.||Ii

IBM Gekko RISC Microprocessor
User’s Manual

Version 1.2

May 25, 2000

IBM Confidential

Trademarks

The following are trademarks of International Business Machines Corporation in the United States, or
other countries, or both:

IBM IBM Logo PowerPC

AIX PowerPC 750 Gekko

Other company, product, and service names may be trademarks or service marks of others.

Document History Date Description
Preliminary Edition 3/29/00 Initial release of new format
2nd Preliminary Edition 4/18/00 Minor changes, most are

transparent to user (removal of
conditional text, etc.)

3rd Preliminary Edition 5/25/00 Minor change in section 4.5.6

This unpublished document is the preliminary edition of IBM Gekko RISC Microprocessor
User's Manual.

This document contains information on a new product under development by IBM. IBM reserves the
right to change or discontinue this product without notice.

© 2000 International Business Machines Corporation .
All rights reserved.

CONTENTS

Chapter 1 Gekko Overview

1.1—Gekko Microprocessor OVerview - ---------------------- 1-1
1.2—Gekko Microprocessor Features - - - - -------------------- 1-4
1.2.1—Overview of Gekko Microprocessor Features --------- 1-4
1.2.2—lInstruction Flow - - - - - - - - - - - - - c e e e 1-6
1.2.2.1—lInstruction Queue and Dispatch Unit - ------- 1-7
1.2.2.2—Branch Processing Unit (BPU) ------------ 1-7
1.2.2.3—Completion Unit - - - - - - - == == - == - - - - - - - - 1-8
1.2.2.4—Independent Execution Units- - - - - --------- 1-9
1.2.3—Memory Management Units (MMUS)- - - - - = - - - - - - - - - 1-10
1.2.4—O0n-Chip Level 1 Instruction and Data Caches - ------- - 1-11
1.2.5—O0n-Chip Level 2 Cache Implementation------------- 1-12
1.2.6—System Interface/Bus Interface Unit (BIU) - ---------- 1-12
1.27—Signals ------------ - 1-14
1.2.8—Signal Configuration - - - - - - - - - - --------------- 1-15
1.29—Clocking - ---=--------- oo 1-15
1.3—Gekko Microprocessor: Implementation ------------------ 1-16
1.4—PowerPC Registers and Programming Model - -------------- 1-18
1.5—Instruction Set - - - - - - - - - - - - - - - oo 1-23
1.5.1—PowerPC Instruction Set- - - - - - - - - - - - - - - oo oo - - 1-23
1.5.2—Gekko Microprocessor Instruction Set - - - ----------- 1-24
1.6—On-Chip Cache Implementation - - - - - - - - - = - == - - oo oo oo - 1-25
1.6.1—PowerPC Cache Model ------------------------ 1-25
1.6.2— Gekko Microprocessor Cache Implementation - ------ - 1-25
1.7—Exception Model -----------mmmm oo 1-25
1.7.1—PowerPC Exception Model- - - - - - - - - - -------nn--- 1-25
1.7.2—Gekko Microprocessor Exception Implementation - - - - - - 1-27
1.8—Memory Management - ----------------------------- 1-28
1.8.1—PowerPC Memory Management Model ------------- 1-28
1.8.2— Gekko Microprocessor Memory Management
Implementation -----------------oooo 1-29
1.9—lInstruction TiIMINQ = - - === - - === “--“-----o - 1-29
1.10—Power Management ------------------------------- 1-31
1.11—Thermal Management - - - - = = - = = - = = - oo oo oo oo oo 1-32
1.12—Performance Monitor - ----------------------------- 1-33
Chapter 2 Programming Model
2.1—Gekko Processor Register Set - ------------------------ 2-1
2.1.1—Regqgister Set - - - - - - - - - - - - 2-1
2.1.2—Gekko-Specific Registers - - - - - ------------------ 2-8
2.1.2.1—Instruction Address Breakpoint
Register IABR) - ------------------- 2-8
2.1.2.2—Hardware Implementation-Dependent
Register0--------------------------- 2-8
2.1.2.3—Hardware Implementation-Dependent
IBM Gekko RISC Microprocessor User's Manual IBM Confidential 5/25/00 Page iii

CONTENTS (Continued)

Register 1---------commmmm e 2-12
2.1.2.4—Hardware Implementation-Dependent
Register 2- - - - - - - - - oo - oo 2-13
2.1.2.5—Performance Monitor Registers - - - - -------- 2-14
2.1.2.6—lInstruction Cache Throttling Control
Register (ICTC) ---------------------- 2-19
2.1.2.7—Thermal Management Registers
(THRM1-THRM3) - - = == == = - e m e e e e o - - 2-19
2.1.2.8—Direct Memory Access (DMA) registers - - - - - - 2-22
2.1.2.9—Graphics Quantization Registers (GQRS) --- - - 2-23
2.1.2.10—Write Pipe Address Register (WPAR)- - - - - - - 2-24
2.1.2.11—1L 2 Cache Control Register (L2CR)- - ------- 2-25
2.2—Operand Conventions - ------------------“----------- 2-27
2.2.1—Data Organization in Memory and Data Transfers - - - - - - 2-27
2.2.2—Alignment and Misaligned Accesses --------------- 2-27
2.2.3—Floating-Point Operand and Execution
Models—UISA ---------------- oo - 2-28
2.3—Instruction Set Summary - - - - - - - - - - - - - - oo 2-32
2.3.1—Classes of Instructions - - - - - - - ------------------ 2-33
2.3.1.1—Definition of Boundedly Undefined - -------- 2-33
2.3.1.2—Defined Instruction Class - - -------------- 2-33
2.3.1.3—lllegal Instruction Class - ---------------- 2-33
2.3.1.4—Reserved Instruction Class - -------------- 2-34
2.3.1.5—Gekko’s Implementation-
Specific Instructions - ------------------ 2-34
2.3.2—Addressing Modes- - - - - - - - - - - - - - oo oo 2-35
2.3.2.1—Memory Addressing ------------------- 2-35
2.3.2.2—Memory Operands--------------------- 2-35
2.3.2.3—Effective Address Calculation - - - - - -------- 2-35
2.3.2.4—Synchronization ---------------------- 2-36
2.3.3—lInstruction Set Overview - ---------------------- 2-37
2.3.4—PowerPC UISA Instructions - - - - - - - - - - ----------- 2-37
2.3.4.1—lInteger Instructions - ------------------- 2-37
2.3.4.2—Floating-Point Instructions - - ------------- 2-41
2.3.4.3—Load and Store Instructions--------------- 2-46
2.3.4.4—Branch and Flow Control Instructions- - - - - - - - 2-58
2.3.4.5—System Linkage Instruction—UISA - - - - - - - - - 2-60
2.3.4.6—Processor Control Instructions—UISA - - - - - - - 2-61
2.3.4.7—Memory Synchronization Instructions—UISA - - 2-64
2.3.5—PowerPC VEA Instructions- - - - - - - - - ------------- 2-65
2.3.5.1—Processor Control Instructions—VEA- - - - - - - - 2-65
2.3.5.2—Memory Synchronization Instructions—VEA - - 2-66
2.3.5.3—Memory Control Instructions—VEA -------- 2-67
2.3.5.4—O0Optional External Control Instructions - - - - - - - 2-69
2.3.6—PowerPC OEA Instructions- - - - - - - - - - - - - - - ------- 2-70
2.3.6.1—System Linkage Instructions—OEA--------- 2-70

Page iv Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

CONTENTS (Continued)

2.3.6.2—Processor Control Instructions—OEA- - - - - - - - 2-71
2.3.6.3—Memory Control Instructions—OEA -------- 2-71
2.3.7—Recommended Simplified Mnemonics - - - ----------- 2-73
Chapter 3 Gekko Instruction and Data Cache Operation
3.1—Data Cache Organization ------------=--------------- 3-3
3.2—lInstruction Cache Organization ------------------------ 3-4
3.3—Memory and Cache Coherency ------------------------ 3-5
3.3.1—Memory/Cache Access Attributes (WIMG Bits)- - - - - - - - 3-6
3.3.2—MEIProtocol - - - ---------- e 3-6
3.3.2.1—MEI Hardware Considerations- - - - - - - - - - - - - 3-8
3.3.3—Coherency Precautions in Single Processor Systems- - - - - 3-9
3.3.4—Coherency Precautions in Multiprocessor Systems - - - - - - 3-9
3.3.5—Gekko-Initiated Load/Store Operations- - - - - - - - - - - - - - 3-10
3.3.5.1—Performed Loads and Stores - ------------- 3-10
3.3.5.2—Sequential Consistency of Memory Accesses- - - 3-10
3.3.5.3—Atomic Memory References - - - ----------- 3-10
3.4—Cache Control - -------------m oo 3-11
3.4.1—Cache Control Parameters in HIDO ---------------- 3-11
3.4.1.1—Data Cache Flash Invalidation- - - ---------- 3-12
3.4.1.2—Data Cache Enabling/Disabling - - - - - ------- 3-12
3.4.1.3—Data Cache Locking- - - ----------------- 3-12
3.4.1.4—Instruction Cache Flash Invalidation- - - - - - - - - 3-12
3.4.1.5—Instruction Cache Enabling/Disabling- - - - - - - - 3-13
3.4.1.6—lInstruction Cache Locking --------------- 3-13
3.4.2—Cache Control Instructions - - - - - - - = - - - - - - - - - - - - -~ 3-13
3.4.2.1—Data Cache Block Touch (dcbt) and
Data Cache Block Touch for Store (dcbtst) - - - - 3-14
3.4.2.2—Data Cache Block Zero (dcbz)------------- 3-14
3.4.2.3—Data Cache Block Store (dcbst) - - ---------- 3-14
3.4.2.4—Data Cache Block Flush (dcbf) - ----------- 3-15
3.4.2.5—Data Cache Block Invalidate (dcbi) --------- 3-15
3.4.2.6—Instruction Cache Block Invalidate (icbi)- - - - - - 3-15
3.5—Cache Operations - - - - - - = - - = === - - oo oo 3-15
3.5.1—Cache Block Replacement/Castout Operations- - - - - - - - - 3-15
3.5.2—Cache Flush Operations - - - - - ------------------- 3-18
3.5.3—Data Cache-Block-Fill Operations - - - - - - - - - - - ------ 3-18
3.5.4—lInstruction Cache-Block-Fill Operations- - ----------- 3-18
3.5.5—Data Cache-Block-Push Operation- - - - - - - - - - ------- 3-18
3.6—L1 Caches and 60x Bus Transactions -------------------- 3-18
3.6.1—Read Operations and the MEI Protocol- - ------------ 3-19
3.6.2—Bus Operations Caused by Cache Control Instructions --- 3-19
3.6.3—Snooping --------------------- oo 3-21
3.6.4—Snoop Response to 60x Bus Transactions - - - --------- 3-22
3.6.5—Transfer Attributes - - ------------------------- 3-24
3.7—MEI State Transactions - - - - - ------------------------- 3-26

IBM Gekko RISC Microprocessor User’'s Manual IBM Confidential 5/25/00 Page v

CONTENTS (Continued)

Chapter 4 Exceptions

4.1—PowerPC Gekko Microprocessor Exceptions - --------------
4.2—Exception Recognition and Priorities - -------------------
4.3—Exception Processing - -----------------“------------
4.3.1—Enabling and Disabling Exceptions - ---------------
4.3.2—Steps for Exception Processing - ------------------
4.3.3—Setting MSR[RI]- - - - - == - == - - - - e e e
4.3.4—Returning from an Exception Handler - -------------
4.4—Process Switching - --------------------- oo
4.5—Exception Definitions - - - - - - = - - - - - - - oo oo oo a oo
4.5.1—System Reset Exception (0x00100) - ---------------
451.1—Soft Reset---------------------------
4512—HardReset-------------------oo---
4.5.2—Machine Check Exception (0x00200)- - - - - - - - - - - - - - -
4.5.2.1—Machine Check Exception Enabled
(MSR[ME]=1) ---------m-mmmmmma oo -
4.5.2.2—Checkstop State (MSR[ME]=0) -----------
4.5.3—DSI Exception (0x00300)- - - ------------=-------
4.5.4—ISI Exception (0x00400) ---------=--------------
4.5.5—External Interrupt Exception (0x00500) -------------
4.5.6—Alignment Exception (0x00600) - -----------------
4.5.7—Program Exception (0x00700)- - - - - - - - == ----------
4.5.8—Floating-Point Unavailable Exception (0x00800) - - - - - - -
4.5.9—Decrementer Exception (0x00900)- - - - -------------
4.5.10—System Call Exception (0x00C00) - - --------------
4.5.11—Trace Exception (OXO0D00) ------------=-------
4.5.12—Floating-Point Assist Exception (OXO0EQQ) - - - ----- - -
4.5.13—Performance Monitor Interrupt (OXOOF00)- - - - -------
4.5.14—Instruction Address Breakpoint Exception (0x01300) - - -
4.5.15—Thermal Management Interrupt Exception (0x01700) - - -
Chapter 5 Memory Management
51—MMU OVerview - -------- - -
5.1.1—Memory Addressing - -------------------------
5.1.2—MMU Organization- - - - - - - --------------------
5.1.3—Address Translation Mechanisms- - - - - -------------
5.1.4—Memory Protection Facilities --------------------
5.1.5—Page History Information - - - - - - -----------------
5.1.6—General Flow of MMU Address Translation - ---------
5.1.6.1—Real Addressing Mode and Block
Address Translation Selection - - -----------
5.1.6.2—Page Address Translation Selection ---------
5.1.7—MMU Exceptions Summary - - -------------------
5.1.8—MMU Instructions and Register Summary- - - - - - ------
5.2—Real AddressingMode ------------------------------
5.3—Block Address Translation ---------------------------
5.4—Memory SegmentModel - - - --------------ooaoooooo

4-2
4-4
4-7
4-10

4-10

4-11
4-11
4-11

4-12

4-12
4-13
4-14

4-16

4-17

4-17
4-17
4-18
4-18
4-19
4-19
4-19
4-20
4-20
4-20
4-20
4-20
4-21
4-22

5-1
5-3
5-3
5-7
5-10
5-11
5-11

5-11
5-12
5-14
5-16
5-17
5-18
5-18

Page vi Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

CONTENTS (Continued)

5.4.1—Page History Recording - - ---------------------- 5-18
5.4.1.1—Referenced Bit - ---------------------- 5-19
5.4.1.2—Changed Bit - - - - - - - - === - - - o m o e oo 5-20
5.4.1.3—Scenarios for Referenced and

Changed Bit Recording ----------------- 5-20

5.4.2—Page Memory Protection ----------------------- 5-21

5.4.3—TLB Description- - - - - - - - - - - - - - o oo oo oo 5-21
5.4.3.1—TLB Organization - - - - - - - - - ------------ 5-22
5.4.3.2—TLB Invalidation- - - - - - - - -------------- 5-24

5.4.4—Page Address Translation Summary---------------- 5-24

5.4.5—Page Table Search Operation -------------------- 5-26

5.4.6—Page Table Updates--------------------------- 5-29

5.4.7—Segment Register Updates ---------------------- 5-29

Chapter 6 Instruction Timing
6.1—Terminology and Conventions - ------------------------ 6-1
6.2—Instruction Timing OVerview - - - - - - - - = - == - - - - - - - - - - - - - - 6-3
6.3—Timing Considerations ------------------------------ 6-6

6.3.1—General Instruction Flow - ---------------------- 6-7

6.3.2—Instruction Fetch Timing ----------------------- 6-8
6.3.2.1—Cache Arbitration - -------------------- 6-8
6.3.2.2—Cache Hit--------------------------- 6-8
6.3.2.3—Cache Miss- - - ----------------------- 6-13
6.3.2.4—L2 Cache Access Timing Considerations- - - - - - 6-15
6.3.2.5—Instruction Dispatch and

Completion Considerations- - - ------------ 6-15

6.3.2.6—Rename Register Operation--------------- 6-16
6.3.2.7—lInstruction Serialization - - - - ------------- 6-16
6.4—Execution Unit TimiNngs - ---------------------------- 6-17

6.4.1—Branch Processing Unit Execution Timing ----------- 6-17

6.4.1.1—Branch Folding and Removal of

Fall-Through Branch Instructions- - - - - - - - - - - 6-17
6.4.1.2—Branch Instructions and Completion- - - - - - - - - 6-18
6.4.1.3—Branch Prediction and Resolution ---------- 6-19

6.4.2—Integer Unit Execution Timing - ------------------ 6-23

6.4.3—Floating-Point Unit Execution Timing -------------- 6-23

6.4.4—Effect of Floating-Point Exceptions on Performance- - - - - 6-23

6.4.5—Load/Store Unit Execution Timing----------------- 6-23

6.4.6—Effect of Operand Placement on Performance - -------- 6-24

6.4.7—Integer Store Gathering - ----------------------- 6-25

6.4.8—System Register Unit Execution Timing ------------- 6-25

6.5—Memory Performance Considerations -------------------- 6-25

6.5.1—Caching and Memory Coherency------------------ 6-25

6.5.2—Effect of TLBMiSS - - - - ----------------------- 6-26

6.6—Instruction Scheduling Guidelines - --------------------- 6-27
6.6.1—Branch, Dispatch, and Completion Unit

Resource Requirements - - - - - = - = = - = = - oo oo oo oo oo 6-27

IBM Gekko RISC Microprocessor User’'s Manual IBM Confidential 5/25/00 Page vii

CONTENTS (Continued)

6.6.1.1—Branch Resolution Resource Requirements - - - - 6-27
6.6.1.2—Dispatch Unit Resource Requirements - - - - - - - 6-28
6.6.1.3—Completion Unit Resource Requirements - - - - - 6-28
6.7—Instruction Latency Summary ------------------------- 6-29
Chapter 7 Signal Descriptions
7.1—Signal Configuration -------------“------------ 7-2
7.2—Signal Descriptions - - --------- - - - 7-2
7.2.1—Address Bus Arbitration Signals - ----------------- 7-3
7.2.1.1—Bus RequesBR)—Output- - - - = = - = == - - - - - 7-3
7.2.1.2—Bus GranBG)—Input - ---------------- 7-3
7.2.2—Address Transfer Start Signals - ------------------ 7-4
7.2.2.1—Transfer StarTQ)--------------------- 7-4
7.2.3—Address Transfer Signals - - - -------------------- 7-5
7.2.3.1—Address Bus (A[0-31])------------------ 7-5
7.2.3.2—Address Bus Parity (AP[0-3])
(N/Aon Gekko) ---------------------- 7-5
7.2.4—Address Transfer Attribute Signals----------------- 7-6
7.2.4.1—Transfer Type (TT[0-4]) ---------------- 7-6
7.2.4.2—Transfer Size (TSIZ[0-2])—Output - - - - - - - - - 7-8
7.2.4.3—Transfer Bursi@ST)------------------ 7-9
7.2.4.4—Cache InhibitQl)—Output- - - - - - = = - - = - - - - 7-10
7.2.4.5—Write-ThroughWT)—Output - ----------- 7-10
7.2.4.6—GlobalGBL) - - - --------------------- 7-10
7.2.5—Address Transfer Termination Signals - ------------- 7-11
7.2.5.1—Address AcknowledgAQA CK)—Input - - - - - - 7-11
7.2.5.2—Address RetnARTRY) ---------------- 7-11
7.2.6—Data Bus Arbitration Signals--------------------- 7-12
7.2.6.1—Data Bus GranbBG)—Input - ----------- 7-12
7.2.7—Data Transfer Signals- - - - - - - - - - == - == - - oo 7-13
7.2.7.1—Data Bus (DH[0-31], DL[0-31]) - - - -------- 7-13
7.2.7.2—Data Bus Parity (DP[0-8]) (N/A on Gekko)- - - - 7-13
7.2.8—Data Transfer Termination Signals----------------- 7-14
7.2.8.1—Transfer Acknowledg@&)—Input- - - - - - - - - 7-14
7.2.8.2—Data RetryRTRY)—Input (N/A on Gekko) - - 7-15
7.2.8.3—Transfer Error Acknowledg€EA)—Input - - - 7-15
7.2.9—System Status Signals - ------------------------ 7-16
7.2.9.1—InterruptiNT)— Input - - - - - --------o--- 7-16
7.2.9.2—Machine Check InterrugdCP)—Input- - - - - - 7-16
7.2.9.3—Checkstop InpuCKSTP_IN—Input - - - - - - - 7-16
7.2.9.4—Checkstop OutpuEKSTP_OUT—Output - - - 7-17
7.29.5—ResetSignals ------------------------ 7-17
7.2.9.6—Processor Status Signals - - --------------- 7-18
7.2.10—IEEE 1149.1a-1993 Interface Description - - - - - - - - - - - 7-18

Page viii Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

CONTENTS (Continued)

7.211—Clock Signals - - - - - - - - - - - - m oo 7-19
7.2.11.1—System Clock (SYSCLK)—lInput- - - - - - - - - - 7-19
7.2.11.2—Clock Out (CLK_OUT)—Output

(N/Aon Gekko) ---------------------- 7-19
7.2.11.3—PLL Configuration (PLL_CFG[0-3])—Input- - 7-19
7.2.12—Power and Ground Signals - -------------------- 7-20
Chapter 8 Bus Interface Operation
8.1—Bus Interface Overview ----------------------------- 8-2

8.1.1—Operation of the Instruction and Data L1 Caches - - - - - - - 8-3

8.1.2—Operation of the Bus Interface- - - ----------------- 8-5

8.1.3—Direct-Store Accesses - ------------------------ 8-5

8.2—Memory Access Protocol - ---------------------- - 8-6
8.2.1—Arbitration Signals - -------------------------- 8-8
8.2.2—Address Pipelining and Split-Bus Transactions -------- 8-8

8.3—AddressBus Tenure -------------------------------- 8-9

8.3.1—Address Bus Arbitration------------------------ 8-9

8.3.2—Address Transfer- - - - - - - - - - - - - o - e oo oo 8-11
8.3.2.1—Address Bus Parity (N/A on Gekko)--------- 8-12
8.3.2.2—Address Transfer Attribute Signals---------- 8-12
8.3.2.3—Burst Ordering During Data Transfers ------ - 8-14
8.3.2.4—Effect of Alignment in Data Transfers - ------ 8-15
8.3.2.5—Alignment of External Control Instructions - - - - 8-16

8.3.3—Address Transfer Termination-------------------- 8-16

8.4—DataBusTenure ---------------------------------- 8-18

8.4.1—Data Bus Arbitration - - - ----------------------- 8-18

8.4.2—DataTransfer - - - - - --------mommm o 8-19

8.4.3—Data Transfer Termination - - - - - ----------------- 8-20
8.4.3.1—Normal Single-Beat Termination - - - - - - - - - - - 8-21
8.4.3.2—Data Transfer Termination Due to a Bus Error - - 8-24

8.4.4—Memory Coherency—MEI Protocol---------------- 8-24

8.5—Timing Examples - - - - - = - = = - - o - oo oo 8-25

8.6—No0-DRTRY Bus Configuration ------------------------ 8-31

8.7—32-bitDataBus Mode ------------------------------ 8-32

8.8—lInterrupt, Checkstop, and Reset Signals - - - - - - - - ----------- 8-36

8.8.1—External Interrupts- - - - - - - - == = - - - - o - m i e 8-36

8.8.2—Checkstops-------------------- oo 8-36

8.83—Resetlnputs - -------------“-“““-------------- 8-37

8.8.4—System Quiesce Control Signals - ----------------- 8-37

8.9—Processor State Signals - - ------------------------ - 8-38
8.9.1—Support for thievarx/stwcex. Instruction Pair - -------- 8-38
8.9.2—TLBISYNC Input----------------m-mmme oo - 8-38

