that
constitute a functional block, contained in a single package.

INTEGER All positive and negative numbers that do not have a fractional
part. The usual range for integers when stored as 16 BIT quantities is
-32768 to 32767.

INTERPRETER Program written in machine language that will read and execute a

program written in a high-level language, usually line at a time.

INTERRUPT To stop a process in such a way that it can be resumed. The need for

interrupts is due to external devices demanding processor attention. These
demands are ASYNCHRONOUS so the processer needs to know when they occur so

that it can service the interrupt. There are other reasons, such as power
failure etc.

IRQ Abbreviation for Interrupt Request.

LATCH An electrical device which can be accessed by the computer and used

for control purposes - a latch has the ability to remember or store the

data written to it.

LIFO Abbreviation for Last In, First Out; used for STACKS.

LSB Abbreviation for least significant BIT in a BINARY word or BYTE. It

is the right hand BIT, usually numbered zero.

MACHINE CODE Code used as instructions for the microprocessor. (Synonym for

Object Code.)

MICROPROCESSOR The main INTEGRATED CIRCUIT of a computer which executes and

processes the actual program instructions.

MONITOR Software or hardware that observes, supervises, controls, or
verifies the operations of a system. The MONITOR is the control program

that is stored in ROM and executed by the computer when it is first powered

up.

MOS Abbreviation for Metal Oxide Semiconductor. These devices are

similar to CMOS and the same precautions apply.

MOTHERBOARD Board within the computer with very little circuitry. Contains

connectors for all other boards to plug into.

MSB Abbreviation for the Most Significant Bit in a BINARY word or BYTE.

It is the left hand BIT.

NIBBLE Four BITs or half a BYTE.

NMI Abbreviation for Non-Ma skable Interrupt. This interrupt cannot be

masked out by the CPU but must be serviced immediately. This is used for

such occur ances as power failure.

5-05

OBJECT CODE The computer executes all programs in a special machine- specific
code that is usually stored in machine-readable form - this is designated
object code.

OCTAL Representation of numbers using Base 8. Octal uses digits 0-7
where 10 in Octal stands for 8 in Base 10.

ON LINE Equipment or devices which are connected to, and are under the
direct control of, the canputer.

OP CODE Mnemonic symbol that directly represents a machine language
instruction or operation. These codes are used by the ASSEMBLER.

OUTPUT The process of obtaining data from a computer after it has been
processed; common output devices are printers, on-line terminal s,di sks and
tapes.

PARALLEL INTERFACE An interface from the computer to the outside world in which
each piece of data is carried on a separate electrical line.

P'^TTY Method used to detect errors after the transmission of data. The
ASCII code uses 7 BITs in a BYTE, the eighth BIT being a parity BIT.

PERIPHERALS Any device which is connected to the computer (disk drive, printer,
terminal etc.)

PIA Abbreviation for Peripheral Interface Adaptor. An INTEGRATED CIRCUIT
used in 6800/6809 computers to transfer data to and from the computer in a
parallel fashion.

PLATEN Long cylindrical part of a typewriter or printer which is used for a

backstop for the head, typeball or typewheel when printing onto paper.

PRINTED CIRCUIT BOARD (PCB) Aboard with copper connectors following set design
and organised on the board via a printing process.

PROM Abbreviation for Programmable Read-Only Memory. A non-WLATILE
memory INTEGRATED CIRCUIT which once programmed by the user cannot be
erased.

RAM Abbreviation for Random Access Memory. This is the main memory of
the computer which will lose data when power is removed. Data can be
accessed from any addressable location at any time.

REGISTER Device within the CPU used for temporary storage of data while
arithmetic or logical operations are performed on it.

RESISTOR Component usually used for changing voltages.

RESET To return a machine or device to its default state.

RIBBON CABLE A flat group of wires physically fastened together side by side.

ROM Abbreviation for Read Only Memory. A non-volatile memory INTEGRATED
CIRCUIT which cannot be erased.

5-06

RS232 One of many so-called 'standard' serial communications interfaces
that uses changes in voltage levels and a clock reference to transmit and

receive information. Typical voltage levels are -12 to +12 volts,

SERIAL INTERFACE An interface from the computer to the outside world in which
all data BITs are transferred sequentially over one electrical line.

SOFT SECTORED A method of disk formatting in which the HARDWARE of the disk

drive sends out only one signal for the beginning of each track. A soft
sectored FLOPPY DISKETTE has one sensing hole in the disk.

SOURCE CODE This consists of a human-readable grouping or file of language
instructions used as the input for an ASSEMBLER, INTERPRETER or COMPILER.

SPIKE Most power supplies suffer from very fast fluctuations in voltage
caused by such things as washing machines and hair-driers, which can
interfere with the correct functioning of a computer. Such an event is

called a 'spike' .

STACK A stack consists of a collection of memory cells pointed to by a

stack pointer, and arranged so that the last element added to it will

usually be the first removed.

STATIC MEMORY Memory that uses many TRANSISTORi sed gates for storing data,

unlike static memory no refresh is required, but it is expensive. A higher
level of technology is required to create the IC's containing many
thousands of TRANSISTORS.

STRING A string is simply a grouping of ASCII characters arranged for

convenience of use.

STROBE A strobe is an electronic method of signalling that consists of a

single change in voltage levels, usually between GROUND and +5 volts.

SYNCHRONOUS Describes a situation where timing is important, for instance
industrial machine control.

TERMINAL The device, similar to a typewriter, that is used to INTERFACE to

the operator in computer systems. A TERMINAL contains a keyboard and a

display unit such as a typewriter mechanism or a CRT.

TOP OF FORM When paper is positioned in a printer such that the print head or
printing r chani sm is said to be at the top of form.

TRACTORS The small oval shaped mechanisms on a printer that are used to pull

the paper, by the pins on the tractor, thru' the printer.

TRANSISTOR Electrical switch that is switched by a change of voltage.

TERMINATE To indicate the end of an event or series of events.

TRACE To follow the fl ow of a logically organised network, for instance an

electrical circuit or a computer program.

TTL Abbreviation for Transistor-Transistor Logic, which is based upon
ground being equivalent to 0, and +5 volts meaning 1.

VOLATILE Usually describes the volatile memory syndrome - "It aint there when
you turn it on agai n!

"

5-07