8.10—IEEE 1149.1a-1993 Compliant Interface ----------------- 8-38
8.10.1—JTAG/COP Interface - - - ---------------------- 8-38

IBM Gekko RISC Microprocessor User’'s Manual IBM Confidential 5/25/00 Page ix

CONTENTS (Continued)

Chapter 9 L2 Cache, Locked D-Cache, DMA and
Write Gather Pipe

9.1—12Cache ------------ e 9-1
9.1.1—L2 Cache Operation- - ------------------------- 9-1
9.1.2—L 2 Cache Control Register (L2CR) ---------------- 9-3
9.1.3—L2 Cache Initialization- - - - - - - = - === - - - - - - - - - - - 9-3
9.1.4—L 2 Cache Global Invalidation - - - - ---------------- 9-4
9.1.5—L2 Cache Test Features and Methods - - - ------------ 9-4

9.1.5.1—L2CR Support for L2 Cache Testing-------- - 9-4
9.1.5.2—L2 Cache Testing --------------------- 9-5
9.1.6—L2Cache Timing ---------------------------- 9-5

9.2—Locked L1 DataCache ------------------------------ 9-5
9.2.1—Locked Cache Configuration- - - - - - - - - - - === - - - - - - - 9-6
9.2.2—Locked Cache Operation ----------------------- 9-6

9221—DCBZ-----------------m e e - 9-6
9222—DCBZ L ------------mmmmmmme oo - - 9-6
9.223—DCBIl------ e 9-7
9224—DCBF ------------m i - 9-7
9.225—DCBST ----------mmm e 9-7
9.2.2.6—DCBT and DCBTST ------------------- 9-7
9.2.2.7—Load and Store - ---------------------- 9-7

9.3—Direct Memory Access (DMA) - ------------mommmoo - 9-8
9.3.1—DMA Operation - --------=-------------------- 9-8
9.3.2—Exception Conditions- - - - - - = === - - - - - - - oo oo 9-9

9.3.2.1—DMA Queue Overflow- - - = = = = = = === - - - - - - 9-9
9.3.2.2—DMA Look-up Hits Normal Cache- - -------- 9-9
9.3.2.3—DMA Look-up Miss- - - - = = - = === - - - - - - - - 9-9
9.3.3—DMATIMING - -------------- e mm e oo - 9-9
9.4—Write Gather Pipe - -------------comm oo 9-10
9.4 1—WPAR------- - oo - 9-10
9.4.2—Write Gather Pipe Operation--------------------- 9-10
9.4.3—Write Gather Pipe Timing-----------=------------ 9-10
Chapter 10 Power and Thermal Management
10.1—Dynamic Power Management - ----------------------- 10-1
10.2—Programmable Power Modes - ------------------------ 10-1
10.2.1—Power Management Modes- - - - - - - - - - ----------- 10-2
10.2.1.1—Full-Power Mode- - - - - - - - - - - ---------- 10-2
10.2.1.2—Doze Mode------------------------- 10-2
10.2.1.3—Nap Mode ------------------------- 10-3
10.2.1.4—SleepMode- - - - - - - - - - - - - - - o - oo 10-4
10.2.2—Power Management Software Considerations- - - - - - - - - 10-5

Page x Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

CONTENTS (Continued)

10.3—Thermal Assist Unit

10.3.1—Thermal Assist Unit Overview- - - - - - = - - = = - - - - - - - -

10.3.2—Thermal Assist Unit Operation
10.3.2.1—TAU Single Threshold Mode- - -----------
10.3.2.2—TAU Dual-Threshold Mode- - - - - - - - - - - - - -

10.3.2.3—Gekko Junction Temperature Determination - -

10.3.2.4—Power Saving Modes and TAU Operation - - - -

10.4—Instruction Cache Throttling
Chapter 11 Performance Monitor

11.1—Performance Monitor Interrupt
11.2—Special-Purpose Registers Used by Performance Monitor
11.2.1—Performance Monitor Registers
11.2.1.1—Monitor Mode Control Register 0 (MMCRO) - -
11.2.1.2—User Monitor Mode Control
Register 0 (UMMCRO)
11.2.1.3—Monitor Mode Control
Register 1 (MMCR1)
11.2.1.4—User Monitor Mode Control Register 1
(UMMCR1)
11.2.1.5—Performance Monitor Counter
Registers (PMC1-PMC4)
11.2.1.6—User Performance Monitor Counter
Registers (UPMC1-UPMC4)- - - - - - - - - - - - -
11.2.1.7—Sampled Instruction Address Register (SIA) - -

10-5
10-6
10-7
10-8
10-9
10-9
10-9
10-10

11-1
11-2
11-3

11-3
11-4
11-4

11-5
11-5

11-9
11-9

11.2.1.8—User Sampled Instruction Address Register (USIA) 11-10

11.3—EventCounting -------------=--------------------- 11-10
11.4—Event Selection - --------- oo 11-11
11.5—NOtesS - ------- - o m e 11-12
Chapter 12 Instruction Set
12.1—Instruction Formats - ------------------------------ 12-1
12.1.1—Split-Field Notation- - - - - - - - - - - - - - - - - - - 12-1
12.1.2—Instruction Fields- - - - - = - - = = - = - - oo - o oo oo 12-2
12.1.3—Notation and Conventions- - - - - - - = - = - - == - - - - - - - - 12-4
12.1.4—Computation Modes- - - - - - - - - - ---------------- 12-7
12.2—PowerPC Instruction Set - - ------------------- - 12-7
Appendix A — Gekko Instruction Set
A.l—Instructions Sorted by Opcode - - - - - - = === === - - oo oo oo o A-1
A.2—Instructions Grouped by Functional Categories-------------- A-9
Index
IBM Gekko RISC Microprocessor User’'s Manual IBM Confidential 5/25/00 Page xi

ILLUSTRATIONS

Chapter 1—Gekko Overview

Figure 1-1. Gekko Microprocessor Block Diagram - -------------------- 1-3
Figure 1-2. Cache Organization -------- - - -- - 1-11
Figure 1-3. System Interface - ----------- - 1-13
Figure 1-4. Gekko Microprocessor Signal Groups - -------------------- 1-15
Figure 1-5. Gekko Microprocessor Programming Model—Registers - - - - - - - - - 1-19
Figure 1-6. Pipeline Diagram = - - - - - = = = - = = = - o e o m e e 1-30
Chapter 2—Programming Model

Figure 2-1. Programming Model—Gekko Microprocessor Registers - -------- 2-2
Figure 2-2. Instruction Address Breakpoint Register -------------------- 2-8
Figure 2-3. Hardware Implementation-Dependent Register O (HIDO) - -------- 2-9
Figure 2-4. Hardware Implementation-Dependent Register 1 (HID1) - -------- 2-12
Figure 2-5. Hardware Implementation-Dependent Register 2 (HID2) - -------- 2-13
Figure 2-6. Monitor Mode Control Register 0 (MMCRO) ----------------- 2-14
Figure 2-7. Monitor Mode Control Register 1 (MMCR1) ----------------- 2-16
Figure 2-8. Performance Monitor Counter Registers (PMC1-PMC4) - -------- 2-17
Figure 2-9. Sampled Instruction Address Registers (SIA) - ---------------- 2-18
Figure 2-10. Instruction Cache Throttling Control Register (ICTC) ---------- 2-19
Figure 2-11. Thermal Management Registers 1-2 (THRM1-THRM2) - ------- 2-20
Figure 2-12. Thermal Management Register 3 (THRM3) ----------------- 2-21
Figure 2-13. Direct Memory Access Upper (DMAU) register - ------------- 2-22
Figure 2-14. Direct Memory Access Lower (DMAL) register - ------------- 2-23
Figure 2-15. Graphics Quantization Register ------------------------- 2-24
Figure 2-16. Write Pipe Address Register WPAR) - -------------------- 2-25
Figure 2-17. L2 Cache Control Register (L2CR) - ---------------------- 2-25
Figure 2-18. Floating-Point Register containing a paired single operand - - - - - - - 2-29

Chapter 3—Gekko Instruction and Data Cache Operation

Figure 3-1. Cache Integration - --------------- - - 3-2
Figure 3-2. Data Cache Organization ------------------------------ 3-3
Figure 3-3. Instruction Cache Organization -------------------------- 3-5
Figure 3-4. MEI Cache Coherency Protocol—State Diagram (WIM = 001) - - - - - 3-8
Figure 3-5. PLRU Replacement Algorithm = - - - - - - - - - - - oo oo o m oo 3-16
Figure 3-6 Gekko Cache Addresses ------------------------------- 3-19
Chapter 4—Exceptions

Figure 4-1. Machine Status Save/Restore Register 0 (SRR0O) - - ------------- 4-7
Figure 4-2. Machine Status Save/Restore Register 1 (SRR1) - - ------------- 4-7
Figure 4-3. Machine State Register (MSR) - - ------------------------- 4-7
Figure 4-4. SRESET Asserted During HRESET ----------------------- 4-14

Page xii Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

ILLUSTRATIONS (Continued)

Chapter 5—Memory Management

Figure 5-1. MMU Conceptual Block Diagram - - - - - - - - - = - - - - - - - - - - - - - 5-5
Figure 5-2. PowerPC Gekko Microprocessor IMMU Block Diagram -------- 5-6
Figure 5-3. Gekko Microprocessor DMMU Block Diagram - ------------- 5-7
Figure 5-4. Address Translation Types - - - - - --------- - - 5-9
Figure 5-5. General Flow of Address Translation

(Real Addressing Mode and Block) - - -----------c-uommo-- 5-12
Figure 5-6. General Flow of Page and Direct-Store Interface

Address Translation ---------------------------~------ 5-13
Figure 5-7. Segment Register and DTLB Organization - - ---------------- 5-22
Figure 5-8. Page Address Translation Flow—TLB Hit - ----------------- 5-25
Figure 5-9. Primary Page Table Search - --------------------------- 5-27
Figure 5-10. Secondary Page Table Search Flow - --------------------- 5-28
Chapter 6—Instruction Timing
Figure 6-1. Pipelined Execution Unit - - - - - === - - - - - - 6-3
Figure 6-2. Superscalar/Pipeline Diagram - - - - - = - - = = - - - - - = - - - - oo - - - - - 6-4
Figure 6-3. PowerPC Gekko Microprocessor Pipeline Stages - ------------- 6-6
Figure 6-4. Instruction Flow Diagram - ---------------------------- 6-9
Figure 6-5. Instruction Timing—Cache Hit - - - - - - - - - - - - - - - - oo oo oo oo - 6-11
Figure 6-6. Instruction Timing—Cache MiSS - ----------------------- 6-14
Figure 6-7. Branch Folding - ------------“-“-““-“-“-“-“- - 6-18
Figure 6-8. Removal of Fall-Through Branch Instruction ---------------- 6-18
Figure 6-9. Branch Completion - - - - - = - = = - - = - o o oo oo e 6-19
Figure 6-10. Branch Instruction Timing - -----------=---------------- 6-22
Chapter 7—Signal Descriptions
Figure 7-1. PowerPC Gekko Signal Groups - ------------------------ 7-2
Chapter 8—Bus Interface Operation
Figure 8-1. Bus Interface Address Buffers - ------------------------- 8-2
Figure 8-2. PowerPC Gekko Microprocessor Block Diagram - - - ----------- 8-4
Figure 8-3. Timing Diagram Legend - ----------------------------- 8-6
Figure 8-4. Overlapping Tenures on Gekko Bus for a Single-Beat Transfer - - - - 8-7
Figure 8-5. Address Bus Arbitration - ----------------------------- 8-10
Figure 8-6. Address Bus Arbitration Showing Bus Parking --------------- 8-11
Figure 8-7. Address Bus Transfer ----------------------------- 8-12
Figure 8-8. Snooped Address Cycle WKRTRY - ------------ooooonnn 8-18
Figure 8-9. Data Bus Arbitration - - - - - - - --------oomm 8-19
Figure 8-10. Normal Single-Beat Read Termination - - - - - - - - - - ---------- 8-21
Figure 8-11. Normal Single-Beat Write Termination ------------------- 8-21
Figure 8-12. Normal Burst Transaction ---------------------------- 8-22
Figure 8-13. Termination WitDRTRY - - - - - = - = - = - o - oo oo oo oo - 8-23
Figure 8-14. Read Burst wiffA Wait States an®RTRY - - ------------ 8-23
Figure 8-15. MEI Cache Coherency Protocol—State Diagram (WIM = 001) - - - 8-25

IBM Gekko RISC Microprocessor User’'s Manual IBM Confidential 5/25/00 Page xiii

ILLUSTRATIONS (Continued)

Figure 8-16. Fastest Single-Beat Reads - -----------------ccooon 8-26
Figure 8-17. Fastest Single-Beat WriteS - - - - - - - == - - - - - oo oo m o e oo o - 8-27
Figure 8-18. Single-Beat Reads Showing Data-Delay Controls - ------------ 8-28
Figure 8-19. Single-Beat Writes Showing Data Delay Controls - ------------ 8-29
Figure 8-20. Burst Transfers with Data Delay Controls - ----------------- 8-30
Figure 8-21. Use of Transfer Error Acknowledg&f) ----------------- 8-31
Figure 8-22. 32-Bit Data Bus Transfer (Eight-Beat Burst) ---------------- 8-33
Figure 8-23. 32-Bit Data Bus Transfer (Two-Beat Burst WRIRY) ------- 8-33
Figure 8-24. IEEE 1149.1a-1993 Compliant Boundary Scan Interface -------- 8-38
Chapter 10—Power and Thermal Management

Figure 10-1. Thermal Assist Unit Block Diagram - --------------------- 10-6
Chapter 11— Performance Monitor

Figure 11-1. Monitor Mode Control Register 0 (MMCROQO) ---------------- 11-3
Figure 11-2. Monitor Mode Control Register 1 (MMCR1) ---------------- 11-5
Figure 11-3. Performance Monitor Counter Registers (PMC1-PMC4) -------- 11-5
Figure 11-4. Sampled instruction Address Registers (SIA) - --------------- 11-10

Chapter 12—Instruction Set
Figure 12-1. Instruction Description - --------------“--“------------ 12-8

Page xiv Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

TABLES

Chapter 1—Gekko Overview

Table 1-1. Architecture-Defined Registers (Excluding SPRs)
Table 1-2. Architecture-Defined SPRs Implemented
Table 1-3. Implementation-Specific Registers
Table 1-4. Gekko Microprocessor Exception Classifications
Table 1-5. Exceptions and Conditions

Chapter 2—Programming Model

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.
Table 2-8.
Table 2-9.

Additional MSR Bits

Additional SRR1 Bits
Instruction Address Breakpoint Register Bit Settings
HIDO Bit Functions
HID1 Bit Functions
HID2 Bit Settings

MMCRO Bit Settings
MMCR1 Bits
PMCn Bits
Table 2-10.
Table 2-11.
Table 2-12.
Table 2-13.
Table 2-14.
Table 2-15.
Table 2-16.
Table 2-17.
Table 2-18.
Table 2-19.
Table 2-20.
Table 2-21.
Table 2-22.
Table 2-23.
Table 2-24.
Table 2-25.
Table 2-26.
Table 2-27.
Table 2-28.
Table 2-29.
Table 2-30.
Table 2-31.
Table 2-32.
Table 2-33.
Table 2-34.
Table 2-35.
Table 2-36.
Table 2-37.

ICTC Bit Settings
THRM1-THRMZ2 Bit Settings
Valid THRM1/THRM2 Bit Settings

THRM3 Bit Settings - - - -----------------------

DMAU Bit Settings
DMAL Bit Settings
Graphics Quantization Register Bit Settings
Quantized Data Types
Write Pipe Address Register Bit Settings
L2CR Bit Settings
Memory Operands
Floating-Point Operand Data Type Behavior
Floating-Point Result Data Type Behavior
Integer Arithmetic Instructions
Integer Compare Instructions
Integer Logical Instructions
Integer Rotate Instructions
Integer Shift Instructions
Floating-Point Arithmetic Instructions
Floating-Point Multiply-Add Instructions

Floating-Point Rounding and Conversion Instructions -

Floating-Point Compare Instructions
Floating-Point Status and Control Register Instructions
Floating-Point Move Instructions
Integer Load Instructions
Integer Store Instructions
Integer Load and Store with Byte-Reverse Instructions
Integer Load and Store Multiple Instructions

1-20
1-21
1-22

1-27
1-27

2-6
2-8
2-9
2-13
2-13
2-15
2-17
2-17
2-19
2-20
2-21
2-22
2-23
2-23
2-24
2-24
2-25
2-25
2-27
2-30
2-31
2-37
2-39
2-39
2-40
2-41
2-42
2-43
2-44
2-44
2-45
2-46
2-48
2-49
2-50
2-51

IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

5/25/00

Page xv

TABLES (Continued)

Table 2-38.
Table 2-39.
Table 2-40.
Table 2-41.
Table 2-42.
Table 2-43.
Table 2-44.
Table 2-45.
Table 2-46.
Table 2-47.
Table 2-48.
Table 2-49.
Table 2-50.
Table 2-51.
Table 2-52.
Table 2-53.
Table 2-54.
Table 2-55.
Table 2-56.
Table 2-57.
Table 2-58.
Table 2-59.
Table 2-60.
Table 2-61.
Table 2-62.
Table 2-63.
Table 2-64.

Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.

Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.

Integer Load and Store String Instructions - ----------------- 2-51
Floating-Point Load Instructions -------------=----------- 2-53
Floating-Point Store Instructions - ------------------------ 2-54
Store Floating-Point Single Behavior - --------------------- 2-54
Store Floating-Point Double Behavior --------------------- 2-55
Paired Single Load and Store Instructions - ------------------ 2-56
Conversion of integer value 1 to single-precision floating point ---- 2-57
Conversion of Floating-point Value 1.00 E+2 to Integer --------- 2-58
Branch Instructions - --------------------------------- 2-59
Condition Register Logical Instructions - ------------------- 2-59
Trap INStructions - - = - - - - = = = - - s oo e 2-60
System Linkage Instruction—UISA - ---------------------- 2-60
Move to/from Condition Register Instructions - --------------- 2-61
Move to/from Special-Purpose Register Instructions (UISA) ---- - - 2-61
PowerPC Encodings - ------------------“------------- 2-61
SPR Encodings for Gekko-Defined Regigtefspr) ---------- 2-63
Memory Synchronization Instructions—UISA - -------------- 2-65
Move from Time Base Instruction ------------------------ 2-66
Memory Synchronization Instructions—VEA ---------------- 2-67
User-Level Cache Instructions - ------------------------- 2-68
External Control Instructions - - - - - - - - ------------------- 2-70
System Linkage Instructions—OEA - - - - - - - = - - = - o oo oo oo o - 2-70
Move to/from Machine State Register Instructions ------------- 2-71
Move to/from Special-Purpose Register Instructions (OEA) - - - - - - - 2-71
Supervisor-Level Cache Management Instruction - - - - - - - - - - - - - - 2-72
Segment Register Manipulation Instructions ----------------- 2-72
Translation Lookaside Buffer Management Instruction ---------- 2-73
Chapter 3—Gekko Instruction and Data Cache Operation
MEI State Definitions - -------------------------------- 3-7
PLRU BitUpdate Rules - - - ----------------------------- 3-17
PLRU Replacement Block Selection ----------------------- 3-17
Bus Operations Caused by Cache Control Instructions (WIM =001) - - 3-20
Response to Snooped Bus Transactions --------------------- 3-22
Address/Transfer Attribute Summary - --------------------- 3-25
MEI State Transitions - -------------------------------- 3-26
Chapter 4—Exceptions
PowerPC Gekko Microprocessor Exception Classifications ------- 4-2
Exceptions and Conditions - ---------------------------- 4-3
PowerPC Gekko Exception Priorities - --------------------- 4-6
MSR Bit Settings - -----------------“-““““““-------- - 4-8
IEEE Floating-Point Exception Mode Bits - ------------------ 4-9
MSR Setting Due to Exception --------------------------- 4-12
System Reset Exception—Register Settings ------------------ 4-13
Settings Caused by Hard Reset - -------------------------- 4-14

Table 4-8.

Page xvi

Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

TABLES (Continued)

Table 4-9. HIDO Machine Check Enable Bits - - ---------------------- 4-16
Table 4-10. Machine Check Exception—Register Settings --------------- 4-17
Table 4-11. Performance Monitor Interrupt Exception—Register Settings - - - - 4-21
Table 4-12. Instruction Address Breakpoint Exception—Register Settings - - - - 4-21
Table 4-13. Thermal Management Interrupt Exception—Register Settings - - - - 4-22
Chapter 5—Memory Management

Table 5-1. MMU Feature Summary ----------- - 5-2
Table 5-2. Access Protection Options for Pages - --------------------- 5-10
Table 5-3. Translation Exception Conditions - ----------------------- 5-14
Table 5-4. Other MMU Exception Conditions for the Gekko Processor - - - - - - - 5-15
Table 5-5. Gekko Microprocessor Instruction Summary—Control MMUS - - - - - 5-16
Table 5-6. Gekko Microprocessor MMU Registers - ------------------- 5-17
Table 5-7. Table Search Operations to Update History Bits—TLB Hit Case - - - - 5-19
Table 5-8. Model for Guaranteed R and C Bit Settings ----------------- 5-21
Chapter 6—Instruction Timing

Table 6-1. Performance Effects of Memory Operand Placement - - - - -------- 6-24
Table 6-2. TLB Miss Latencies - -------------------------------- 6-26
Table 6-3. Branch Instructions - --------------------------------- 6-29
Table 6-4. System Register Instructions ---------------------------- 6-29
Table 6-5. Condition Register Logical Instructions -------------------- 6-30
Table 6-6. Integer Instructions - ----------------“----------- 6-30
Table 6-7. Floating-Point Instructions - ---------------------------- 6-32
Table 6-8. Load and Store Instructions - --------------------------- 6-34

Chapter 7—Signal Descriptions

Table 7-1. Transfer Type Encodings for PowerPC Gekko Bus Master ------- 7-6
Table 7-2. PowerPC Gekko Snoop Hit Response - -------------------- 7-8
Table 7-3. Data Transfer Size - ------------------mmm oo 7-9
Table 7-4. Data Bus Lane AssSignments - ------------ommommomomon 7-13
Table 7-5. DP[0-7] Signal Assignments - ---------------moomooon 7-14
Table 7-6. IEEE Interface Pin Descriptions - - - - - - - - - - - - - - - oo oo oo - 7-18
Chapter 8—Bus Interface Operation

Table 8-1. Transfer Size Signal Encodings -------------------------- 8-13
Table 8-2. Burst Ordering - ----------------“--“-“--“------------- 8-14
Table 8-3. Aligned Data Transfers ------------------------------- 8-15
Table 8-4. Misaligned Data Transfers (Four-Byte Examples) ------------- 8-16
Table 8-5. Burst Ordering—32-BitBus - --------------------------- 8-34
Table 8-6. Aligned Data Transfers (32-Bit Bus Mode) ------------------ 8-34
Table 8-7. Misaligned 32-Bit Data Bus Transfer (Four-Byte Examples) ------ 8-36

IBM Gekko RISC Microprocessor User's Manual IBM Confidential 5/25/00 Page xvii

TABLES (Continued)
Chapter 9—L2 Cache, Locked D-Cache, DMA and
Write Gather Pipe
Table 9-1. L2 Cache Control Register - ----------------------------- 9-3
Chapter 10—Power and Thermal Management

Table 10-1. Gekko Microprocessor Programmable Power Modes - ---------- 10-2
Table 10-2. THRM1 and THRM2 Bit Field Settings -------------------- 10-7
Table 10-3. THRMS3 Bit Field Settings - ---------------------------- 10-7
Table 10-4. Valid THRM1 and THRM2 Bit Settings ------------------- 10-8
Table 10-5. ICTC Bit Field Settings ---------------=----“---------- 10-10
Chapter 11— Performance Monitor

Table 11-1. Performance Monitor SPRS - - - - - - - - - - - - - - - oo oo oo oo oo o - 11-2
Table 11-2. MMCRO Bit Settings - ------------------------------- 11-3
Table 11-3. MMCR1 Bit Settings - -------------------------------- 11-5
Table 11-4. PMCn Bit SettingsS - - - - - - - - - - - - - - - - - - m e e oo oo 11-5
Table 11-5. PMC1 Events—MMCRO0[19-25] Select Encodings ------------ 11-6
Table 11-6. PMC2 Events—MMCRO0[26-31] Select Encodings ------------ 11-7
Table 11-7. PMC3 Events—MMCR1[0-4] Select Encodings -------------- 11-8
Table 11-8. PMC4 Events—MMCR1[5-9] Select Encodings -------------- 11-9
Chapter 12—Instruction Set

Table 12-1. Split-Field Notation and Conventions ---------------------- 12-1
Table 12-2. Instruction Syntax Conventions - ------------------------ 12-2
Table 12-3. Notation and Conventions - ---------------------------- 12-4
Table 12-4. Instruction Field Conventions --------------------------- 12-6
Table 12-5. Precedence Rules - -------------mmommmmm oo 12-7
Table 12-6. BO Operand Encodings ------------------------------- 12-23
Table 12-7. BO Operand Encodings ------------------------------- 12-25
Table 12-8. BO Operand Encodings - ------------------------------ 12-27
Table 12-9. Gekko UISA SPR Encodings for mfspr - ------------------- 12-127
Table 12-10. Gekko OEA SPR Encodings for mfspr - ------------------- 12-128
Table 12-11. TBR Encodings formftb - - - - - - - - - - - - - - - o e e m oo 12-134
Table 12-12. Gekko UISA SPR Encodings for mtspr - ------------------ 12-142
Table 12-13. Gekko OEA SPR Encodings for mtspr -------------------- 12-143

Page xviii Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

TABLES (Continued)

Appendix A— Gekko Instruction Set

Table A-1.
Table A-2.
Table A-3.
Table A-4.
Table A-5.
Table A-6.
Table A-7.
Table A-8.
Table A-9.

Complete Instruction List Sorted by Opcode ------------------
Integer Arithmetic Instructions - --------------------------
Integer Compare Instructions - ---------------------------
Integer Logical Instructions - ----------------------------
Integer Rotate Instructions - -----------------------------
Integer Shift Instructions - ------------------------------
Floating-Point Arithmetic Instructions - ---------------------
Floating-Point Multiply-Add Instructions - -------------------
Floating-Point Rounding and Conversion Instructions -----------

Table A-10. Floating-Point Compare Instructions - ---------------------
Table A-11. Floating-Point Status and Control Register Instructions - - - - - - - - - -
Table A-12. Integer Load Instructions - ------------cccmommoon
Table A-13. Integer Store Instructions - -------------moommooo
Table A-14. Integer Load and Store with Byte Reverse Instructions ----------
Table A-15. Integer Load and Store Multiple Instructions - ----------------
Table A-16. Integer Load and Store String Instructions - - - - - == == - === - - === -
Table A-17. Memory Synchronization Instructions - --------------------
Table A-18. Floating-Point Load Instructions - ------------------------
Table A-19. Floating-Point Store Instructions - ------------=-----------
Table A-20. Floating-Point Move Instructions - - - - - - - = = - - = - - - - - - - - oo - -
Table A-21. Branch Instructions - - ------------------moa oo
Table A-22. Condition Register Logical Instructions - -------------------
Table A-23. System Linkage Instructions - ---------------------------
Table A-24. Trap INStructions - - = - - = = - = == = o - o e e
Table A-25. Processor Control Instructions - - - - - - - - - -----------------
Table A-26. Cache Management Instructions - ------------------------
Table A-27. Segment Register Manipulation Instructions. - - ---------------
Table A-28. Lookaside Buffer Management Instructions - - - - - - = - - - - = - - - - - -
Table A-29. External Control Instructions - --------------------------
Table A-30. Paired-Single Load and Store Instructions - - - - - --------------
Table A-31. Paired-Single Floating Point Arithmetic Instructions - - - - - - - - - - - -
Table A-32. Miscellaneous Paired-Single Instructions -------------------

IBM Gekko RISC Microprocessor User's Manual IBM Confidential 5/25/00

Page xix

Page xx Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Chapter 1 Gekko Overview

Gekko is an implementation of the PowerPC architecture with enhancements to improve the
floating point performance and the data transfer capability. This chapter provides an overview of
the PowerPC Gekko microprocessor features, including a block diagram showing the major
functional components. It also provides information about how Gekko implementation complies
with the PowerPC™ architecture definition .

1.1 Gekko Microprocessor Overview

This section describes the features and general operation of Gekko and provides a block diagram
showing major functional units. Gekko is an implementation of the PowerPC microprocessor
family of reduced instruction set computer (RISC) microprocessors with extensions to improve the
floating poing performance. Gekko implements the 32-bit portion of the PowerPC architecture,
which provides 32-bit effective addresses, integer data types of 8, 16, and 32 bits, and floating-point
data types of single- and double-precision. Gekko extends the PowerPC architecture with the
paired single-precision floating point data type and a set of paired single floating point instructions.
Gekko is a superscalar processor that can complete two instructions simultaneously. It incorporates
the following six execution units:

* Floating-point unit (FPU)

* Branch processing unit (BPU)
» System register unit (SRU)

» Load/store unit (LSU)

» Two integer units (IUs): IU1 executes all integer instructions. IU2 executes all integer
instructions except multiply and divide instructions.

The ability to execute several instructions in parallel and the use of simple instructions with rapid
execution times yield high efficiency and throughput for Gekko-based systems. Most integer
instructions execute in one clock cycle. The FPU is pipelined, it breaks the tasks it performs into
subtasks, and then executes in three successive stages. Typically, a floating-point instruction can
occupy only one of the three stages at a time, freeing the previous stage to work on the next
floating-point instruction. Thus, three single- or paired single-precision floating-point instructions
can be in the FPU execute stage at a time. Double-precision add instructions have a three-cycle
latency; double-precision multiply and multiply-add instructions have a four-cycle latency.

Figure 1-1 on Page 1-3 shows the parallel organization of the execution units (shaded in the
diagram). The instruction unit fetches, dispatches, and predicts branch instructions. Note that this
is a conceptual model that shows basic features rather than attempting to show how features are
implemented physically.

Gekko has independent on-chip, 32 Kbyte, eight-way set-associative, physically addressed caches
for instructions and data and independent instruction and data memory management units
(MMUSs). The data cache can be configured as a four-way 16 KByte locked cache and a four-way
16 KByte normal cache. Each MMU has a 128-entry, two-way set-associative translation lookaside
buffer (DTLB and ITLB) that saves recently used page address translations. Block address
translation is done through the four-entry instruction and data block address translation (IBAT and
DBAT) arrays, defined by the PowerPC architecture. During block translation, effective addresses
are compared simultaneously with all four BAT entries.

For information about the L1 cache, see Chapter 3, "Gekko Instruction and Data Cache Operation”
in this manual.

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-1

IBM Confidential

The L2 cache is implemented with an on-chip, two-way set-associative tag memory, and an on-chip
256 Kbyte SRAM with ECC for data storage.

Gekko has a direct memory access (DMA) engine to transfer data from the external memory to the
locked data cache and to transfer data from the locked data cache to the external memory.

A write gather pipe is implemented for effecient non-cacheable store operations.

Gekko has a 32-bit address bus and a 64-bit data bus. Multiple devices compete for system resources
through a central external arbiter. Gekko’s three-state cache-coherency protocol (MEI) supports the
modified, exclusive and invalid states, a compatible subset of the MESI
(modified/exclusive/shared/invalid) four-state protocol, and it operates coherently in systems with
four-state caches. Gekko supports single-beat and burst data transfers for external memory accesses
and memory-mapped 1/O operations. The system interface is described in Chapter 7, "Signal
Descriptions” and Chapter 8, "Bus Interface Operation” in this manual.

Gekko has four software-controllable power-saving modes. Three static modes, doze, nap, and sleep,
progressively reduce power dissipation. When functional units are idle, a dynamic power
management mode causes those units to enter a low-power mode automatically without affecting
operational performance, software execution, or external hardware. Gekko also provides a thermal
assist unit (TAU) and a way to reduce the instruction fetch rate for limiting power dissipation. Power
management is described in Chapter 10, "Power and Thermal Management" in this manual.

Page 1-2 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

MBIAIBAO 099 T Jaideyd

[enusplyuod Nl

00/5¢/S

¢-T abed

Instruction Unit 128-Bit
»| Fetcher | .| Branch FL’Jrr%?essing \ (4 Instructions)
Additional Features % BTIC CTR Instruction MMU
- Time Base Counter/Dec- Instruction Queue 64 Entry LR hSFés
6 Word > Shadow
rementer () BT ()| | iBaT T 32-Kbyte
« Clock Multiplier Array | [Tags | Cache
ITLB
» JTAG/COP Interface] A
2 Instructions .
. + | 64-Bit
Dispatch Unit (2 Instructions)
Y o ‘
; —— Reservation Station
- - ile
| Reservation Station | | Reservation Station || Reservation Station | , Reservation Station (2 Entry)
GPR File (2 Entry) Renam(e)Buffers
6
Y Y Y Rename Buffers + 64.Bit | Y
System Register 32-Bit | Load/Store Unit |~ . 24'8” Floating-Point
Integer Unit 1 Integer Unit 2 Unit H - Unit
A (EA Calculation) Write Gather Pipe
"] Store Queue WPAR »| | FPSCR
\ i i —— >
32-Bit 32-Bit
1 128 Byte Buffer
l |
EA | PA 64-Bit v
Completion Unit Data MMU A 60x Bus Interface Unit
Instruction Fetch Queue
Reorder Buffer | |« SRS < 3 [— L2 Cache
(6 Entry) (Original) | o Tags L1 Castout Queue |3
9 DBAT Copmard E— L2CR
Array %ZéKb)ge < (15 Entry) Data Load Oueue 12 Tag
DTLB A le—> 7 | ——
1 Y] 256Kbyte
SRAM
_ 32-Bit Address Bus Y _
B 64-Bit Data Bus Y .

Figure 1-1. Gekko Microprocessor Block Diagram

[enuapyuod Ngl

IBM Confidential

1.2 Gekko Microprocessor Features
This section lists features of Gekko. The interrelationship of these features is shown in Figure 1-1 on
Page 1-3.
1.2.1 Overview of Gekko Microprocessor Features
Major features of Gekko are:
» High-performance, superscalar microprocessor
— As many as four instructions can be fetched from the instruction cache per clock cycle
— As many as two instructions can be dispatched per clock
— As many as six instructions can execute per clock (including two integer instructions)
— Single-clock-cycle execution for most instructions
* Six independent execution units and two register files
— BPU featuring both static and dynamic branch prediction

— 64-entry (16-set, four-way set-associative) branch target instruction cache (BTIC), a
cache of branch instructions that have been encountered in branch/loop code
sequences. If a target instruction is in the BTIC, it is fetched into the instruction queue
a cycle sooner than it can be made available from the instruction cache. Typically, if a
fetch access hits the BTIC, it provides the first two instructions in the target stream.

— b512-entry branch history table (BHT) with two bits per entry for four levels of
prediction—not-taken, strongly not-taken, taken, strongly taken

— Branch instructions that do not update the count register (CTR) or link register (LR)
are removed from the instruction stream.

— Two integer units (IUs) that share thirty-two GPRs for integer operands
— IU1 can execute any integer instruction

— 1U2 can execute all integer instructions except multiply and divide instructions
(multiply, divide, shift, rotate, arithmetic, and logical instructions). Most instructions
that execute in the lU2 take one cycle to execute. The IU2 has a single-entry reservation
station

— Three-stage FPU
— Fully IEEE 754-1985-compliant FPU for both single- and double-precision operations
— Supports paired single-precision floating point arithematic instruction set extension
— Supports non-IEEE mode for time-critical operations
— Hardware support for denormalized numbers
— Two-entry reservation station
— Thirty-two 64-bit FPRs for single-, paired single- or double-precision operands.
— Two-stage LSU
— Two-entry reservation station
— Single-cycle, pipelined cache access
— Dedicated adder performs EA calculations
— Performs alignment and precision conversion for floating-point data
— Performs alignment and sign extension for integer data
— Three-entry store queue
— Supports both big- and little-endian modes
— Supports data type conversion with indexed scaling.

Page 1-4 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

— SRU handles miscellaneous instructions
— Executes CR logical and Move to/Move from SPR instructiorisgr andmfspr)
— Single-entry reservation station
* Rename buffers
— Six GPR rename buffers
— Six FPR rename buffers
— Condition register buffering supports two CR writes per clock
» Completion unit

— The completion unit retires an instruction from the six-entry reorder buffer (completion
gueue) when all instructions ahead of it have been completed, the instruction has
finished execution, and no exceptions are pending.

— Guarantees sequential programming model (precise exception model)
— Monitors all dispatched instructions and retires them in order
— Tracks unresolved branches and flushes instructions from the mispredicted branch
— Retires as many as two instructions per clock
» Separate on-chip instruction and data caches (Harvard architecture)
— 32-Kbyte, eight-way set-associative instruction and data caches
— Pseudo least-recently-used (PLRU) replacement algorithm
— 32-byte (eight-word) cache block

— Physically indexed/physical tags. (Note that the PowerPC architecture refers to physical
address space as real address space.)

— Cache write-back or write-through operation programmable on a per-page or per-block
basis

— Instruction cache can provide four instructions per clock; data cache can provide two
words per clock

— Caches can be disabled in software
— Caches can be locked in software
— Data cache coherency (MEI) maintained in hardware

— The critical double word is made available to the requesting unit when it is burst into
the line-fill buffer. The cache is nonblocking, so it can be accessed during this operation.

— Data cache can be patrtitioned as a four-way 16 Kbyte normal cache and a four-way
16-Kbyte locked cache.

* On-chip 1:1 L2 cache.
— 256 Kbyte on-chip ECC SRAMs
— On-chip 2-way set-associative tag memory
 DMA engine.
— 15 entry DMA command queue.
— Each DMA command can transfer up to 4 Kbyte data in 32 byte increment.
» Write gather pipe.
— 128 byte circular FIFO buffer.
— Non-cacheable stores to a specified address are gathered for burst transaction transfer.
» Separate memory management units (MMUS) for instructions and data
— 52-bit virtual address; 32-bit physical address
— Address translation for 4-Kbyte pages, variable-sized blocks, and 256-Mbyte segments

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-5

IBM Confidential

— Memory programmable as write-back/write-through, cacheable/noncacheable, and
coherency enforced/coherency not enforced on a page or block basis

— Separate IBATs and DBATSs (four each) also defined as SPRs
— Separate instruction and data translation lookaside buffers (TLBS)
— Both TLBs are 128-entry, two-way set associative, and use LRU replacement algorithm
— TLBs are hardware-reloadable (that is, the page table search is performed in hardware.
» Bus interface features include the following

— Selectable bus-to-core clock frequency ratios of 2x, 2.5x, 3x, 3.5x%, 4x, 4.5x ... 8x and
10x. (2x to 8x, all half-clock multipliers in-between)

— A 64-bit, split-transaction external data bus with burst transfers

— Support for address pipelining and limited out-of-order bus transactions
— Single-entry load queue

— Single-entry instruction fetch queue

— Two-entry L1 cache castout queue

— No-DRTRY mode eliminates thBRTRY signal from the qualified bus grant. This
allows the forwarding of data during load operations to the internal core one bus cycle
sooner than if the use BIRTRY is enabled.

* Multiprocessing support features include the following:
— Hardware-enforced, three-state cache coherency protocol (MEI) for data cache.

— Load/store with reservation instruction pair for atomic memory references, semaphores,
and other multiprocessor operations

» Power and thermal management
— Three static modes, doze, nap, and sleep, progressively reduce power dissipation:

— Doze—All the functional units are disabled except for the time base/decrementer
registers and the bus snooping logic.

— Nap—The nap mode further reduces power consumption by disabling bus snooping,
leaving only the time base register and the PLL in a powered state.

— Sleep—All internal functional units are disabled, after which external system logic
may disable the PLL and SYSCLK.

— Thermal management facility provides software-controllable thermal management.
Thermal management is performed through the use of three supervisor-level registers and
an Gekko-specific thermal management exception.

— Instruction cache throttling provides control of instruction fetching to limit power
consumption.

» Performance monitor can be used to help debug system designs and improve software
efficiency.

* In-system testability and debugging features through JTAG boundary-scan capability
1.2.2 Instruction Flow
As shown in Figure 1-1 on Page 1-3, the Gekko instruction unit provides centralized control of
instruction flow to the execution units. The instruction unit contains a sequential fetcher, six-entry
instruction queue (IQ), dispatch unit, and BPU. It determines the address of the next instruction to be
fetched based on information from the sequential fetcher and from the BPU.
See Chapter 6, "Instruction Timing" in this manual for a detailed discussion of instruction timing.
The sequential fetcher loads instructions from the instruction cache into the instruction queue. The

Page 1-6 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

BPU extracts branch instructions from the sequential fetcher. Branch instructions that cannot be
resolved immediately are predicted using either Gekko-specific dynamic branch prediction or the
architecture-defined static branch prediction.

Branch instructions that do not affect the LR or CTR are removed from the instruction stream. The
BPU folds branch instructions when a branch is taken (or predicted as taken); branch instructions
that are not taken, or predicted as not taken, are removed from the instruction stream through the
dispatch mechanism.

Instructions issued beyond a predicted branch do not complete execution until the branch is
resolved, preserving the programming model of sequential execution. If branch prediction is
incorrect, the instruction unit flushes all predicted path instructions, and instructions are fetched
from the correct path.

1.2.2.1 Instruction Queue and Dispatch Unit

The instruction queue (1Q), shown inFigure 1-1 on Page 1-3, holds as many as six instructions and
loads up to four instructions from the instruction cache during a single processor clock cycle. The
instruction fetcher continuously attempts to load as many instructions as there were vacancies in
the 1Q in the previous clock cycle. All instructions except branch instructions are dispatched to
their respective execution units from the bottom two positions in the instruction queue (IQ0 and
Q1) at a maximum rate of two instructions per cycle. Reservation stations are provided for the U1,
IlU2, FPU, LSU, and SRU. The dispatch unit checks for source and destination register
dependencies, determines whether a position is available in the completion queue, and inhibits
subsequent instruction dispatching as required.

Branch instructions can be detected, decoded, and predicted from anywhere in the instruction
gueue. For a more detailed discussion of instruction dispatch, see Section 6.6.1 on Page 6-27.

1.2.2.2 Branch Processing Unit (BPU)

The BPU receives branch instructions from the sequential fetcher and performs CR lookahead
operations on conditional branches to resolve them early, achieving the effect of a zero-cycle
branch in many cases.

Unconditional branch instructions and conditional branch instructions in which the condition is
known can be resolved immediately. For unresolved conditional branch instructions, the branch
path is predicted using either the architecture-defined static branch prediction or Gekko-specific
dynamic branch prediction. Dynamic branch prediction is enabled if HIDO[BHT] = 1.

When a prediction is made, instruction fetching, dispatching, and execution continue from the
predicted path, but instructions can not complete and write back results to architected registers until
the prediction is determined to be correct (resolved).

When a prediction is incorrect, the instructions from the incorrect path are flushed from the
processor and processing begins from the correct path.

Gekko allows a second branch instruction to be predicted; instructions from the second predicted
instruction stream can be fetched but cannot be dispatched.

Dynamic prediction is implemented using a 512-entry branch history table (BHT), a cache that
provides two bits per entry that together indicate four levels of prediction for a branch
instruction—not-taken, strongly not-taken, taken, strongly taken. When dynamic branch prediction
is disabled, the BPU uses a bit in the instruction encoding to predict the direction of the conditional
branch. Therefore, when an unresolved conditional branch instruction is encountered, Gekko
executes instructions from the predicted target stream although the results are not committed to
architected registers until the conditional branch is resolved. This execution can continue until a
second unresolved branch instruction is encountered.

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-7

IBM Confidential

When a branch is taken (or predicted as taken), the instructions from the untaken path must be flushed
and the target instruction stream must be fetched into the 1Q. The BTIC is a 64-entry cache that
contains the most recently used branch target instructions, typically in pairs. When an instruction
fetch hits in the BTIC, the instructions arrive in the instruction queue in the next clock cycle, a clock
cycle sooner than they would arrive from the instruction cache. Additional instructions arrive from
the instruction cache in the next clock cycle. The BTIC reduces the number of missed opportunities
to dispatch instructions and gives the processor a one-cycle head start on processing the target stream.

The BPU contains an adder to compute branch target addresses and three user-control registers—the
link register (LR), the count register (CTR), and the CR. The BPU calculates the return pointer for
subroutine calls and saves it into the LR for certain types of branch instructions. The LR also contains
the branch target address for the Branch Conditional to Link Registénx] instruction. The CTR
contains the branch target address for the Branch Conditional to Count Relgestiex) instruction.

Because the LR and CTR are SPRs, their contents can be copied to or from any GPR. Because the
BPU uses dedicated registers rather than GPRs or FPRs, execution of branch instructions is largely
independent from execution of integer and floating-point instructions.

1.2.2.3 Completion Unit

The completion unit operates closely with the instruction unit. Instructions are fetched and dispatched
in program order. At the point of dispatch, the program order is maintained by assigning each
dispatched instruction a successive entry in the six-entry completion queue. The completion unit
tracks instructions from dispatch through execution and retires them in program order from the two
bottom entries in the completion queue (CQO and CQ1).

Instructions cannot be dispatched to an execution unit unless there is a vacancy in the completion
gueue. Branch instructions that do not update the CTR or LR are removed from the instruction stream
and do not take an entry in the completion queue. Instructions that update the CTR and LR follow the
same dispatch and completion procedures as non-branch instructions, except that they are not issued
to an execution unit.

Completing an instruction commits execution results to architected registers (GPRs, FPRs, LR, and
CTR). In-order completion ensures the correct architectural state when Gekko must recover from a
mispredicted branch or any exception. Retiring an instruction removes it from the completion queue.

For a more detailed discussion of instruction completion, see Section 6.6.1 on Page 6-27.

Page 1-8 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

1.2.2.4 Independent Execution Units

In addition to the BPU, Gekko has five execution units:
* Two Integer Units (IUs)

* A Floating-Point Unit (FPU)
* A Load/Store Unit (LSU)

» A System Register Unit (SRU)
Each is described in the following sections.

1.2.2.4.1 Integer Units (IUs)

The integer units IU1 and IU2 are shown in Figure 1-1 on Page 1-3. The IUl can execute any
integer instruction; the IU2 can execute any integer instruction except multiplication and division
instructions. Each IU has a single-entry reservation station that can receive instructions from the
dispatch unit and operands from the GPRs or the rename buffers.

Each IU consists of three single-cycle subunits—a fast adder/comparator, a subunit for logical
operations, and a subunit for performing rotates, shifts, and count-leading-zero operations. These
subunits handle all one-cycle arithmetic instructions; only one subunit can execute an instruction
at a time.

The 1U1 has a 32-bit integer multiplier/divider as well as the adder, shift, and logical units of the
IU2. The multiplier supports early exit for operations that do not require full 332-bit
multiplication.

Each IU has a dedicated result bus (not shown in Figure 1-1 on Page 1-3) that connects to rename
buffers.

1.2.2.4.2 Floating-Point Unit (FPU)

The FPU, shown in Figure 1-1 on Page 1-3, is designed such that single- or paired single-precision
operations require only a single pass, with a latency of three cycles. As instructions are dispatched
to the FPU’s reservation station, source operand data can be accessed from the FPRs or from the
FPR rename buffers. Results in turn are written to the rename buffers and are made available to
subsequent instructions. Instructions pass through the reservation station in dispatch order. The
FPU contains two single-precision multiply-add arrays and the floating-point status and control
register (FPSCR). The multiply-add array allows Gekko to efficiently implement multiply and
multiply-add operations. The FPU is pipelined such that one single-, paired single- or
double-precision instruction can be issued per clock cycle. Thirty-two 64-bit floating-point
registers are provided to support floating-point operations. Stalls due to contention for FPRs are
minimized by automatic allocation of the six floating-point rename registers. Gekko writes the
contents of the rename registers to the appropriate FPR when floating-point instructions are retired
by the completion unit.

Gekko supports all IEEE 754 floating-point data types (normalized, denormalized, NaN, zero, and
infinity) in hardware, eliminating the latency incurred by software exception routines. (Note that
“exception” is also referred to as “interrupt” in the architecture specification.) For paired
single-precision operations, both data paths comply with the IEEE standard independently.

1.2.2.4.3 Load/Store Unit (LSU)

The LSU executes all load and store instructions and provides the data transfer interface between
the GPRs, FPRs, and the cache/memory subsystem. The LSU calculates effective addresses,
performs data alignment, and provides sequencing for load/store string and multiple instructions.

Gekko implements 8 paired single quantization load and store instructions. The load instructions
read a pair of 8- or 16-bit, signed or unsigned integers, convert them into single-precision floating

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-9

IBM Confidential

point data with the scaling factor in the quantization register, and write the results into the FPR. The
store instructions read the 64-bit data from the FPR as a pair of single-precision floating point data,
convert the single-precision floating point numbers into a pair of 8- or 16-bit, signed or unsigned

integer data, and store the results.

Load and store instructions are translated and issued in program order; however, some memory
accesses can occur out of order. Synchronizing instructions can be used to enforce strict ordering.
When there are no data dependencies and the guarded bit for the page or block is cleared, a maximum
of one out-of-order cacheable load operation can execute per cycle, with a two-cycle total latency on
a cache hit. Data returned from the cache is held in a rename register until the completion logic
commits the value to a GPR or FPR. Stores cannot be executed out of order and are held in the store
gueue until the completion logic signals that the store operation is to be completed to memory. Gekko
executes store instructions with a maximum throughput of one per cycle and a three-cycle total
latency to the data cache. The time required to perform the actual load or store operation depends on
the processor/bus clock ratio and whether the operation involves the on-chip cache, the L2 cache,
system memory, or an I/O device.

1.2.2.4.4 System Register Unit (SRU)

The SRU executes various system-level instructions, as well as condition register logical operations
and move to/from special-purpose register instructions. To maintain system state, most instructions
executed by the SRU are execution-serialized; that is, the instruction is held for execution in the SRU
until all previously issued instructions have executed. Results from execution-serialized instructions
executed by the SRU are not available or forwarded for subsequent instructions until the instruction
completes.

1.2.3 Memory Management Units (MMUS)

Gekko’s MMUs support up to 4 Petabyte$4Pof virtual memory and 4 Gigabytes32 of physical

memory for instructions and data. The MMUSs also control access privileges for these spaces on block
and page granularities. Referenced and changed status is maintained by the processor for each page
to support demand-paged virtual memory systems.

The LSU calculates effective addresses for data loads and stores; the instruction unit calculates
effective addresses for instruction fetching. The MMU translates the effective address to determine
the correct physical address for the memory access.

Gekko supports the following types of memory translation:

* Real addressing mode—In this mode, translation is disabled by clearing bits in the machine
state register (MSR): MSR[IR] for instruction fetching or MSR[DR] for data accesses. When
address translation is disabled, the physical address is identical to the effective address.

» Page address translation—translates the page frame address for a 4-Kbyte page size
* Block address translation—translates the base address for blocks (128 Kbytes to 256 Mbytes)

If translation is enabled, the appropriate MMU translates the higher-order bits of the effective address
into physical address bits. The lower-order address bits (that are untranslated and therefore,
considered both logical and physical) are directed to the on-chip caches where they form the index
into the eight-way set-associative tag array. After translating the address, the MMU passes the
higher-order physical address bits to the cache and the cache lookup completes. For caching-inhibited
accesses or accesses that miss in the cache, the untranslated lower-order address bits are concatenated
with the translated higher-order address bits; the resulting 32-bit physical address is used by the
memory unit and the system interface, which accesses external memory.

The TLBs store page address translations for recent memory accesses. For each access, an effective
address is presented for page and block translation simultaneously. If a translation is found in both

Page 1-10 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

the TLB and the BAT array, the block address translation in the BAT array is used. Usually the
translation is in a TLB and the physical address is readily available to the on-chip cache. When a
page address translation is not in a TLB, hardware searches for one in the page table following the
model defined by the PowerPC architecture.

Instruction and data TLBs provide address translation in parallel with the on-chip cache access,
incurring no additional time penalty in the event of a TLB hit. Gekko's TLBs are 128-entry,
two-way set-associative caches that contain instruction and data address translations. Gekko
automatically generates a TLB search on a TLB miss.

1.2.4 On-Chip Level 1 Instruction and Data Caches

Gekko implements separate instruction and data caches. Each cache is 32-Kbyte and eight-way set
associative. As defined by the PowerPC architecture, they are physically indexed. Each cache block
contains eight contiguous words from memory that are loaded from an 8-word boundary (that is,
bits EA[27-31] are zeros); thus, a cache block never crosses a page boundary. An entire cache
block can be updated by a four-beat burst load. Misaligned accesses across a page boundary can
incur a performance penalty. Caches are nonblocking, write-back caches with hardware support for
reloading on cache misses. The critical double word is transferred on the first beat and is
simultaneously written to the cache and forwarded to the requesting unit, minimizing stalls due to
load delays. The cache being loaded is not blocked to internal accesses while the load completes.

Gekko cache organization is shown in Figure 1-2.

/ T T T T T T T

128 Sets . [} } }. . } } }
: (]
pul i
Way 0 Address Tag0 | | 1 State | ‘ ! Wor ds‘ 07 ‘ T \ H
i ‘ ‘ ‘ ‘ | |
Way 1 AddressTagl | | | State : : : Words: [0-7] : : : By
Way 2 AddressTag2 | | | State : : : Word% [0-7] : : : H
Way 3 AddressTag3 | | —{ State 1 1 1 Word% [0-7] 1 1 1 im
Way4 | AddressTagd | [| State ‘ ‘ " Words 0-7] | w x H
‘ ‘ ‘ | | \ |
Way 5 AddressTag5 | | —1 State : : : Words: [0-7] : : : im
Way 6 AddressTag6 | | | State : : : Word% [0-7] : : : i
Way 7 AddressTag7 [State | | : Word% [0-7] : ! ‘ H
< 8 Words/Way >

Figure 1-2. Cache Organization

Within one cycle, the data cache provides double-word access to the LSU. Like the instruction
cache, the data cache can be invalidated all at once or on a per-cache-block basis. The data cache
can be disabled and invalidated by clearing HIDO[DCE] and setting HIDO[DCFI]. The data cache
can be locked by setting HIDO[DLOCK]. To ensure cache coherency, the data cache supports the
three-state MEI protocol. The data cache tags are single-ported, so a simultaneous load or store and

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-11

IBM Confidential

a snoop access represent a resource collision. If a snoop hit occurs, the LSU is blocked internally for
one cycle to allow the eight-word block of data to be copied to the write-back buffer.

By setting HID2[LCH = 1, thedata cache can be configured into two partitions. The first partition,
consisting of ways 0-3, forms a 16 Kbytes normal data cache. The second partition, consisting of
ways 4-7, forms a 16 Kbyte locked cache which can be used as an on-chip memory. The detail
operation is defined in Chapter 9, "L2 Cache, Locked D-Cache, DMA and Write Gather Pipe" in this
manual. Within one cycle, the instruction cache provides up to four instructions to the instruction
gueue. The instruction cache can be invalidated entirely or on a cache-block basis. The instruction
cache can be disabled and invalidated by clearing HIDO[ICE] and setting HIDO[ICFI]. The
instruction cache can be locked by setting HIDO[ILOCK]. The instruction cache supports only the
valid/invalid states.

Gekko also implements a 64-entry (16-set, four-way set-associative) branch target instruction cache
(BTIC). The BTIC is a cache of branch instructions that have been encountered in branch/loop code
sequences. If the target instruction is in the BTIC, it is fetched into the instruction queue a cycle
sooner than it can be made available from the instruction cache. Typically the BTIC contains the first
two instructions in the target stream. The BTIC can be disabled and invalidated through software.

For more information and timing examples showing cache hit and cache miss latencies, see Section
6.3.2 on Page 6-8.

1.2.5 On-Chip Level 2 Cache Implementation

The L2 cache is a unified cache that receives memory requests from both the L1 instruction and data
caches independently. The L2 cache is implemented with an on-chip, two-way, set-associative tag
memory, and with a 256 Kbyte on-chip SRAM for data storage. The L2 cache normally operates in
write-back mode and supports system cache coherency through snooping.

The L2 cache is organized into 64-byte lines, which in turn are subdivided into 32-byte sectors
(blocks), the unit at which cache coherency is maintained.

The L2 cache controller contains the L2 cache control register (L2CR) and the L2 cache tag array.
The L2CR register includes bits to manage the L2 cache. The cache is two-way set-associative with
2K tags per way. Each sector (32-byte cache block) has its own valid and modified status bits.

Requests from the L1 cache generally result from instruction misses, data load or store misses,
write-through operations, or cache management instructions. Requests from the L1 cache are looked
up in the L2 tags and serviced by the L2 cache if they hit; they are forwarded to the bus interface if
they miss.

The L2 cache can accept multiple, simultaneous accesses. The L1 instruction cache can request an
instruction at the same time that the L1 data cache is requesting one load and two store operations.
The L2 cache also services snoop requests from the bus. If there are multiple pending requests to the
L2 cache, snoop requests have highest priority. The next priority consists of load and store requests
from the L1 data cache. The next priority consists of instruction fetch requests from the L1 instruction
cache. For more information, see Chapter 9, "L2 Cache, Locked D-Cache, DMA and Write Gather
Pipe" in this manual.

1.2.6 System Interface/Bus Interface Unit (BIU)

The address and data buses operate independently; address and data tenures of a memory access are
decoupled to provide a more flexible control of memory traffic. The primary activity of the system
interface is transferring data and instructions between the processor and system memory. There are
two types of memory accesses:

Page 1-12 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

» Single-beat transfers—These memory accesses allow transfer sizes of 8, 16, 24, 32, or 64
bits in one bus clock cycle. Single-beat transactions are caused by uncacheable read and
write operations that access memory directly (that is, when caching is disabled),
cache-inhibited accesses, and stores in write-through mode.

* Four-beat burst (32 bytes) data transfers—Burst transactions, which always transfer an
entire cache block (32 bytes), are initiated when an entire cache block is transferred.
Because the first-level caches on Gekko are write-back caches, burst-read memory, burst
operations are the most common memory accesses, followed by burst-write memory
operations, and single-beat (noncacheable or write-through) memory read and write
operations.

Gekko also supports address-only operations, variants of the burst and single-beat operations, (for
example, atomic memory operations and global memory operations that are snooped), and address
retry activity (for example, when a snooped read access hits a modified block in the cache). The
broadcast of some address-only operations is controlled through HIDO[ABE]. I/O accesses use the
same protocol as memory accesses.

Access to the system interface is granted through an external arbitration mechanism that allows
devices to compete for bus mastership. This arbitration mechanism is flexible, allowing Gekko to
be integrated into systems that implement various fairness and bus parking procedures to avoid
arbitration overhead.

Typically, memory accesses are weakly ordered—sequences of operations, including load/store
string and multiple instructions, do not necessarily complete in the order they begin—maximizing

the efficiency of the bus without sacrificing data coherency. Gekko allows read operations to go
ahead of store operations (except when a dependency exists, or in cases where a noncacheable
access is performed), and provides support for a write operation to go ahead of a previously queued
read data tenure (for example, letting a snoop push be enveloped between address and data tenures
of a read operation). Because Gekko can dynamically optimize run-time ordering of load/store
traffic, overall performance is improved.

The system interface is specific for each PowerPC microprocessor implementation.

Gekko signals are grouped as shown in Figure 1-3. Test and control signals provide diagnostics for
selected internal circuits.

Address Arbitration <«——» l«—>» Data Arbitration
Address Start €——» <¢—» Data Transfer
Gekko
Address Transfer <««——» <—> Djta Termination
Transfer Attribute <€&——» -<«—>» Test and Control
Address Termination <€¢———»] -<«—>» C(Clocks
System Status <&———»] ~——» Processor Status/Control

Figure 1-3. System Interface

The system interface supports address pipelining, which allows the address tenure of one
transaction to overlap the data tenure of another. The extent of the pipelining depends on external
arbitration and control circuitry. Similarly, Gekko supports split-bus transactions for systems with
multiple potential bus masters—one device can have mastership of the address bus while another

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-13

IBM Confidential

has mastership of the data bus. Allowing multiple bus transactions to occur simultaneously increases
the available bus bandwidth for other activity.

Gekko’s clocking structure supports a wide range of processor-to-bus clock ratios.

1.2.7 Signals
Gekko’s signals are grouped as follows:

Address arbitration signals—Gekko uses these signals to arbitrate for address bus mastership.

Address start signals—These signals indicate that a bus master has begun a transaction on the
address bus.

Address transfer signals—These signals include the address bus and address parity signals.
They are used to transfer the address and to ensure the integrity of the transfer.

Transfer attribute signals—These signals provide information about the type of transfer, such
as the transfer size and whether the transaction is bursted, write-through, or caching-inhibited.

Address termination signals—These signals are used to acknowledge the end of the address
phase of the transaction. They also indicate whether a condition exists that requires the
address phase to be repeated.

Data arbitration signals—Gekko uses these signals to arbitrate for data bus mastership.

Data transfer signals—These signals, which consist of the data bus and data parity signals, are
used to transfer the data and to ensure the integrity of the transfer.

Data termination signals—Data termination signals are required after each data beat in a data
transfer. In a single-beat transaction, a data termination signal also indicates the end of the
tenure; in burst accesses, data termination signals apply to individual beats and indicate the
end of the tenure only after the final data beat. They also indicate whether a condition exists
that requires the data phase to be repeated.

Interrupt signals—These signals include the interrupt signal, checkstop signals, and both soft
reset and hard reset signals. These signals are used to generate interrupt exceptions and, under
various conditions, to reset the processor.

Processor status/control signals—These signals are used to set the reservation coherency bit,
enable the time base, and other functions.

Miscellaneous signals—These signals are used in conjunction with such resources as
secondary caches and the time base facility.

JTAG/CORP interface signals—The common on-chip processor (COP) unit provides a serial
interface to the system for performing board-level boundary scan interconnect tests.

Clock signals—These signals determine the system clock frequency. These signals can also
be used to synchronize multiprocessor systems.

NOTE

A bar over a signal name indicates that the signal is active low—for
example ARTRY (address retry) and’S (transfer start). Active-low
signals are referred to as asserted (active) when they are low and
negated when they are high. Signals that are not active low, such as
AP[0-3] (address bus parity signals) and TT[0-4] (transfer type
signals) are referred to as asserted when they are high and negated
when they are low.

Page 1-14 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

1.2.8 Signal Configuration
Figure 1-4 shows Gekko’s logical pin configuration. The signals are grouped by function.

s BR Address
Address [- TS 4] Ires:
Start BG] Arbitration
11—
Address A0-31] | 32 o
Bus . INT _
-«
S] Ve’ N VicP
TBST 1 1 SRESET Interrupts/
TSIZ[0-2 T Resets
Transfer [GiBI} 3 HRESET
Attributes 2= 1 CKSTP_IN]
WT
<« —1 1
<—C|7 1 _
o Gekk Voo Processor
address ™ MCK_| | e |_orEQ gtattjsll
ress —_——} e ontro
Termination | -« ARRY L 1 QACK]
Data —_ o
Arbitration E DBG 1 1<M
4 PLL_CFG[0-3] Clock
D ————
CKSTP OUT Control
Data [~ Dlo-63 | o, b CKstPOUT |
Transfer 54% -
A es
Data 1 ! gl FRCOVTESL | Interface
Termination TEA |
j Address Bus
Data Tansh AP[0-3]
ata Transier [DP[O-7] | 8 lj«——————— 7] Daa Termination
Interupts/Resets [CLK_ouTt ! DRTRY j Processor/Status
Note: Items in ltalics are optional items TLBISYNC Control

Voo Vpp (10) AVpp

Figure 1-4. Gekko Microprocessor Signal Groups

Signal functionality is described in detail in Chapter 7, "Signal Descriptions” and Chapter 8, "Bus
Interface Operation™ in this manual.

1.2.9 Clocking

Gekko requires a single system clock input, SYSCLK, that represents the bus interface frequency.
Internally, the processor uses a phase-locked loop (PLL) circuit to generate a master core clock that
is frequency-multiplied and phase-locked to the SYSCLK input. This core frequency is used to
operate the internal circuitry.

The PLL is configured by the PLL_CFG[0-3] signals, which select the multiplier that the PLL uses

to multiply the SYSCLK frequency up to the internal core frequency. The feedback in the PLL
guarantees that the processor clock is phase locked to the bus clock, regardless of process
variations, temperature changes, or parasitic capacitances.

The PLL also ensures a 50% duty cycle for the processor clock.

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-15

IBM Confidential

Gekko supports various processor-to-bus clock frequency ratios, although not all ratios are available
for all frequencies. Configuration of the processor/bus clock ratios is displayed through a
Gekko-specific register, HID1. For information about supported clock frequencies, see the Gekko
hardware specifications.

1.3 Gekko Microprocessor: Implementation

The PowerPC architecture is derived from the POWER architecture (Performance Optimized With
Enhanced RISC architecture). The PowerPC architecture shares the benefits of the POWER
architecture optimized for single-chip implementations. The PowerPC architecture design facilitates
parallel instruction execution and is scalable to take advantage of future technological gains.

This section describes the PowerPC architecture in general, and specific details about the
implementation of Gekko as a low-power, 32-bit member of the PowerPC processor family. The
structure of this section follows the organization of the user’s manual; each subsection provides an
overview of each chapter.

* Registers and programming model—Section 1.4 on Page 1-18 describes the registers for the
operating environment architecture common among PowerPC processors and describes the
programming model. It also describes the registers that are unique to Gekko. The information
in this section is described more fully in Chapter 2, "Programming Model" in this manual.

* Instruction set and addressing modes—Section 1.5 on Page 1-23 describes the PowerPC
instruction set and addressing modes for the PowerPC operating environment architecture,
defines the PowerPC instructions implemented in Gekko, and describes new instruction set
extensions to improve the performance of single-precision floating-point operations and the
capability of data transfer. The information in this section is described more fully in
Chapter 2, "Programming Model" in this manual.

» Cache implementation—Section 1.6 on Page 1-25 describes the cache model that is defined
generally for PowerPC processors by the virtual environment architecture. It also provides
specific details about Gekko cache implementation. The information in this section is
described more fully in Chapter 3, "Gekko Instruction and Data Cache Operation” and
Chapter 9, "L2 Cache, Locked D-Cache, DMA and Write Gather Pipe" in this manual.

» Exception model—Section 1.7 on Page 1-25 describes the exception model of the PowerPC
operating environment architecture and the differences in Gekko exception model. The
information in this section is described more fully in Chapter 4, "Exceptions" in this manual.

* Memory management—Section 1.8 on Page 1-28 describes generally the conventions for
memory management among the PowerPC processors. This section also describes Gekko’s
implementation of the 32-bit PowerPC memory management specification. The information
in this section is described more fully in Chapter 5, "Memory Management" in this manual.

» Instruction timing—Section 1.9 on Page 1-29 provides a general description of the instruction
timing provided by the superscalar, parallel execution supported by the PowerPC architecture
and Gekko. The information in this section is described more fully in Chapter 6, "Instruction
Timing" in this manual.

» Power management—Section 1.10 on Page 1-31 describes how the power management can
be used to reduce power consumption when the processor, or portions of it, are idle. The
information in this section is described more fully in Chapter 10, "Power and Thermal
Management" in this manual.

Page 1-16 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

* Thermal management—Section 1.11 on Page 1-32 describes how the thermal management
unit and its associated registers (THRM1-THRMS3) and exception can be used to manage
system activity in a way that prevents exceeding system and junction temperature
thresholds. This is particularly useful in high-performance portable systems, which cannot
use the same cooling mechanisms (such as fans) that control overheating in desktop
systems. The information in this section is described more fully in Chapter 10, "Power and
Thermal Management" in this manual.

» Performance monitor—Section 1.12 on Page 1-33 describes the performance monitor
facility, which system designers can use to help bring up, debug, and optimize software
performance. The information in this section is described more fully in Chapter 11,
"Performance Monitor" in this manual.

The following sections summarize the features of Gekko, distinguishing those that are defined by
the architecture from those that are unique to Gekko implementation.

The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be described in terms of which of the following levels of the architecture is
implemented:

» PowerPC user instruction set architecture (UISA)—Defines the base user-level instruction
set, user-level registers, data types, floating-point exception model, memory models for a
uniprocessor environment, and programming model for a uniprocessor environment.

» PowerPC virtual environment architecture (VEA)—Describes the memory model for a
multiprocessor environment, defines cache control instructions, and describes other aspects
of virtual environments. Implementations that conform to the VEA also adhere to the
UISA, but may not necessarily adhere to the OEA.

* PowerPC operating environment architecture (OEA)—Defines the memory management
model, supervisor-level registers, synchronization requirements, and the exception model.
Implementations that conform to the OEA also adhere to the UISA and the VEA.

The PowerPC architecture allows a wide range of designs for such features as cache and system
interface implementations. Gekko implementations support the three levels of the architecture
described above. For more information about the PowerPC architecture, sd®weePC
Microprocessor Family: The Programming Environmemiznual.

Specific features of Gekko are listed in Section 1.2 on Page 1-4.

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-17

IBM Confidential

1.4 PowerPC Registers and Programming Model

The PowerPC architecture defines register-to-register operations for most computational instructions.
Source operands for these instructions are accessed from the registers or are provided as immediate
values embedded in the instruction opcode. The three-register instruction format allows specification
of a target register distinct from the two source operands. Load and store instructions transfer data
between registers and memory.

PowerPC processors have two levels of privilege—supervisor mode of operation (typically used by
the operating system) and user mode of operation (used by the application software). The
programming models incorporate 32 GPRs, 32 FPRs, special-purpose registers (SPRs), and several
miscellaneous registers. Each PowerPC microprocessor also has its own unique set of hardware
implementation-dependent (HID) registers.

Having access to privileged instructions, registers, and other resources allows the operating system to
control the application environment (providing virtual memory and protecting operating-system and
critical machine resources). Instructions that control the state of the processor, the address translation
mechanism, and supervisor registers can be executed only when the processor is operating in
supervisor mode.

Figure 1-5 on Page 1-19 shows all Gekko registers available at the user and supervisor level. The
numbers to the right of the SPRs indicate the number that is used in the syntax of the instruction
operands to access the register. For more information, see Chapter 2, "Programming Model" in this
manual.

Page 1-18 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

-
-

~

USER MODEL—VEA

Hardware

Implementation Registers

-

USER MODEL UISA

) - . HIDO SPR 1008
Time Base Facility (For Reading) o SPR 1009
\ TBR269 | TBR 269

SUPERVISOR MODEL—OEA
anfiguration Registers

Processor
Version
Register

Memory Management Registers

N

Machine State
Register

MSR

Segment
Registers

SRO
SR1

SR15

SDR1

SDR1 SPR 25

Save and Restore

Registers
SRRO SPR 26
SRR1 SPR 27
Decrementer
DEC SPR 22

Instruction Address
Breakpoint Register

IABR SPR 1010

Direct Memory Access 1

SPR 923
SPR 922

1

DMAL
DMAU

Instruction Cache
Throttling Control
Register

ICTC SPR 1019

Count General-Purpose
Register SPR 9 Registers Instruction BAT Data BAT
XER SPR 1 p— Registers Registers
Link Register oPRL IBATOU | SPR 528 DBATOU | SPR 536
. IBATOL | SPR529 DBATOL | SPR 537
SPR8 . IBATIU | SPR530 DBATIU | SPR538
Condition Register GPR31 IBATIL | SPR531 DBATIL |SPR539
IBAT2U | SPR 532 DBAT2U | SPR 540
Floating-Point Registers IBAT2L | SPR533 DBAT2L | SPR541
Performance FPRO
Monitor Registers IBAT3U | SPR 534 DBAT3U | SPR 542
(For Reading) FPR1 IBAT3L | SPR 535 DBAT3L | SPR 543
Performance Counters 1
: Exception Handling Registers
UPMCL | SPR937 FPR31 SPRGs Data Address
UPMC2 |SPR938 Register
Floating-Point Status SPRGO [SPR 272
UPMC3 | SPR 941 and Control Register SPRGL |sPR273 DAR SPR 19
FPSCR
UPMC4 | SPR 942 SPRG2 |SPR274 DSISR
Monitor Control i
Sanpled nstructon SPRG3 |SPR275 DSISR | SPR18
UMMCRO | SPR 936 . ;
USIA SPR 939 Miscellaneous Registers
UMMCR1 | SPR 940 j External Access Time Base
Q\ j Register (For Writing)
Quantization Registers ! EAR |SPR282 TBL | SPR284
GQRL | SPRO13 GOR5 | SPRo17 Breakpoint Register L2 Control
GQRZ | SPR914 GQR6 | SPR918 DABR |SPR1013 Register®
GQR3 | SPR915 GQR7 _|SPR919
Write Gather Pipe ! L2CR SPR 1017
Performance Monitor WPAR |SPR92L
Registers
Performance Sampled)
Counters Instruction Power/Thermal Management Registers
1
Address Thermal Assist
PMC1 |SPR 953 SIA SPR 955 Unit Registers *
PMC2 | SPR954 Monitor Control THRM1 | SPR 1020
PMC3 | SPR 957 VMCRO | SPR 952 THRM2 | SPR 1021
PMC4 | SPR958 MMORL | PR 956 THRM3 [SPR 1022

1

These registers are processor- specific registers. They may not be supported by other PowerPC processors.

Figure 1-5. Gekko Microprocessor Programming Model—Registers

Chapter 1. Gekko Overview

IBM Confidential

5/25/00

Page 1-19

IBM Confidential

The following tables summarize the PowerPC registers implemented in Gekko; Table 1-1 describes
registers (excluding SPRs) defined by the architecture.

Table 1-1. Architecture-Defined Registers (Excluding SPRSs)

Register Level Function

CR User The condition register (CR) consists of eight four-bit fields that reflect the results of certain
operations, such as move, integer and floating-point compare, arithmetic, and logical
instructions, and provide a mechanism for testing and branching.

FPRs User The 32 floating-point registers (FPRs) serve as the data source or destination for
floating-point instructions. These 64-bit registers can hold single-, paired single- or
double-precision floating-point values.

FPSCR |User The floating-point status and control register (FPSCR) contains the floating-point exception
signal bits, exception summary bits, exception enable bits, and rounding control bits needed
for compliance with the IEEE-754 standard.

GPRs User The 32 GPRs serve as the data source or destination for integer instructions.

MSR Supervisor | The machine state register (MSR) defines the processor state. Its contents are saved when
an exception is taken and restored when exception handling completes. Gekko implements
MSR[POW], (defined by the architecture as optional), which is used to enable the power
management feature. Gekko-specific MSR[PM] bit is used to mark a process for the
performance monitor.

SRO-SR | Supervisor | The sixteen 32-bit segment registers (SRs) define the 4-Gbyte space as sixteen 256-Mbyte
15 segments. Gekko implements segment registers as two arrays—a main array for data
accesses and a shadow array for instruction accesses; see Figure 1-1 on Page 1-3. Loading
a segment entry with the Move to Segment Register (mtsr) instruction loads both arrays. The
mfsr instruction reads the master register, shown as part of the data MMU in Figure 1-1 on
Page 1-3.

The OEA defines numerous special-purpose registers that serve a variety of functions, such as
providing controls, indicating status, configuring the processor, and performing special operations.
During normal execution, a program can access the registers, shown in Figure 1-5 on Page 1-19,
depending on the program’s access privilege (supervisor or user, determined by the privilege-level
(PR) bitin the MSR). GPRs and FPRs are accessed through operands that are part of the instructions.
Access to registers can be explicit (that is, through the use of specific instructions for that purpose
such as Move to Special-Purpose Registaispr) and Move from Special-Purpose Registafgpr)
instructions) or implicit, as the part of the execution of an instruction. Some registers can be accessed
both explicitly and implicitly.

In Gekko, all SPRs are 32 bits wide. Table 1-2 on Page 1-21 describes the architecture-defined SPRs
implemented by Gekko. In theowerPC Microprocessor Family: The Programming Environments
manual, these registers are described in detail, including bit descriptions.

Section 2.1.1 on Page 2-1 describes how these registers are implemented in Gekko. In particular, this

section describes which features the PowerPC architecture defines as optional are implemented on
Gekko.

Page 1-20 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Table 1-2. Architecture-Defined SPRs Implemented
Register Level Function
LR User The link register (LR) can be used to provide the branch target address and to hold the
return address after branch and link instructions.
BATs Supervisor | The architecture defines 16 block address translation registers (BATS), which operate in
pairs. There are four pairs of data BATs (DBATSs) and four pairs of instruction BATs
(IBATs). BATs are used to define and configure blocks of memory.
CTR User The count register (CTR) is decremented and tested by branch-and-count instructions.
DABR Supervisor | The optional data address breakpoint register (DABR) supports the data address
breakpoint facility.
DAR User The data address register (DAR) holds the address of an access after an alignment or DSI
exception.
DEC Supervisor | The decrementer register (DEC) is a 32-bit decrementing counter that provides a way to
schedule decrementer exceptions.
DSISR User The DSISR defines the cause of data access and alignment exceptions.
EAR Supervisor | The external access register (EAR) controls access to the external access facility through
the External Control In Word Indexed (eciwx) and External Control Out Word Indexed
(ecowx) instructions.
PVR Supervisor | The processor version register (PVR) is a read-only register that identifies the processor.
SDR1 Supervisor | SDR1 specifies the page table format used in virtual-to-physical page address translation.
SRRO Supervisor | The machine status save/restore register 0 (SRRO0) saves the address used for restarting
an interrupted program when a Return from Interrupt (rfi) instruction executes.
SRR1 Supervisor | The machine status save/restore register 1 (SRR1) is used to save machine status on
exceptions and to restore machine status when an rfi instruction is executed.
SPRGO-S |Supervisor | SPRGO-SPRG3 are provided for operating system use.
PRG3
TB User: read | The time base register (TB) is a 64-bit register that maintains the time of day and operates
Supervisor: | interval timers. The TB consists of two 32-bit fields—time base upper (TBU) and time base
read/write |lower (TBL).
XER User The XER contains the summary overflow bit, integer carry bit, overflow bit, and a field
specifying the number of bytes to be transferred by a Load String Word Indexed (Iswx) or
Store String Word Indexed (stswx) instruction.

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-21

IBM Confidential

Table 1-3 describes the SPRs in Gekko that are not defined by the PowerPC architecture. Section
2.1.2 on Page 2-8 gives detailed descriptions of these registers, including bit descriptions.

Table 1-3. Implementation-Specific Registers

Register Level Function

DMAL, Supervisor | The DMA upper(DMAU) and DMA low (DMAL) registers are used to issue the DMA

DMAU commands.

GQRO-GQRY7 | Supervisor | The quantization registers (GQR0-GQR?7) are used to determine the scaling factor and
data type conversion for the quantization load/store instructions.

HIDO Supervisor | The hardware implementation-dependent register 0 (HIDO) provides checkstop enables
and other functions.

HID1 Supervisor | The hardware implementation-dependent register 1 (HID1) allows software to read the
configuration of the PLL configuration signals.

HID2 Supervisor | The hardware implementation-dependent register 2 (HID2) enables the paired-single
floating-point operations, L1 cache partition, write pipe and DMA, and controls the
exceptions associated with the DMA and the locked cache operations..

IABR Supervisor | The instruction address breakpoint register (IABR) supports instruction address
breakpoint exceptions. It can hold an address to compare with instruction addresses in
the 1Q. An address match causes an instruction address breakpoint exception.

ICTC Supervisor | The instruction cache-throttling control register (ICTC) has bits for controlling the interval
at which instructions are fetched into the instruction buffer in the instruction unit. This
helps control Gekko’s overall junction temperature.

L2CR Supervisor | The L2 cache control register (L2CR) is used to configure and operate the L2 cache.

MMCRO-MM | Supervisor | The monitor mode control registers (MMCRO-MMCR1) are used to enable various

CR1 performance monitoring interrupt functions. UMMCRO-UMMCRZ1 provide user-level read
access to MMCRO-MMCR1.

PMC1-PMC | Supervisor | The performance monitor counter registers (PMC1-PMC4) are used to count specified

4 events. UPMC1-UPMCA4 provide user-level read access to these registers.

SIA Supervisor | The sampled instruction address register (SIA) holds the EA of an instruction executing
at or around the time the processor signals the performance monitor interrupt condition.
The USIA register provides user-level read access to the SIA.

THRM1, Supervisor | THRM1 and THRM2 provide a way to compare the junction temperature against two

THRM2 user-provided thresholds. The thermal assist unit (TAU) can be operated so that the
thermal sensor output is compared to only one threshold, selected in THRM1 or THRM2.

THRM3 Supervisor | THRMS3 is used to enable the TAU and to control the output sample time.

UMMCRO-U |User The user monitor mode control registers (UMMCRO-UMMCRZ1) provide user-level read

MMCR1 access to MMCRO-MMCR1.

UPMC1-UP |User The user performance monitor counter registers (UPMC1-UPMC4) provide user-level

MC4 read access to PMC1-PMC4.

USIA User The user sampled instruction address register (USIA) provides user-level read access to
the SIA register.

WPAR Supervisor | Write gather pipe address register (WPAR) specifies the address of the non-cacheable
stores to be gathered for burst transfer.

Page 1-22 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

15

IBM Confidential

Instruction Set

All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats are
consistent among all instruction types, permitting efficient decoding to occur in parallel with
operand accesses. This fixed instruction length and consistent format greatly simplify instruction

pipelining.

For more information, see Chapter 2, "Programming Model" in this manual.
1.5.1 PowerPC Instruction Set

The PowerPC instructions are divided into the following categories:

Integer instructions—These include computational and logical instructions.
— Integer arithmetic instructions

— Integer compare instructions

— Integer logical instructions

— Integer rotate and shift instructions

Floating-point instructions—These include floating-point computational instructions, as
well as instructions that affect the FPSCR.

— Floating-point arithmetic instructions

— Floating-point multiply/add instructions

— Floating-point rounding and conversion instructions
— Floating-point compare instructions

— Floating-point status and control instructions

Load/store instructions—These include integer and floating-point load and store
instructions.

— Integer load and store instructions

— Integer load and store multiple instructions

— Floating-point load and store

— Primitives used to construct atomic memory operatibmark andstwcx.instructions)

Flow control instructions—These include branching instructions, condition register logical
instructions, trap instructions, and other instructions that affect the instruction flow.

— Branch and trap instructions
— Condition register logical instructions

Processor control instructions—These instructions are used for synchronizing memory
accesses and management of caches, TLBs, and the segment registers.

— Move to/from SPR instructions

— Move to/from MSR

— Synchronize

— Instruction synchronize

— Order loads and stores

Memory control instructions—To provide control of caches, TLBs, and SRs.
— Supervisor-level cache management instructions

— User-level cache instructions

— Segment register manipulation instructions

— Translation lookaside buffer management instructions

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-23

IBM Confidential

This grouping does not indicate the execution unit that executes a particular instruction or group of
instructions.

Integer instructions operate on byte, half-word, and word operands. Floating-point instructions
operate on single-precision (one word) and double-precision (one double word) floating-point
operands. The PowerPC architecture uses instructions that are four bytes long and word-aligned. It
provides for byte, half-word, and word operand loads and stores between memory and a set of 32
GPRs. It also provides for word and double-word operand loads and stores between memory and a
set of 32 floating-point registers (FPRS).

Computational instructions do not modify memory. To use a memory operand in a computation and
then modify the same or another memory location, the memory contents must be loaded into a
register, modified, and then written back to the target location with distinct instructions.

PowerPC processors follow the program flow when they are in the normal execution state; however,
the flow of instructions can be interrupted directly by the execution of an instruction or by an
asynchronous event. Either kind of exception may cause one of several components of the system
software to be invoked.

Effective address computations for both data and instruction accesses use 32-bit unsigned binary
arithmetic. A carry from bit O is ignored in 32-bit implementations.
1.5.2 Gekko Microprocessor Instruction Set

In addition to the 32-bit single-precision and the 64-bit double-presicion floating-point operands,
Gekko implements a new floating-point operand type: paired single-precision. The paired single
operand uses a 64-bit FPR to maintain two 32-bit single precision floating point operands. The
PowerPC instruction set is substaintially extended to support the paired single data type.

Gekko instruction set is defined as follows:

» Gekko provides hardware support for all 32-bit PowerPC instructions.

» Gekko implements the following instructions optional to the PowerPC architecture:
— External Control In Word Indexe@¢iwx)
— External Control Out Word Indexeddowy)
— Floating Selectfgel)
— Floating Reciprocal Estimate Single-Precisiteg). Error < 1/4000.
— Floating Reciprocal Square Root Estimdtedrte). Error < 1/4000.
— Store Floating-Point as Integer Wosdfiw).

» Gekko implements the following instruction set extension not included in the PowerPC
architecture to support the cache line allocation in the locked cache:

— Data cache block zero and lodcbz_]).

» Floating point instructions to support the paired single operand data type.Gekko implements
the following instruction set extension not included in the PowerPC architecture to support
the paired single data type:

— Quantization load instructions.
— Quantization store instructions.
— Floating point instructions to support the paired single operand data type.

Page 1-24 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

1.6 On-Chip Cache Implementation

The following subsections describe the PowerPC architecture’s treatment of cache in general, and
Gekko-specific implementation, respectively. A detailed description of Gekko cache
implementation is provided in Chapter 3, "Gekko Instruction and Data Cache Operation” in this
manual.

1.6.1 PowerPC Cache Model
The PowerPC architecture does not define hardware aspects of cache implementations. For
example, PowerPC processors can have unified caches, separate instruction and data caches
(Harvard architecture), or no cache at all. PowerPC microprocessors control the following memory
access modes on a page or block basis:

» Write-back/write-through mode

» Caching-inhibited mode

* Memory coherency
The caches are physically addressed, and the data cache can operate in either write-back or
write-through mode, as specified by the PowerPC architecture.
The PowerPC architecture defines the term ‘cache block’ as the cacheable unit. The VEA and OEA
define cache management instructions that a programmer can use to affect cache contents.

1.6.2 Gekko Microprocessor Cache Implementation

Gekko cache implementation is described in Section 1.2.4 on Page 1-11 and Section 1.2.5 on Page
1-12. The BPU also contains a 64-entry BTIC that provides immediate access to cached target
instructions. For more information, see Section 1.2.2.2 on Page 1-7.

1.7 Exception Model

The following sections describe the PowerPC exception model and Gekko implementation.
A detailed description of Gekko exception model is provided in Chapter 4, "Exceptions" in this
manual.

1.7.1 PowerPC Exception Model

The PowerPC exception mechanism allows the processor to interrupt the instruction flow to handle

certain situations caused by external signals, errors, or unusual conditions arising from the

instruction execution. When exceptions occur, information about the state of the processor is saved
to certain registers, and the processor begins execution at an address (exception vector)
predetermined for each exception. Exception processing occurs in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more specific
condition may be determined by examining a register associated with the exception—for example,
the DSISR and the FPSCR. Additionally, some exception conditions can be explicitly enabled or
disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they are
handled in order. When an instruction-caused exception is recognized, any unexecuted instructions
that appear earlier in the instruction stream, including any that are undispatched, are required to
complete before the exception is taken, and any exceptions those instructions cause must also be
handled first; likewise, asynchronous, precise exceptions are recognized when they occur but are
not handled until the instructions currently in the completion queue successfully retire or generate
an exception, and the completion queue is emptied.

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. For example, if one instruction encounters multiple exception

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-25

IBM Confidential

conditions, those conditions are handled sequentially. After the exception handler handles an

exception, the instruction processing continues until the next exception condition is encountered.

Recognizing and handling exception conditions sequentially guarantees that exceptions are

recoverable.

When an exception is taken, information about the processor state before the exception was taken is
saved in SRRO and SRR1. Exception handlers must save the information stored in SRR0O and SRR1
early to prevent the program state from being lost due to a system reset and machine check exception
or due to an instruction-caused exception in the exception handler, and before enabling external

interrupts.

The PowerPC architecture supports four types of exceptions:

* Synchronous, precise—These are caused by instructions. All instruction-caused exceptions
are handled precisely; that is, the machine state at the time the exception occurs is known and
can be completely restored. This means that (excluding the trap and system call exceptions)
the address of the faulting instruction is provided to the exception handler and that neither the
faulting instruction nor subsequent instructions in the code stream will complete execution
before the exception is taken. Once the exception is processed, execution resumes at the
address of the faulting instruction (or at an alternate address provided by the exception
handler). When an exception is taken due to a trap or system call instruction, execution
resumes at an address provided by the handler.

» Synchronous, imprecise—The PowerPC architecture defines two imprecise floating-point
exception modes, recoverable and nonrecoverable. Even though Gekko provides a means to
enable the imprecise modes, it implements these modes identically to the precise mode (that
is, enabled floating-point exceptions are always precise).

* Asynchronous, maskable—The PowerPC architecture defines external and decrementer
interrupts as maskable, asynchronous exceptions. When these exceptions occur, their
handling is postponed until the next instruction, and any exceptions associated with that
instruction, completes execution. If no instructions are in the execution units, the exception is
taken immediately upon determination of the correct restart address (for loading SRRO0). As
shown in Table 1-4, Gekko implements additional asynchronous, maskable exceptions.

* Asynchronous, nonmaskable—There are two nonmaskable asynchronous exceptions: system
reset and the machine check exception. These exceptions may not be recoverable, or may
provide a limited degree of recoverability. Exceptions report recoverability through the
MSRI[RI] bit.

Page 1-26 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

1.7.2 Gekko Microprocessor Exception Implementation

Gekko exception classes described above are shown in Table 1-4. Although exceptions have other
characteristics, such as priority and recoverability, Table 1-4 describes categories of exceptions
Gekko handles uniquely. Table 1-4 includes no synchronous imprecise exceptions; although the
PowerPC architecture supports imprecise handling of floating-point exceptions, Gekko
implements these exception modes precisely.

Table 1-4. Gekko Microprocessor Exception Classifications

Synchronous/Asynchronous Plecise/Imprecise Exception Type
Asynchronous, nonmaskable |Imprecise Machine check, system reset
Asynchronous, maskable Precise External, decrementer, system management, performance

monitor, and thermal management interrupts

Synchronous Precise Instruction-caused exceptions

Table 1-5 lists Gekko exceptions and conditions that cause them. Exceptions specific to Gekko are
indicated.

Table 1-5. Exceptions and Conditions

Exception Type Vector Offset Causing Conditions
(hex)

Reserved 00000 —

System reset 00100 Assertion of either HRESET or SRESET or at power-on reset

Machine check 00200 Assertion of TEA during a data bus transaction, assertion of MCP, an
address, data or L2 double bit error, DMA queue overflow, DMA look-up
misses locked cache, or dcbz_| cache hit. MSR[ME] must be set.

DSI 00300 As specified in the PowerPC architecture. For TLB misses on load, store, or
cache operations, a DSI exception occurs if a page fault occurs.

ISI 00400 As defined by the PowerPC architecture.

External interrupt 00500 MSRI[EE] = 1 and INT is asserted.

Alignment 00600 » A floating-point load/store, stmw, stwcx , Imw, lwarx , eciwx or ecowx

instruction operand is not word-aligned.
* A multiple/string load/store operation is attempted in little-endian mode.
* The operand of dcbz or of dcbz_| is in memory that is
write-through-required or caching-inhibited or the cache is disabled

Program 00700 As defined by the PowerPC architecture.

Floating-point 00800 As defined by the PowerPC architecture.

unavailable

Decrementer 00900 As defined by the PowerPC architecture, when the most significant bit of the
DEC register changes from 0 to 1 and MSR[EE] = 1.

Reserved 00AO0-00BFF | —

System call 00C00 Execution of the System Call (sc) instruction.

Trace 00DO00 MSR[SE] = 1 or a branch instruction completes and MSR[BE] = 1. Unlike the
architecture definition, isync does not cause a trace exception

Reserved 00EOQO Gekko does not generate an exception to this vector. Other PowerPC
processors may use this vector for floating-point assist exceptions.

Reserved OOE10-00EFF | —

Performance monitor® | 00F00 The limit specified in a PMC register is reached and MMCRO[ENINT] = 1

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-27

IBM Confidential

Table 1-5. Exceptions and Conditions (Continued)

Exception Type Vector Offset Causing Conditions
(hex)

Instruction address 01300 IABR[0-29] matches EA[0—29] of the next instruction to complete, IABR[TE]
breakpoint1 matches MSR[IR], and IABR[BE] = 1.
Reserved 01400-016FF | —
Thermal management | 01700 Thermal management is enabled, the junction temperature exceeds the
interrupt? threshold specified in THRM1 or THRM2, and MSR[EE] = 1.
Reserved 01800-02FFF | —

Note:
1 Gekko-specific

1.8 Memory Management

The following subsections describe the memory management features of the PowerPC architecture,
and Gekko implementation, respectively. A detailed description of Gekko MMU implementation is
provided in Chapter 5, "Memory Management" in this manual.

1.8.1 PowerPC Memory Management Model

The primary functions of the MMU are to translate logical (effective) addresses to physical addresses
for memory accesses and to provide access protection on blocks and pages of memory. There are two
types of accesses generated by Gekko that require address translation—instruction accesses, and data
accesses to memory generated by load, store, and cache control instructions.

The PowerPC architecture defines different resources for 32- and 64-bit processors; Gekko
implements the 32-bit memory management model. The memory-management model provides 4
Gbytes of logical address space accessible to supervisor and user programs with a 4-Kbyte page size
and 256-Mbyte segment size. BAT block sizes range from 128 Kbyte to 256 Mbyte and are software
selectable. In addition, it defines an interim 52-bit virtual address and hashed page tables for
generating 32-bit physical addresses.

The architecture also provides independent four-entry BAT arrays for instructions and data that
maintain address translations for blocks of memory. These entries define blocks that can vary from
128 Kbytes to 256 Mbytes. The BAT arrays are maintained by system software.

The PowerPC MMU and exception model support demand-paged virtual memory. Virtual memory
management permits execution of programs larger than the size of physical memory; demand-paged
implies that individual pages are loaded into physical memory from system memory only when they
are first accessed by an executing program.

The hashed page table is a variable-sized data structure that defines the mapping between virtual page
numbers and physical page numbers. The page table size is a power of 2, and its starting address is a
multiple of its size. The page table contains a number of page table entry groups (PTEGS). A PTEG
contains eight page table entries (PTES) of eight bytes each; therefore, each PTEG is 64 bytes long.
PTEG addresses are entry points for table search operations.

Setting MSR[IR] enables instruction address translations and MSR[DR] enables data address
translations. If the bit is cleared, the respective effective address is the same as the physical address.

Page 1-28 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

1.8.2 Gekko Microprocessor Memory Management Implementation

Gekko implements separate MMUSs for instructions and data. It implements a copy of the segment
registers in the instruction MMU; however, read and write accessés @ndmtsr) are handled
through the segment registers implemented as part of the data MMU. Gekko MMU is described in
Section 1.2.3 on Page 1-10.

The R (referenced) bit is updated in the PTE in memory (if necessary) during a table search due to
a TLB miss. Updates to the changed (C) bit are treated like TLB misses. A complete table search
is performed and the entire TLB entry is rewritten to update the C bit.

1.9 Instruction Timing

Gekko is a pipelined, superscalar processor. A pipelined processor is one in which instruction
processing is divided into discrete stages, allowing work to be done on different instructions in each
stage. For example, after an instruction completes one stage, it can pass on to the next stage leaving
the previous stage available to the subsequent instruction. This improves overall instruction
throughput.

A superscalar processor is one that issues multiple independent instructions into separate execution
units, allowing instructions to execute in parallel. Gekko has six independent execution units, two
for integer instructions, and one each for floating-point instructions, branch instructions, load and
store instructions, and system register instructions. Having separate GPRs and FPRs allows integer,
floating-point calculations, and load and store operations to occur simultaneously without
interference. Additionally, rename buffers are provided to allow operations to post execution
results for use by subsequent instructions without committing them to the architected FPRs and
GPRs.

As shown inFigure 1-6, the common pipeline of Gekko has four stages through which all
instructions must pass—fetch, decode/dispatch, execute, and complete/write back. Some
instructions occupy multiple stages simultaneously and some individual execution units have
additional stages. For example, the floating-point pipeline consists of three stages through which
all floating-point instructions must pass.

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-29

IBM Confidential

Fetch Maximum four-instruction fetch
etc per clock cycle
BPU
Y
Di h Maximum three-instruction dis-
Ispatc patch per clock cycle (includes one
branch instruction)
 / Execute Stage
A
FPU1 v
] FPU2 v Y Lsul
SRU FPU3 U1 U2 LSuU2
Y Y Y Y Y
Y

Maximum two-instruction com-
pletion per clock cycle

Complete (Write-Back)

Figure 1-6. Pipeline Diagram

NOTE: Figure 1-6 does not show features, such as reservation stations and rename buffers

that reduce stalls and improve instruction throughput.

The instruction pipeline in Gekko has four major pipeline stages, described as follows:

The fetch pipeline stage primarily involves retrieving instructions from the memory system
and determining the location of the next instruction fetch. The BPU decodes branches during
the fetch stage and removes those that do not update CTR or LR from the instruction stream.

The dispatch stage is responsible for decoding the instructions supplied by the instruction
fetch stage and determining which instructions can be dispatched in the current cycle. If
source operands for the instruction are available, they are read from the appropriate register
file or rename register to the execute pipeline stage. If a source operand is not available,
dispatch provides a tag that indicates which rename register will supply the operand when it
becomes available. At the end of the dispatch stage, the dispatched instructions and their
operands are latched by the appropriate execution unit.

Instructions executed by the 1Us, FPU, SRU, and LSU are dispatched from the bottom two
positions in the instruction queue. In a single clock cycle, a maximum of two instructions can
be dispatched to these execution units in any combination. When an instruction is dispatched,
it is assigned a position in the six-entry completion queue. A branch instruction can be issued
on the same clock cycle for a maximum three-instruction dispatch.

During the execute pipeline stage, each execution unit that has an executable instruction
executes the selected instruction (perhaps over multiple cycles), writes the instruction's result
into the appropriate rename register, and notifies the completion stage that the instruction has
finished execution. In the case of an internal exception, the execution unit reports the
exception to the completion pipeline stage and (except for the FPU) discontinues instruction
execution until the exception is handled. The exception is not signaled until that instruction is

Page 1-30 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

the next to be completed. Execution of most floating-point instructions is pipelined within
the FPU allowing up to three instructions to be executing in the FPU concurrently. The FPU
stages are multiply, add, and round-convert. Execution of most load/store instructions is
also pipelined. The load/store unit has two pipeline stages. The first stage is for effective
address calculation and MMU translation and the second stage is for accessing the data in
the cache.

» The complete pipeline stage maintains the correct architectural machine state and transfers
execution results from the rename registers to the GPRs and FPRs (and CTR and LR, for
some instructions) as instructions are retired. As with dispatching instructions from the
instruction queue, instructions are retired from the two bottom positions in the completion
gueue. If completion logic detects an instruction causing an exception, all following
instructions are cancelled, their execution results in rename registers are discarded, and
instructions are fetched from the appropriate exception vector.

Because the PowerPC architecture can be applied to such a wide variety of implementations,
instruction timing varies among PowerPC processors.

For a detailed discussion of instruction timing with examples and a table of latencies for each
execution unit, see Chaper 6 “Instruction Timing.”

1.10 Power Management

Gekko provides four power modes, selectable by setting the appropriate control bits in the MSR
and HIDO registers. The four power modes are as follows:

* Full-power—This is the default power state of Gekko. Gekko is fully powered and the
internal functional units are operating at the full processor clock speed. If the dynamic
power management mode is enabled, functional units that are idle will automatically enter
a low-power state without affecting performance, software execution, or external hardware.

* Doze—All the functional units of Gekko are disabled except for the time base/decrementer
registers and the bus snooping logic. When the processor is in doze mode, an external
asynchronous interrupt, a system management interrupt, a decrementer exception, a hard or
soft reset, or machine check brings Gekko into the full-power state. Gekko in doze mode
maintains the PLL in a fully powered state and locked to the system external clock input
(SYSCLK) so a transition to the full-power state takes only a few processor clock cycles.

* Nap—The nap mode further reduces power consumption by disabling bus snooping,
leaving only the time base register and the PLL in a powered state. Gekko returns to the
full-power state upon receipt of an external asynchronous interrupt, a system management
interrupt, a decrementer exception, a hard or soft reset, or a machine checki@pt (

A return to full-power state from a nap state takes only a few processor clock cycles. When
the processor is in nap modeQACK is negated, the processor is put in doze mode to
support snooping.

* Sleep—Sleep mode minimizes power consumption by disabling all internal functional
units, after which external system logic may disable the PLL and SYSCLK. Returning
Gekko to the full-power state requires the enabling of the PLL and SYSCLK, followed by
the assertion of an external asynchronous interrupt, a system management interrupt, a hard
or soft reset, or a machine check ingdtqP) signal after the time required to relock the
PLL.

Chapter 10, "Power and Thermal Management" in this manual provides information about power
saving and thermal management modes for Gekko.

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-31

IBM Confidential

1.11 Thermal Management

Gekko’s thermal assist unit (TAU) provides a way to control heat dissipation. This ability is
particularly useful in portable computers, which, due to power consumption and size limitations,
cannot use desktop cooling solutions such as fans. Therefore, better heat sink designs coupled with
intelligent thermal management is of critical importance for high performance portable systems.
Primarily, the thermal management system monitors and regulates the system’s operating
temperature. For example, if the temperature is about to exceed a set limit, the system can be made
to slow down or even suspend operations temporarily in order to lower the temperature.

The thermal management facility also ensures that the processor’s junction temperature does not
exceed the operating specification. To avoid the inaccuracies that arise from measuring junction
temperature with an external thermal sensor, Gekko’s on-chip thermal sensor and logic tightly
couples the thermal management implementation.

The TAU consists of a thermal sensor, digital-to-analog convertor, comparator, control logic, and the
dedicated SPRs described in Section 1.4 on Page 1-18. The TAU does the following:

» Compares the junction temperature against user-programmable thresholds
* Generates a thermal management interrupt if the temperature crosses the threshold

* Enables the user to estimate the junction temperature by way of a software successive

approximation routine
The TAU is controlled through the privilegedtspr/mfspr instructions to the three SPRs provided
for configuring and controlling the sensor control logic, which function as follows:

« THRM1 and THRM2 provide the ability to compare the junction temperature against two
user-provided thresholds. Having dual thresholds gives the thermal management software
finer control of the junction temperature. In single threshold mode, the thermal sensor output
is compared to only one threshold in either THRM1 or THRM2.

« THRMS3 is used to enable the TAU and to control the comparator output sample time. The
thermal management logic manages the thermal management interrupt generation and time
multiplexed comparisons in the dual threshold mode as well as other control functions.

Instruction cache throttling provides control of Gekko’s overall junction temperature by determining
the interval at which instructions are fetched. This feature is accessed through the ICTC register.
Chapter 10, "Power and Thermal Management” in this manual provides information about power
saving and thermal management modes for Gekko.

Page 1-32 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

1.12 Performance Monitor

Gekko incorporates a performance monitor facility that system designers can use to help bring up,
debug, and optimize software performance. The performance monitor counts events during
execution of code, relating to dispatch, execution, completion, and memory accesses.

The performance monitor incorporates several registers that can be read and written to by
supervisor-level software. User-level versions of these registers provide read-only access for
user-level applications. These registers are described in Section 1.4 on Page 1-18. Performance
monitor control registers, MMCRO or MMCR1, can be used to specify which events are to be
counted and the conditions for which a performance monitoring interrupt is taken. Additionally,
the sampled instruction address register, SIA (USIA), holds the address of the first instruction to
complete after the counter overflowed.

Attempting to write to a user-read-only performance monitor register causes a program exception,
regardless of the MSR[PR] setting.

When a performance monitoring interrupt occurs, program execution continues from vector offset
0x00F00.

Chapter 11, "Performance Monitor" in this mandeascribes the operation of the performance
monitor diagnostic tool incorporated in Gekko.

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-33

IBM Confidential

Page 1-34 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Chapter 2 Programming Model

This chapter describes the Gekko programming model, emphasizing those features specific to the
Gekko processor and summarizing those that are common to PowerPC processors. It consists of
three major sections, which describe the following:

» Registers implemented in Gekko
* Operand conventions
* The Gekko instruction set

For detailed information about architecture-defined features, seBawerPC Microprocessor
Family: The Programming Environmentsanual.

2.1 Gekko Processor Register Set

This section describes the registers implemented in Gekko. It includes an overview of registers
defined by the PowerPC architecture, highlighting differences in how these registers are
implemented in Gekko, and a detailed description of Gekko-specific registers. Full descriptions of
the architecture-defined register set are provided in Chapter 2, “PowerPC Register Set" in the
PowerPC Microprocessor Family: The Programming Environmerdsual.

Registers are defined at all three levels of the PowerPC architecture—user instruction set
architecture (UISA), virtual environment architecture (VEA), and operating environment
architecture (OEA). The PowerPC architecture defines register-to-register operations for all
computational instructions. Source data for these instructions are accessed from the on-chip
registers or are provided as immediate values embedded in the opcode. The three-register
instruction format allows specification of a target register distinct from the two source registers,
thus preserving the original data for use by other instructions and reducing the number of
instructions required for certain operations. Data is transferred between memory and registers with
explicit load and store instructions only.

2.1.1 Register Set

The registers implemented on Gekko are shown in Figure 2-1 on Page 2-2. The number to
the right of the special-purpose registers (SPRs) indicates the number that is used in the
syntax of the instruction operands to access the register (for example, the number used to
access the integer exception register (XER) is SPR 1). These registers can be accessed
using themtspr andmfspr instructions.

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-1

IBM Confidential

-
-

SUPERVISOR MODEL—OEA

Hardware
USER MODEL—VEA \ Implementation Registers
. o ' HIDO SPR 1008
Time Base Facility (For Reading)
HID1 SPR 1009
TBL B
\ TBR269 | TBR 269

-

USER MODEL UISA

Count General-Purpose
Register SPR 9 Registers
Link Register GPR1

Condition Register GPR31

Ce

Floating-Point Registers

Performance

-) FPRO
Monitor Registers
(For Reading) FPRI
Performance Counters 1 .
L]
UPMC1 SPR 937
FPR31
UPMC2 | SPR938 . -
Floating-Point Status
UPMC3 SPR 941 and Control Register
UPMC4 | SPR 942 FPSCR
Monitor Control Sampledllnstruction
A
UMMCRO | SPRo3s /0SS

SPR 940 USIA SPR 939

Configuration Registers

Processor
Version
Register

Memory Management Registers

Instruction BAT

Registers
IBATOU SPR 528
IBATOL SPR 529
IBAT1U SPR 530
IBAT1L SPR 531
IBAT2U SPR 532
IBAT2L SPR 533
IBAT3U SPR 534
IBAT3L SPR 535

SPRGs
SPRGO [SPR 272
SPRG1 |SPR 273
SPRG2 [SPR 274
SPRG3 |SPR 275

Data BAT

Registers
DBATOU SPR 536
DBATOL SPR 537
DBAT1U SPR 538
DBAT1L SPR 539
DBAT2U SPR 540
DBAT2L SPR 541
DBAT3U SPR 542
DBAT3L SPR 543

Exception Handling Registers

Data Address
Register

DSISR

Miscellaneous Registers

N

Machine State
Register

MSR

Segment
Registers

SRO
SR1

SR15

SDR1

Save and Restore

Registers
SRRO SPR 26
SRR1 SPR 27
Decrementer
DEC SPR 22

Instruction Address
Breakpoint Register

IABR SPR 1010

Direct Memory Access 1

SPR 923
SPR 922

1

DMAL
DMAU

Instruction Cache
Throttling Control
Register 1

SPR 1019

UMMCR1 j External Access Time Base
Q\ j Register (For Writing)
Quantization Registers ! EAR |SPR282 TBL |SPR284
GQRO | SPR912 GQR4__| SPR916 ga‘ak/\ddfegs _ TBU | SPR285
GQRL | SPRO913 GOR5__| SPRO17 reakpoint Register L2 Control
GQRZ | SPR 914 GOR6__| SPR 918 DABR |SPR1013 Register *
GQR3__| SPR 915 GQR7__|SPR919
Write Gather Pipe 1 L2CR [SPR1017
Performance Monitor WPAR |SPR92L
Registers
Performance Sampled .
Counters * Instruction Power/Thermal Management Registers
Address Thermal Assist
PMCL | SPR 953 SPR 955 Unit Registers 1
PMC2 SPR 954 Monitor Control 1 THRM1 SPR 1020
PMC3 | SPR 957
o e T THRM2 | SPR 1021
PMC4 PR 95
MCRL | sPR 956 THRM3 | SPR 1022

1

These registers are processor-specific registers. They may not be supported by other PowerPC processors.

Figure 2-1. Programming Model—Gekko Microprocessor Registers

Page 2-2

Version 1.2

IBM Confidential

IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

The PowerPC UISA registers are user-level. General-purpose registers (GPRs) and floating-point
registers (FPRs) are accessed through instruction operands. Access to registers can be explicit (by
using instructions for that purpose such as Move to Special-Purpose Regittpr)(and Move

from Special-Purpose Registanfspr) instructions) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.

Implementation Note—Gekko fully decodes the SPR field of the instruction. If the SPR specified
is undefined, the illegal instruction program exception occurs. The PowerPC’s user-level registers
are described as follows:

* User-level registerYUISA)—The user-level registers can be accessed by all software with
either user or supervisor privileges. They include the following:

— General-purpose registers (GPRs). The thirty-two GPRs (GPRO-GPR31) serve as data
source or destination registers for integer instructions and provide data for generating
addresses. See “General Purpose Registers (GPRs)" in Chapter 2, “PowerPC Register
Set” of thePowerPC Microprocessor Family: The Programming Environmemsual
for more information.

— Floating-point registers (FPRs). The thirty-two FPRs (FPRO-FPR31) serve as the data
source or destination for all floating-point instructions. See “Floating-Point Registers
(FPRs)" in Chapter 2, “PowerPC Register Set” ofRbeverPC Microprocessor
Family: The Programming Environmentsganual.

— Condition register (CR). The 32-bit CR consists of eight 4-bit fields, CRO—-CR7, that
reflect results of certain arithmetic operations and provide a mechanism for testing and
branching. See “Condition Register (CR)" in Chapter 2, “PowerPC Register Set” of the
PowerPC Microprocessor Family: The Programming Environmerdsual.

— Floating-point status and control register (FPSCR). The FPSCR contains all
floating-point exception signal bits, exception summary bits, exception enable bits, and
rounding control bits needed for compliance with the IEEE 754 standard. See
“Floating-Point Status and Control Register (FPSCR)" in Chapter 2, “PowerPC
Register Set" of thBowerPC Microprocessor Family: The Programming Environments
manual.

The remaining user-level registers are SPRs. Note that the PowerPC architecture provides
a separate mechanism for accessing SPRsnfisi andmfspr instructions). These
instructions are commonly used to explicitly access certain registers, while other SPRs may
be more typically accessed as the side effect of executing other instructions.

— Integer exception register (XER). The XER indicates overflow and carries for integer
operations. See “XER Register (XER)" in Chapter 2, “PowerPC Register Set" of the
PowerPC Microprocessor Family: The Programming Environmardaual for more
information.

Implementation Note—To allow emulation of théscbx instruction defined by the
POWER architecture, XER[16-23] is implemented so that they can be read with
mfspr[XER] and written withmtxer[XER] instructions.

— Link register (LR). The LR provides the branch target address for the Branch
Conditional to Link Registeiblrx) instruction, and can be used to hold the logical
address of the instruction that follows a branch and link instruction, typically used for
linking to subroutines. See “Link Register (LR)" in Chapter 2, “PowerPC Register Set"
of thePowerPC Microprocessor Family: The Programming Environmardaual.

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-3

Table

IBM Confidential

— Count register (CTR). The CTR holds a loop count that can be decremented during
execution of appropriately coded branch instructions. The CTR can also provide the
branch target address for the Branch Conditional to Count Redisttrx) instruction.
See “Count Register (CTR)" in Chapter 2, “PowerPC Register Set" &btherPC
Microprocessor Family: The Programming Environmemignual.

User-level registersVEA)—The PowerPC VEA defines the time base facility (TB), which
consists of two 32-bit registers—time base upper (TBU) and time base lower (TBL). The time
base registers can be written to only by supervisor-level instructions but can be read by both
user- and supervisor-level software. For more information, see “PowerPC VEA Register
Set—Time Base" in Chapter 2, “PowerPC Register Set" dPolneerPC Microprocessor

Family: The Programming Environmentsganual.

Supervisor-level registerd OEA)—The OEA defines the registers an operating system uses
for memory management, configuration, exception handling, and other operating system
functions. The OEA defines the following supervisor-level registers for 32-bit
implementations:

— Configuration registers

— Machine state register (MSR). The MSR defines the state of the processor. The MSR
can be modified by the Move to Machine State Registen(sr), System Callgg, and
Return from Exceptionrfi) instructions. It can be read by the Move from Machine
State Registemgfmsr) instruction. When an exception is taken, the contents of the
MSR are saved to the machine status save/restore register 1 (SRR1), which is described
below. See “Machine State Register (MSR)" in Chapter 2, “PowerPC Register Set" of
the PowerPC Microprocessor Family: The Programming Environmerdaual for
more information.

Implementation Note—Table 2-1 describes MSR bits Gekko implements that are not
required by the PowerPC architecture.

2-1. Additional MSR Bits

Bit

Name Description

13

POW Power management enable. Optional to the PowerPC architecture.

0 Power management is disabled.

1 Power management is enabled. The processor can enter a power-saving mode when additional
conditions are present. The mode chosen is determined by the DOZE, NAP, and SLEEP bits in
the hardware implementation-dependent register 0 (HIDO), described in Table 2-4 on Page
2-9.

29

PM Performance monitor marked mode. This bit is specific to Gekko, and is defined as reserved by the
PowerPC architecture. See Chapter 11, "Performance Monitor" in this manual in this manual.

0 Process is not a marked process.

1 Process is a marked process.

NOTE:

Setting MSR[EE] masks not only the architecture-defined external interrupt and
decrementer exceptions but also the Gekko-specific system management, performance
monitor, and thermal management exceptions.

— Processor version register (PVR). This register is a read-only register that identifies the
version (model) and revision level of the PowerPC processor. For more information,

Page 2-4

Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

see “Processor Version Register (PVR)" in Chapter 2, “PowerPC Register Set" of the
PowerPC Microprocessor Family: The Programming Environmerdaual.

Implementation Note—The processor version number is 0x7000 for Gekko. Early
releases of the hardware may have a processor version number of 0x0008. The
processor revision level starts at 0x0100 and is updated for each silicon revision.

— Memory management registers

— Block-address translation (BAT) registers. The PowerPC OEA includes an array of
block address translation registers that can be used to specify four blocks of
instruction space and four blocks of data space. The BAT registers are implemented
in pairs—four pairs of instruction BATs (IBATOU-IBAT3U and IBATOL-IBAT3L)
and four pairs of data BATs (DBATOU-DBAT3U and DBATOL-DBAT3L).

Figure 2-1 on Page 2-2 lists the SPR numbers for the BAT registers. For more
information, see “BAT Registers" in Chapter 2, “PowerPC Register Set” of the
PowerPC Microprocessor Family: The Programming Environmerdaual.

Because BAT upper and lower words are loaded separately, software must ensure
that BAT translations are correct during the time that both BAT entries are being
loaded.

Gekko implements the G bit in the IBAT registers; however, attempting to execute
code from an IBAT area with G = 1 causes an ISI| exception. This complies with the
revision of the architecture described in BoaverPC Microprocessor Family: The
Programming Environmentsanual.

— SDR1. The SDRL1 register specifies the page table base address used in
virtual-to-physical address translation. See “SDR1" in Chapter 2, “PowerPC
Register Set” of th@owerPC Microprocessor Family: The Programming
Environmentsnanual.”

— Segmentregisters (SR). The PowerPC OEA defines sixteen 32-bit segment registers
(SR0O-SR15). Note that the SRs are implemented on 32-bit implementations only.
The fields in the segment register are interpreted differently depending on the value
of bit 0. See “Segment Registers" in Chapter 2, “PowerPC Register Set” of the
PowerPC Microprocessor Family: The Programming Environmardaual for
more information.

Note that Gekko implements separate memory management units (MMUS) for
instruction and data. It associates the architecture-defined SRs with the data MMU
(DMMU). It reflects the values of the SRs in separate, so-called ‘shadow’ segment
registers in the instruction MMU (IMMU).

— Exception-handling registers
— Data address register (DAR). After a DSI or an alignment exception, DAR is set to
the effective address (EA) generated by the faulting instruction. See “Data Address
Register (DAR)" in Chapter 2, “PowerPC Register Set” ofRtverPC

Microprocessor Family: The Programming Environmemignual for more
information.

— SPRGO-SPRG3. The SPRGO-SPRGS3 registers are provided for operating system
use. See “SPRGO0-SPRG3" in Chapter 2, “PowerPC Register Set”RdwleePC
Microprocessor Family: The Programming Environmemignual for more
information.

— DSISR. The DSISR register defines the cause of DSI and alignment exceptions. See

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-5

IBM Confidential

“DSISR" in Chapter 2, “PowerPC Register Set" of HosverPC Microprocessor
Family: The Programming Environmentsanual for more information.

Machine status save/restore register 0 (SRRO0). The SRRO register is used to save the
address of the instruction at which execution continues whexxecutes at the end of

an exception handler routine. See “Machine Status Save/Restore Register 0 (SRR0)"in
Chapter 2, “PowerPC Register Set" of BmverPC Microprocessor Family: The
Programming Environmentsanual for more information.

Machine status save/restore register 1 (SRR1). The SRR1 register is used to save
machine status on exceptions and to restore machine statusfidegcutes. See
“Machine Status Save/Restore Register 1 (SRR1)" in Chapter 2, “PowerPC Register
Set" of thePowerPC Microprocessor Family: The Programming Environmemasual

for more information.

Implementation Note—When a machine check exception occurs, Gekko sets one or
more error bits in SRR1. Table 2-2 describes SRR1 bits Gekko implements that are not
required by the PowerPC architecture.

Table 2-2. Additional SRR1 Bits

Bit

Name

Description

10

DMA

Set by a dcbz_| or DMA error

11

L2DP

Set by a double bit ECC error in the L2.

12

MCPIN

Set by the assertion of MCP

13

TEA

Set by a TEA assertion on the 60x bus

14

DP

Set by a data parity error on the 60x bus

15

AP

Set by an address parity error on the 60x bus

— Miscellaneous registers
— Time base (TB). The TB is a 64-bit structure provided for maintaining the time of day

and operating interval timers. The TB consists of two 32-bit registers—time base upper
(TBU) and time base lower (TBL). The time base registers can be written to only by
supervisor-level software, but can be read by both user- and supervisor-level software.
See “Time Base Facility (TB)—OEA" in Chapter 2, “PowerPC Register Set" of the
PowerPC Microprocessor Family: The Programming Environmerdaual for more
information.

Decrementer register (DEC). This register is a 32-bit decrementing counter that
provides a mechanism for causing a decrementer exception after a programmable
delay; the frequency is a subdivision of the processor clock. See “Decrementer Register
(DEC)" in Chapter 2, “PowerPC Register Set" of BosverPC Microprocessor

Family: The Programming Environmentgnual for more information.

Implementation Note—In Gekko, the decrementer register is decremented and the
time base is incremented at a speed that is one-fourth the speed of the bus clock.

Data address breakpoint register (DABR)—This optional register is used to cause a
breakpoint exception if a specified data address is encountered. See “Data Address
Breakpoint Register (DABR)" in Chapter 2, “PowerPC Register Set" oPthwerPC

Page 2-6

Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Microprocessor Family: The Programming Environmemiznual.”

— External access register (EAR). This optional register is used in conjunction with
eciwxandecowx Note that the EAR register and teeiwx andecowxinstructions
are optional in the PowerPC architecture and may not be supported in all PowerPC
processors that implement the OEA. See “External Access Register (EAR)" in
Chapter 2, “PowerPC Register Set" of BewverPC Microprocessor Family: The
Programming Environmentsanual for more information.

» Gekko-specific registers—The PowerPC architecture allows implementation-
specific SPRs. Those incorporated in Gekko are described as follows. Note that in Gekko,
these registers are all supervisor-level registers.

— Instruction address breakpoint register (IABR)—This register can be used to cause a
breakpoint exception if a specified instruction address is encountered.

— Hardware implementation-dependent register O (HIDO)—This register controls various
functions, such as enabling checkstop conditions, and locking, enabling, and
invalidating the instruction and data caches.

— Hardware implementation-dependent register 1 (HID1)—This register reflects the state
of PLL_CFG[0-3] clock signals.

— Hardware implementation-dependent register 2 (HID2)—This register controls the
graphics enhancement facilities, including the locked cache and DMA, the write gather
pipe and paired single processing in the floating-point unit.

— Direct memory access (DMA) registers—The pair of DMA registers, DMAU and
DMAL, is used to specify and issue a DMA command. Each DMA command consists
of a locked cache address, an external memory address, transfer length and transfer
direction.

— Graphics quantization registers (GQRs)—This array of eight registers is used to specify
the conversion parameters used by the paired single quantized load and store
instructions.

— Write pipe address register (WPAR)—This register is used to specify the target address
of non-cacheable store transactions to be gathered by the write gather pipe facility.

— The L2 cache control register (L2CR) is used to configure and operate the L2 cache.

— Performance monitor registers. The following registers are used to define and count
events for use by the performance monitor:

— The performance monitor counter registers (PMC1-PMC4) are used to record the
number of times a certain event has occurred. UPMC1-UPMC4 provide user-level
read access to these registers.

— The monitor mode control registers (MMCRO-MMCRL1) are used to enable various
performance monitor interrupt functions. UMMCRO-UMMCR1 provide user-level
read access to these registers.

— The sampled instruction address register (SIA) contains the effective address of an
instruction executing at or around the time that the processor signals the
performance monitor interrupt condition. USIA provides user-level read access to
the SIA.

— Gekko does not implement the sampled data address register (SDA) or the
user-level, read-only USDA registers. However, for compatibility with processors
that do, those registers can be written to by boot code without causing an exception.
SDA is SPR 959; USDA is SPR 943.

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-7

IBM Confidential

— The instruction cache throttling control register (ICTC) has bits for enabling the
instruction cache throttling feature and for controlling the interval at which instructions
are forwarded to the instruction buffer in the fetch unit. This provides control over the
processor’s overall junction temperature.

— Thermal management registers (THRM1, THRM2, and THRM3). Used to enable and set
thresholds for the thermal management facility.

— THRM1 and THRM2 provide the ability to compare the junction temperature against
two user-provided thresholds. The dual thresholds allow the thermal management
software differing degrees of action in lowering the junction temperature. The TAU can
be also operated in a single threshold mode in which the thermal sensor output is
compared to only one threshold in either THRM1 or THRM2.

— THRM3 is used to enable the thermal management assist unit (TAU) and to
control the comparator output sample time.

Note that while it is not guaranteed that the implementation of Gekko-specific registers is consistent
among PowerPC processors, other processors may implement similar or identical registers.

2.1.2 Gekko-Specific Registers
This section describes registers that are defined for Gekko but are not included in the PowerPC
architecture.

2.1.2.1 Instruction Address Breakpoint Register (IABR)

The address breakpoint register (IABR), shown in Figure 2-2, supports the instruction address
breakpoint exception. When this exception is enabled, instruction fetch addresses are compared with
an effective address stored in the IABR. If the word specified in the IABR is fetched, the instruction
breakpoint handler is invoked. The instruction that triggers the breakpoint does not execute before the
handler is invoked. For more information, see Section 4.5.14, "Instruction Address Breakpoint
Exception (0x01300)" on Page 4-21. The IABR can be accessedmtgpr and mfspr using the
SPR1010.

Address BE| TE

0 29 30 31
Figure 2-2. Instruction Address Breakpoint Register

The IABR bits are described in Table 2-3.

Table 2-3. Instruction Address Breakpoint Register Bit Settings

Bits | Name Description

0—29 | Address | Word address to be compared

30 BE Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done.

31 TE Translation enabled. An IABR match is signaled if this bit matches MSR][IR].

2.1.2.2 Hardware Implementation-Dependent Register O

The hardware implementation-dependent register 0 (HIDO) controls the state of several functions
within Gekko. The HIDO register is shown in Figure 2-3.

Page 2-8 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

DLOCK D Reserved
EMCP BCLK ECLK DOZE SLEEP ILOCK NOOPTI
DBP|EBA/EBD 0 PAR NAP DPM| 0 0 0 [NHR|ICE|DCE ICFI| DCFI SPD‘IFEM SGE|DCFA(BTIC| 0 (ABE|BHT| 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1819 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-3 . Hardware Implementation-Dependent Register 0 (HIDO)
The HIDO bits are described in Table 2-4.

Table 2-4. HIDO Bit Functions

Bit Name Function

0 EMCP |Enable MCP. The primary purpose of this bit is to mask out further machine check exceptions
caused by assertion of MCP, similar to how MSR[EE] can mask external interrupts.

0 Masks MCP. Asserting MCP does not generate a machine check exception or a checkstop.
1 Asserting MCP causes checkstop if MSR[ME] = 0 or a machine check exception if ME = 1.

1 DBP Disable 60x bus address and data parity generation.

0 Parity generation is enabled.

1 Disable parity generation. If the system does not use address or data parity and the respective
parity checking is disabled (HIDO[EBA] or HIDO[EBD] = 0), input receivers for those signals are
disabled, require no pull-up resistors, and thus should be left unconnected. If all parity
generation is disabled, all parity checking should also be disabled and parity signals need not
be connected.

2 EBA Enable/disable 60x bus address parity checking

0 Prevents address parity checking.

1 Allows a address parity error to cause a checkstop if MSR[ME] = 0 or a machine check
exception if MSR[ME] = 1.

EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

3 EBD Enable 60x bus data parity checking

0 Parity checking is disabled.

1 Allows a data parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if
MSR[ME] = 1.

EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

4 BCLK Reserved. Must set to 0.

5 — Not used. Defined as EICE on some earlier processors.
6 ECLK Reserved. Must set to 0.

7 PAR Disable precharge of ARTRY.

0 Precharge of ARTRY enabled
1 Alters bus protocol slightly by preventing the processor from driving ARTRY to high (negated)
state. If this is done, the system must restore the signals to the high state.

8 DOZE |Doze mode enable. Operates in conjunction with MSR[POW].

0 Doze mode disabled.

1 Doze mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In doze
mode, the PLL, time base, and snooping remain active.

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-9

IBM Confidential

Table 2-4. HIDO Bit Functions (Continued)

Bit Name Function
9 NAP Nap mode enable. Operates in conjunction with MSR[POW].

0 Nap mode disabled.

1 Nap mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In nap
mode, the PLL and the time base remain active.

10 SLEEP | Sleep mode enable. Operates in conjunction with MSR[POW].

0 Sleep mode disabled.

1 Sleep mode enabled. Sleep mode is invoked by setting MSR[POW] while this bit is set. QREQ is
asserted to indicate that the processor is ready to enter sleep mode. If the system logic
determines that the processor may enter sleep mode, the quiesce acknowledge signal, QACK,
is asserted back to the processor. Once QACK assertion is detected, the processor enters
sleep mode after several processor clocks. At this point, the system logic may turn off the PLL
by first configuring PLL_CFGJ[0-3] to PLL bypass mode, then disabling SYSCLK.

11 DPM Dynamic power management enable.

0 Dynamic power management is disabled.

1 Functional units may enter a low-power mode automatically if the unit is idle. This does not
affect operational performance and is transparent to software or any external hardware.

12-14 | — Not used
15 NHR Not hard reset (software-use only)—Helps software distinguish a hard reset from a soft reset.

0 A hard reset occurred if software had previously set this bit.

1 A hard reset has not occurred. If software sets this bit after a hard reset, when a reset occurs
and this bit remains set, software can tell it was a soft reset.

16 ICE Instruction cache enable

0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were
marked cache-inhibited (WIM = X1X). Potential cache accesses from the bus (snoop and cache
operations) are ignored. In the disabled state for the L1 caches, the cache tag state bits are
ignored and all accesses are propagated to the L2 cache or bus as single-beat transactions. For
those transactions, however, Cl reflects the original state determined by address translation
regardless of cache disabled status. ICE is zero at power-up.

1 The instruction cache is enabled

17 DCE Data cache enable

0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked
cache-inhibited (WIM = X1X). Potential cache accesses from the bus (snoop and cache
operations) are ignored. In the disabled state for the L1 caches, the cache tag state bits are
ignored and all accesses are propagated to the L2 cache or bus as single-beat transactions. For
those transactions, however, Cl reflects the original state determined by address translation
regardless of cache disabled status. DCE is zero at power-up.

1 The data cache is enabled.

18 ILOCK | Instruction cache lock

0 Normal operation

1 Instruction cache is locked. A locked cache supplies data normally on a hit, but are treated as a
cache-inhibited transaction on a miss. On a miss, the transaction to the bus or the L2 cache is
single-beat, however, CI still reflects the original state as determined by address translation
independent of cache locked or disabled status.

To prevent locking during a cache access, an isync instruction must precede the setting of ILOCK.

Page 2-10

Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Table 2-4. HIDO Bit Functions (Continued)

Bit

Name

Function

19

DLOCK

Data cache lock.

0 Normal operation

1 Data cache is locked. A locked cache supplies data normally on a hit but is treated as a
cache-inhibited transaction on a miss. On a miss, the transaction to the bus or the L2 cache is
single-beat, however, CI still reflects the original state as determined by address translation
independent of cache locked or disabled status. A snoop hit to a locked L1 data cache performs
as if the cache were not locked. A cache block invalidated by a snoop remains invalid until the
cache is unlocked.

To prevent locking during a cache access, a sync instruction must precede the setting of DLOCK.

20

ICFI

Instruction cache flash invalidate

0 The instruction cache is not invalidated. The bit is cleared when the invalidation operation
begins (usually the next cycle after the write operation to the register). The instruction cache
must be enabled for the invalidation to occur.

1 Aninvalidate operation is issued that marks the state of each instruction cache block as invalid
without writing back modified cache blocks to memory. Cache access is blocked during this
time. Bus accesses to the cache are signaled as a miss during invalidate-all operations. Setting
ICFI clears all the valid bits of the blocks and the PLRU bits to point to way LO of each set. Once
the L1 flash invalidate bits are set through a mtspr operations, hardware automatically resets
these bits in the next cycle (provided that the corresponding cache enable bits are set in HIDO).

Note, in the PowerPC 603 and PowerPC 603e processors, the proper use of the ICFI and DCFI bits

was to set them and clear them in two consecutive mtspr operations. Software that already has

this sequence of operations does not need to be changed to run on Gekko.

21

DCFI

Data cache flash invalidate

0 The data cache is not invalidated. The bit is cleared when the invalidation operation begins
(usually the next cycle after the write operation to the register). The data cache must be enabled
for the invalidation to occur.

1 Aninvalidate operation is issued that marks the state of each data cache block as invalid without
writing back modified cache blocks to memory. Cache access is blocked during this time. Bus
accesses to the cache are signaled as a miss during invalidate-all operations. Setting DCFI
clears all the valid bits of the blocks and the PLRU bits to point to way LO of each set. Once the
L1 flash invalidate bits are set through a mtspr operations, hardware automatically resets these
bits in the next cycle (provided that the corresponding cache enable bits are set in HIDO).

Setting this bit clears all the valid bits of the blocks and the PLRU bits to point to way L0 of each set.

Note, In the PowerPC 603 and PowerPC 603e processors, the proper use of the ICFI and DCFI bits

was to set them and clear them in two consecutive mtspr operations. Software that already has

this sequence of operations does not need to be changed to run on Gekko.

22

SPD

Speculative cache access disable

0 Speculative bus accesses to nonguarded space (G = 0) from both the instruction and data
caches is enabled

1 Speculative bus accesses to nonguarded space in both caches is disabled

23

IFEM

Enable M bit on bus for instruction fetches.
0 M bit disabled. Instruction fetches are treated as nonglobal on the bus
1 Instruction fetches reflect the M bit from the WIM settings.

24

SGE

Store gathering enable

0 Store gathering is disabled

1 Integer store gathering is performed for write-through to nonguarded space or for
cache-inhibited stores to nonguarded space for 4-byte, word-aligned stores. The LSU combines
stores to form a double word that is sent out on the 60x bus as a single-beat operation. Stores
are gathered only if successive, eligible stores, are queued and pending. Store gathering is
performed regardless of address order or endian mode.

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-11

IBM Confidential

Table 2-4. HIDO Bit Functions (Continued)

Bit Name Function

25 DCFA Data cache flush assist. (Force data cache to ignore invalid sets on miss replacement selection.)

0 The data cache flush assist facility is disabled

1 The miss replacement algorithm ignores invalid entries and follows the replacement sequence
defined by the PLRU bits. This reduces the series of uniquely addressed load or dchz
instructions to eight per set. The bit should be set just before beginning a cache flush routine
and should be cleared when the series of instructions is complete.

26 BTIC Branch Target Instruction Cache enable—used to enable use of the 64-entry branch instruction

cache.

0 The BTIC is disabled, the contents are invalidated, and the BTIC behaves as if it was empty.
New entries cannot be added until the BTIC is enabled.

1 The BTIC is enabled, and new entries can be added.

27 — Not used. Defined as FBIOB on earlier 603-type processors.

28 ABE Address broadcast enable—controls whether certain address-only operations (such as cache

operations, eieio, and sync) are broadcast on the 60x bus.

0 Address-only operations affect only local L1 and L2 caches and are not broadcast.

1 Address-only operations are broadcast on the 60x bus.Affected instructions are eieio, sync,
dcbi, dcbf, and dcbst . A sync instruction completes only after a successful broadcast.
Execution of eieio causes a broadcast that may be used to prevent any external devices, such
as a bus bridge chip, from store gathering.

Note that dcbz (with M = 1, coherency required) always broadcasts on the 60x bus regardless of

the setting of this bit. An icbi is never broadcast. No cache operations, except dcbz, are snooped

by Gekko regardless of whether the ABE is set. Bus activity caused by these instructions results
directly from performing the operation on the Gekko cache.

29 BHT Branch history table enable

0 BHT disabled. Gekko uses static branch prediction as defined by the PowerPC architecture
(UISA) for those branch instructions the BHT would have otherwise used to predict (that is,
those that use the CR as the only mechanism to determine direction). For more information on
static branch prediction, see “Conditional Branch Control,” in Chapter 4 of the PowerPC
Microprocessor Family: The Programming Environments manual.

1 Allows the use of the 512-entry branch history table (BHT).

The BHT is disabled at power-on reset. All entries are set to weakly, not-taken.

30 — Not used

31 NOOPTI | No-op the data cache touch instructions.
0 The dcbt and dcbtst instructions are enabled.
1 The dcbt and dcbtst instructions are no-oped globally.

HIDO can be accessed withispr andmfspr using SPR1008.

2.1.2.3 Hardware Implementation-Dependent Register 1

The hardware implementation-dependent register 1 (HID1) reflects the state of the PLL_CFG[0-3]
signals. The HID1 bits are shown in Figure 2-4.

D Reserved

PCO|PC1|PC2PC3jO0 0O 0 0 0 0 0 0 0O O O O O O O O O O O O O O O O O O 0 O
01 2 3 4 31
Figure 2-4 . Hardware Implementation-Dependent Register 1 (HID1)

Page 2-12 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

The HID1 bits are described in Table 2-5.
Table 2-5. HID1 Bit Functions

Bit(s) Name Description
0 PCO PLL configuration bit O (read-only)
1 PC1 PLL configuration bit 1 (read-only)
2 PC2 PLL configuration bit 2 (read-only)
3 PC3 PLL configuration bit 3 (read-only)
4-31 — Reserved

Note: The clock configuration bits reflect the state of the PLL_CFG[0-3] signals.

HID1 can be accessed withtspr andmfspr using SPR 1009.

2.1.2.4 Hardware Implementation-Dependent Register 2

The hardware implementation-dependent register 2 (HID2) controls the state of the graphics
enhancement features in Gekko. The HID2 register is shown in Figure 2-5.

DNCERR DQOERR DNCEE DQOEE [] Reserved
LSQE DCHERR | DCMERR| DCHEE|DCMEE|
l l l
‘WPE PSE|LCE| DMAQL 00 000 O0O0O0O0OTO OO OO 0L 00 0
01 2 3 4 7 8 9 10 11 12 13 14 15 16 31

Figure 2-5 . Hardware Implementation-Dependent Register 2 (HID2)

The HID2 bits are described in Table 2-6
Table 2-6. HID2 Bit Settings

Bit Name Function
0 LSQE Load/Store quantized enable for non-indexed format instructions (psq_l, psqg_lu, psq_st,
psq_stu).
1 WPE Write pipe enable.

0 Write gathering is disabled.
1 Write gather pipe is enabled. Non-cacheable stores to the WPAR address are gathered and
transferred in 32 byte blocks over the 60x bus.

2 PSE Paired single enable.
0 All paired single instructions are illegal.
1 Paired single instructions can be used.

3 LCE Locked cache enable.

0 Cache is not partitioned. Data cache is 32 Kbytes. dcbz_| instruction is illegal. DMA facility
is disabled.

1 Data cache is partitioned into 16 Kbytes of normal cache and 16 Kbytes of locked cache.
dcbz_| instruction will allocate lines in the locked cache. DMA facility can be used to move
data between the locked cache and external memory. In Gekko, locked cache and bus
snoop are incompatible. LCE shall be kept at 0 for systems which generate snoop
transactions.

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-13

IBM Confidential

Table 2-6. HID2 Bit Settings

4-7 DMAQL DMA queue length (read only). The DMAQL value indicates the number of DMA commands
outstanding. A value of zero indicates an empty DMA command queue. A value of 15
indicates the DMA command queue is full.

8 DCHERR |dcbz_| cache hit error (sticky).

9 DNCERR | DMA access to normal cache error (sticky).

10 DCMERR | DMA cache miss error (sticky).

11 DQOERR | DMA queue overflow error (sticky).

12 DCHEE dcbz_| cache hit error enable.

13 DNCEE DMA access to normal cache error enable.

14 DCMEE DMA cache miss error enable.

15 DQOEE DMA queue overflow error enable.

16-31 |— Reserved.

HID2 can be accessed withtspr andmfspr using SPR 920.

When usingmtspr to set any of the three enable bits, LSQE, PSE and LCE, the i-cache must be
invalidated before using any of the corresponding Gekko graphics extension instructions.

2.1.2.5 Performance Monitor Registers

This section describes the registers used by the performance monitor, which is described in
Chapter 11, "Performance Monitor" in this manual.

2.1.2.5.1 Monitor Mode Control Register 0 (MMCRO)

The monitor mode control register 0 (MMCRO), shown in Figure 2-6, is a 32-bit SPR provided to
specify events to be counted and recorded. The MMCRO can be accessed only in supervisor mode.
User-level software can read the contents of MMCRO by issuingfapr instruction to UMMCRO,
described in the next section.

INTONBITTRANS
RTCSELECT
DISCOUNT PMC2INTCONTROL
ENINT T PMC1INTCONTROL T r PMCTRIGGER
DIS| DP | DU |IDMS|DMR THRESHOLD PMC1SELECT PMC2SELECT
01 2 3 4 5 6 7 8 9 10 15 16 17 18 19 25 26 31

Figure 2-6. Monitor Mode Control Register 0 (MMCRO)
This register must be cleared at power up. Reading this register does not change its contents. The bits

Page 2-14 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

of the MMCRO register are described in Table 2-7.

Table 2-7. MMCRO Bit Settings

Bit Name Description
0 DIS Disables counting unconditionally
0 The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.
1 DP Disables counting while in supervisor mode
0 The PMCn counters can be changed by hardware.
1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters are not
changed by hardware.
2 DU Disables counting while in user mode
0 The PMCn counters can be changed by hardware.
1 Ifthe processor is in user mode (MSR[PR] is set), the PMCn counters are not
changed by hardware.
3 DMS Disables counting while MSR[PM] is set
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.
4 DMR Disables counting while MSR(PM) is zero.
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.
5 ENINT Enables performance monitor interrupt signaling.
0 Interrupt signaling is disabled.
1 Interrupt signaling is enabled.
Cleared by hardware when a performance monitor interrupt is signaled. To reenable
these interrupt signals, software must set this bit after handling the performance
monitor interrupt. The IPL ROM code clears this bit before passing control to the
operating system.
6 DISCOUNT Disables counting of PMCn when a performance monitor interrupt is signaled (that is,
((PMCNnINTCONTROL = 1) & (PMCn[0] = 1) & (ENINT = 1)) or the occurrence of an
enabled time base transition with (INTONBITTRANS =1) & (ENINT = 1)).
0 Signaling a performance monitor interrupt does not affect counting status of PMCn.
1 The signaling of a performance monitor interrupt prevents changing of PMC1
counter. The PMCn counter do not change if PMC2COUNTCTL = 0.
Because a time base signal could have occurred along with an enabled counter
overflow condition, software should always reset INTONBITTRANS to zero, if the value
in INTONBITTRANS was a one.
7-8 RTCSELECT 64-bit time base, bit selection enable
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11 Pick bit 47 to count
9 INTONBITTRANS Cause interrupt signaling on bit transition (identified in RTCSELECT) from off to on
0 Do not allow interrupt signal if chosen bit transitions.
1 Signal interrupt if chosen bit transitions.
Software is responsible for setting and clearing INTONBITTRANS.
10-15 | THRESHOLD Threshold value. Gekko supports all 6 bits, allowing threshold values from 0-63. The

intent of the THRESHOLD support is to characterize L1 data cache misses.

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-15

IBM Confidential

Table 2-7. MMCRO Bit Settings (Continued)

Bit Name Description

16 PMC1INTCONTROL | Enables interrupt signaling due to PMC1 counter overflow.
0 Disable PMC1 interrupt signaling due to PMC1 counter overflow
1 Enable PMCL1 Interrupt signaling due to PMCL1 counter overflow

17 PMCINTCONTROL | Enable interrupt signaling due to any PMC2-PMC4 counter overflow. Overrides the
setting of DISCOUNT.

0 Disable PMC2-PMC4 interrupt signaling due to PMC2-PMC4 counter overflow.
1 Enable PMC2-PMC4 interrupt signaling due to PMC2-PMC4 counter overflow.

18 PMCTRIGGER Can be used to trigger counting of PMC2-PMC4 after PMC1 has overflowed or after a

performance monitor interrupt is signaled.

0 Enable PMC2-PMC4 counting.

1 Disable PMC2-PMC4 counting until either PMC1[0] = 1 or a performance monitor
interrupt is signaled.

19-25 | PMC1SELECT PMC1 input selector, 128 events selectable. See Table 2-9.

26-31 | PMC2SELECT PMC2 input selector, 64 events selectable. See Table 2-9.

MMCRO can be accessed witttspr andmfspr using SPR 952.

2.1.2.5.2 User Monitor Mode Control Register 0 (UMMCRO)

The contents of MMCRO are reflected to UMMCRO, which can be read by user-level software.
MMCRO can be accessed witffspr using SPR 936.

2.1.2.5.3 Monitor Mode Control Register 1 (MMCR1)

The monitor mode control register 1 (MMCR1) functions as an event selector for performance
monitor counter registers 3 and 4 (PMC3 and PMC4). The MMCRL1 register is shown in Figure 2-7.

[| Reserved
PMC3SELECT PMCA4SELECT 06 0 0 0 0O 0O OCOOOT OTG OO OTUOT OTGOUOTGOTOTDO
0 4 5 9 10 31

Figure 2-7. Monitor Mode Control Register 1 (MMCR1)

Page 2-16 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Bits for MMCR1 are shown in Table 2-8; the corresponding events are described in
Section 2.1.2.5.5 below.

Table 2-8. MMCR1 Bits

Bits Name Description
04 PMC3SELECT PMC3 input selector. 32 events selectable. See Table 2-9for defined selections.
5-9 PMCA4SELECT PMC4 input selector. 32 events selectable. See Table 2-9for defined selections.
10-31 — Reserved

MMCRL1 can be accessed withtspr andmfspr using SPR 956. User-level software can read the
contents of MMCRL1 by issuing anfspr instruction to UMMCRL1, described next.

2.1.2.5.4 User Monitor Mode Control Register 1 (UMMCR1)

The contents of MMCR1 are reflected to UMMCRL1, which can be read by user-level software.
MMCR1 can be accessed wittfspr using SPR 940.

2.1.2.5.5 Performance Monitor Counter Registers (PMC1-PMC4)

PMC1-PMC4, shown in Figure 2-8, are 32-bit counters that can be programmed to generate
interrupt signals when they overflow.

ov Counter Value

Figure 2-8. Performance Monitor Counter Registers (PMC1-PMC4)
The bits contained in the PMiCegisters are described in Table 2-9.

Table 2-9. PMC n Bits

Bits Name Description

0 oV Overflow. When this bit is set it indicates that this counter has reached its maximum value.

1-31 | Counter value | Indicates the number of occurrences of the specified event.

Counters are considered to overflow when the high-order bit (the sign bit) becomes set; that is, they
reach the value 2147483648 (0x8000_0000). However, an interrupt is not signaled unless both
PMCn[INTCONTROL] and MMCRO[ENINT] are also set.

Note that the interrupts can be masked by clearing MSR[EE]; the interrupt signal condition may
occur with MSR[EE] cleared, but the exception is not taken until EE is set. Setting
MMCRO[DISCOUNT] forces counters to stop counting when a counter interrupt occurs.

Software is expected to usatspr to set PMC explicitly to nonoverflow values. If software sets an
overflow value, an erroneous exception may occur. For example, if botrnRNTCCONTROL]

and MMCRO[ENINT] are set anantspr loads an overflow value, an interrupt signal may be
generated without any event counting having taken place.

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-17

IBM Confidential

The event to be monitored by PMC1 can be chosen by setting MMCRO[19-25]. The event to be
monitored by PMC2 can be chosen by setting MMCRO[26-31]. The event to be monitored by PMC3
can be chosen by setting MMCRZ1[0-4]. The event to be monitored by PMC4 can be chosen by setting
MMCR1[5-9]. The selected events are counted beginning when MMCRO is set until either MMCRO
is reset or a performance monitor interrupt is generated.

Table 11-5 on Page 11-6, Table 11-6 on Page 11-7, Table 11-7 on Page 11-8, and Table 11-8 on
Page 11-9 list the selectable events and their encodings.

The PMC registers can be accessed wmitspr andmfspr using following SPR numbers:
« PMC1lis SPR 953

* PMC2is SPR 954
» PMC3is SPR 957
* PMC4is SPR 958

2.1.2.5.6 User Performance Monitor Counter Registers (UPMC1-UPMC4)

The contents of the PMC1-PMC4 are reflected to UPMC1-UPMC4, which can be read by user-level
software. The UPMC registers can be read witbpr using the following SPR numbers:

« UPMCLlis SPR 937
« UPMC2is SPR 938
« UPMC3is SPR 941
« UPMC4is SPR 942

2.1.2.5.7 Sampled Instruction Address Register (SIA)

The sampled instruction address register (SIA) is a supervisor-level register that contains the effective
address of an instruction executing at or around the time that the processor signals the performance
monitor interrupt condition. The SIA is shown in Figure 2-9.

Instruction Address

Figure 2-9. Sampled Instruction Address Registers (SIA)

If the performance monitor interrupt is triggered by a threshold event, the SIA contains the exact
instruction (called the sampled instruction) that caused the counter to overflow.

If the performance monitor interrupt was caused by something besides a threshold event, the SIA
contains the address of the last instruction completed during that cycle. SIA can be accessed with the
mtspr andmfspr instructions using SPR 955.

2.1.2.5.8 User Sampled Instruction Address Register (USIA)
The contents of SIA are reflected to USIA, which can be read by user-level software. USIA can be
accessed with thefspr instructions using SPR 939.

2.1.2.5.9 Sampled Data Address Register (SDA) and User Sampled Data
Address Register (USDA)

Gekko does not implement the sampled data address register (SDA) or the user-level, read-only
USDA registers. However, for compatibility with processors that do, those registers can be written to

Page 2-18 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

by boot code without causing an exception. SDA is SPR 959; USDA is SPR 943.

2.1.2.6 Instruction Cache Throttling Control Register (ICTC)

Reducing the rate of instruction fetching can control junction temperature without the complexity

and overhead of dynamic clock control. System software can control instruction forwarding by

writing a nonzero value to the ICTC register, a supervisor-level register shown in Figure 2-10. The
overall junction temperature reduction comes from the dynamic power management of each
functional unit when Gekko is idle in between instruction fetches. PLL (phase-locked loop) and

DLL (delay-locked loop) configurations are unchanged.

D Reserved
0 0000 00 OO0OOOTOOT OOU OO OOTODTOUOO0O FI E
0 22 23 30 31

Figure 2-10. Instruction Cache Throttling Control Register (ICTC)
Table 2-10 describes the bit fields for the ICTC register.

Table 2-10. ICTC Bit Settings

Bits Name Description
0-22 — Reserved
23-30 | FI Instruction forwarding interval expressed in processor clocks.

0x00 O clock cycle.
0x01 1 clock cycle

OxFF 255 clock cycles

31 E Cache throttling enable
0 Disable instruction cache throttling.
1 Enable instruction cache throttling.

Instruction cache throttling is enabled by setting ICTC[E] and writing the instruction forwarding
interval into ICTC[FI]. Enabling, disabling, and changing the instruction forwarding interval affect
instruction forwarding immediately.

The ICTC register can be accessed withnitgpr andmfspr instructions using SPR 1019.
2.1.2.7 Thermal Management Registers (THRM1-THRM3)
The on-chip thermal management assist unit provides the following functions:
» Compares the junction temperature against user programmed thresholds
* Generates a thermal management interrupt if the temperature crosses the threshold
» Provides a way for a successive approximation routine to estimate junction temperature

Control and access to the thermal management assist unit is through the priwitgednfspr
instructions to the three THRM registers. THRM1 and THRM2, shown in Figure 2-11, provide the
ability to compare the junction temperature against two user-provided thresholds. Having dual
thresholds allows thermal management software differing degrees of action in reducing junction
temperature. Thermal management can use a single-threshold mode in which the thermal sensor

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-19

IBM Confidential

output is compared to only one threshold in either THRM1 or THRM2.

[:] Reserved
TIN|TIV THRESHOLD 000 o0O0O0OOOOT OO OOUOO0OOO0O0O 0O 0 O0|TDTE|V
0 2 8 9 28 29 30 31

Figure 2-11. Thermal Management Registers 1-2 (THRM1-THRM2)
The bits in THRM1 and THRM2 are described in Table 2-11.

Table 2-11. THRM1-THRM2 Bit Settings

Bits

Field

Description

0

TIN

Thermal management interrupt bit. Read-only. This bit is set if the thermal sensor output crosses
the threshold specified in the SPR. The state of TIN is valid only if TIV is set. The interpretation of
TIN is controlled by TID. See Table 2-12.

TIV

Thermal management interrupt valid. Read-only. This bit is set by the thermal assist logic to
indicate that the thermal management interrupt (TIN) state is valid. See Table 2-12.

Threshold

Threshold that the thermal sensor output is compared to. The range is 0 —127 Cand each bit
represents 1 C Note that this is not the resolution of the thermal sensor.

9-28

Reserved. System software should clear these bits when writing to the THRMn SPRs.

29

TID

Thermal management interrupt direction bit. Selects the result of the temperature comparison to
set TIN and to assert a thermal management interrupt if TIE is set. If TID is cleared, TIN is set and
an interrupt occurs if the junction temperature exceeds the threshold. If TID is set, TIN is set and
an interrupt is indicated if the junction temperature is below the threshold. See Table 2-16 on Page
2-24.

30

TIE

Thermal management interrupt enable. The thermal management interrupt is maskable by the
MSRI[EE] bit. If TIE is cleared and THRMn is valid, the TIN bit records the status of the junction
temperature vs. threshold comparison without causing an exception. This lets system software
successively approximate the junction temperature. See Table 2-16 on Page 2-24.

31

SPR valid bit. Setting this bit indicates the SPR contains a valid threshold, TID and TIE controls
bits. THRM1/2[V] = 1 and THRM3[E] = 1 enables the thermal sensor operation. See Table 2-16 on
Page 2-24.

Page 2-20

Version 1.2

IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

If an mtspr affects a THRM register that contains operating parameters for an ongoing comparison
during operation of the thermal assist unit, the respective TIV bits are cleared and the comparison
is restarted. Changing THRM3 forces the TIV bits of both THRM1 and THRM2 to 0, and restarts
the comparison if THRMS3[E] is set.

Examples of valid THRM1/THRM2 bit settings are shown in Table 2-12.
Table 2-12. Valid THRM1/THRM2 Bit Settings

TN | TVE | TID | TIE | Vv Description
X X X X 0 | Invalid entry. The threshold in the SPR is not used for comparison.
X X X 0 1 | Disable thermal management interrupt assertion.
X X 0 X 1 | Set TIN and assert thermal management interrupt if TIE = 1 and the junction

temperature exceeds the threshold.

X X 1 X 1 | Set TIN and assert thermal management interrupt if TIE = 1 and the junction
temperature is less than the threshold.

X 0 X X 1 | The state of the TIN bit is not valid.

0 1 0 X 1 | The junction temperature is less than the threshold and as a result the thermal
management interrupt is not generated for TIE = 1.

1 1 0 X 1 | The junction temperature is greater than the threshold and as a result the thermal
management interrupt is generated if TIE = 1.

0 1 1 X 1 | The junction temperature is greater than the threshold and as a result the thermal
management interrupt is not generated for TIE = 1.

1 1 1 X 1 | The junction temperature is less than the threshold and as a result the thermal
management interrupt is generated if TIE = 1.

Note:
L TIN and TIV are read-only status bits.

The THRM3 register, shown in Figure 2-12, is used to enable the thermal assist unit and to control
the comparator output sample time. The thermal assist logic manages the thermal management
interrupt generation and time-multiplexed comparisons in dual-threshold mode as well as other
control functions.

D Reserved
0o 0o 0o 0o 00 00 0O O OOTUOUOUOTUOOO Sampled Interval Timer Value E
0 17 18 30 31

Figure 2-12. Thermal Management Register 3 (THRM3)

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-21

IBM Confidential

The bits in THRM3 are described in Table 2-13.
Table 2-13. THRM3 Bit Settings

Bits Name Description

0-17 — Reserved for future use. System software should clear these bits when writing to the THRMS3.

18-30 | SITV Sample interval timer value. Number of elapsed processor clock cycles before a junction
temperature vs. threshold comparison result is sampled for TIN bit setting and interrupt
generation. This is necessary due to the thermal sensor, DAC, and the analog comparator
settling time being greater than the processor cycle time. The value should be configured to allow
a sampling interval of 20 microseconds.

31 E Enables the thermal sensor compare operation if either THRM1[V] or THRM2[V] is set.

The THRM registers can be accessed withrttispr andmfspr instructions using the following SPR
numbers:

« THRM1is SPR 1020
« THRMZ2is SPR 1021
« THRM3is SPR 1022

2.1.2.8 Direct Memory Access (DMA) registers

The pair of DMA registers, DMAU and DMAL, is used to specify and issue a DMA command. A
DMA command specifies the transfer of a contiguous block of data, up to 4 Kbytes, between the
locked cache and external memory. Each DMA command consists of the starting address in locked
cache, the starting address in external memory, the length of the transfer in cache lines, and the
direction of the transfer.

The DMA facility is enabled using the HID2[LCE] bit. When HID2[LCE] = 0, thespr andmfspr
instructions can be used to read and write the DMA registers, but the DMA commands associated
with these registers will be ignored. In particular, the DMA_T and DMA_F bits in DMAL are always
forced to zero in this mode. When HID2[LCE] = 1naspr to DMAL with the DMA_F bit = 1 will

cause the DMA command queue to be flushed, otherwmespr DMAL with the DMA_T bit=1

will cause the DMA command specified in the DMA registers to be added to the DMA command
queue.

Figure 2-13 and Figure 2-14 on Page 2-23 show the format of the upper and lower DMA registers.

MEM_ADDR DMA_LEN_U

0 26 27 31

Figure 2-13. Direct Memory Access Upper (DMAU) register

Page 2-22 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

DMA_F
DMA_LD DMA_T
| DMA_LEN_L
I

LC_ADDR
0 26 27 28 29 30 31

Figure 2-14. Direct Memory Access Lower (DMAL) register

| Table 2-14 and Table 2-15 describe the bit fields for the DMA registers.

Table 2-14. DMAU Bit Settings

Bits Name Description

0-26 MEM_ADDR High order address bits of starting address in external memory of the DMA transfer. The
low order address bits are zero, forcing the starting address to be cache line aligned.

27-31 | DMA_LEN_U | High order bits of transfer length, in cache lines. Low order bits are in DMAL.

Table 2-15. DMAL Bit Settings

Bits Name Description

0-26 LC_ADDR High order address bits of starting address in locked cache of the DMA transfer. The low
order address bits are zero, forcing the starting address to be cache line aligned.

27 DMA_LD DMA load command
0 Store - transfer from locked cache to external memory
1 Load - transfer from external memory to locked cache

28-29 | DMA_LEN_L Low order bits of transfer length, in cache lines. High order bits are in DMAU.

30 DMA_T Trigger bit
0 DMA command inactive.
1 mtspr DMAL instruction with this bit active will enqueue this DMA command.

31 DMA_F Flush bit
0 Normal DMA operation.
1 mtspr DMAL instruction with this bit active will flush the DMA queue.

DMAU can be accessed withtspr andmfspr using SPR 922. DMAL can be accessed wnittspr
andmfspr using SPR 923.

2.1.2.9 Graphics Quantization Registers (GQRS)

The eight graphics quantization registers, GQRO to GQR?7, are used to specify the data type and
scaling factor used to convert operands in paired single quantized load and store instructions. The
specific GQR used for a particular instruction is specified by the three bit | field in the instruction.
Figure 2-15 shows the format of a GQR.

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-23

IBM Confidential

[| Reserved
00 LD_SCALE 00 0 0 O] LDTYPE 0 0 ST_SCALE 0 0 0 0 O ST_TYPE
01 2 7 8 12 13 15 16 17 18 23 24 28 29 31

Figure 2-15. Graphics Quantization Register

Table 2-16 describes the bit fields for the GQR registers, and Table 2-17 lists the encoding of the type
fields in the GQR for the various quantized data types.

Table 2-16. Graphics Quantization Register Bit Settings

Bits Name Description
0-1 — Reserved
2-7 LD_SCALE Scale value used by a load instruction.
8-12 — Reserved
13-15 LD_TYPE Type of operand in memory to be converted by a load instruction. See Table 2-22 on
Page 2-31.
16-17 | — Reserved

18-23 ST_SCALE Scale value used by a store instruction.

24-28 | — Reserved
29-31 ST_TYPE Type of operand resulting from a conversion by a store instruction. See Table 2-22 on
Page 2-31.

Table 2-17. Quantized Data Types

Code Type
0 single-precision floating-point (no conversion)

1-3 reserved

4 unsigned 8 bit integer

5 unsigned 16 bit integer

6 signed 8 bit integer

7 signed 16 bit integer

GQRO through GQR7 can be accessed witkspr and mfspr using SPR 912 through 919,
respectively.
2.1.2.10 Write Pipe Address Register (WPAR)

The write pipe address register, shown in Figure 2-16 holds the physical address of operands to be
gathered by the write gather pipe facility.mtspr to the WPAR establishes the gather address and

Page 2-24 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

resets the state of the facility, discarding any data in the bufferfgpor WPAR is used to read the
BNE bit to check for any outstanding data transfers.

D Reserved
GB_ADDR 0 0 0o O|BNE
0 26 27 30 31
Figure 2-16 . Write Pipe Address Register (WPAR)
Table 2-18 describes the bit fields for the WPAR register.
Table 2-18. Write Pipe Address Register Bit Settings
Bits Name Description
0-26 GB_ADDR High order address bits of the data to be gathered. The low order address bits are zero,

forcing the address to be cache line aligned. Note that only these 27 bits are compared
to determine if a non-cacheable store will be gathered. If the address of the
non-cacheable store has a non-zero value in the low order five bits, incorrect data will be

gathered.
27-30 | — Reserved
31 BNE Buffer not empty (read only)

WPAR can be accessed witttspr andmfspr using SPR 921.

2.1.2.11 L2 Cache Control Register (L2CR)
The L2 cache control register, shown in Figure 2-17, is a supervisor-level, implementation-specific
SPR used to configure and operate the L2 cache. It is cleared by a hard reset or power-on reset.

L2wT D Reserved

L2CE L2DO L2TS L2IP
L2E 00 0 0O 0O L2I] o 0o 0o 00 000 0 0 o0O0o0U OO 0O O

0 1 2 8 9 10 11 12 13 14 30 31

Figure 2-17 . L2 Cache Control Register (L2CR)

The L2 cache interface is described in Chapter 9, "L2 Cache, Locked D-Cache, DMA and Write
Gather Pipe" in this manual,
The L2CR bits are described in Table 2-19.

Table 2-19. L2CR Bit Settings

Bit Name Function

0 L2E L2 enable. Enables L2 cache operation (including snooping) starting with the next transaction the L2
cache unit receives. Before enabling the L2 cache, all other L2CR bits must be set appropriately. The
L2 cache may need to be invalidated globally.

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-25

IBM Confidential

Table 2-19. L2CR Bit Settings (Continued)

Bit

Name

Function

L2CE

L2 Checkstop enable
0 ECC double bit error does not cause a Machine Check.
1 ECC double bit error causes a machine check exception.

Reserved

L2DO

L2 data-only. Setting this bit enables data-only operation in the L2 cache. For this operation, only
transactions from the L1 data cache can be cached in the L2 cache, which treats all transactions from
the L1 instruction cache as cache-inhibited (bypass L2 cache, no L2 checking done). This bit is
provided for L2 testing only.

10

L2l

L2 global invalidate. Setting L2l invalidates the L2 cache globally by clearing the L2 bits including
status bits. This bit must not be set while the L2 cache is enabled.

11

Reserved

12

L2WT

L2 write-through. Setting L2WT selects write-through mode (rather than the default write-back mode)
so all writes to the L2 cache also write through to the 60x bus. For these writes, the L2 cache entry is
always marked as clean (valid unmodified) rather than dirty (valid modified). This bit must never be
asserted after the L2 cache has been enabled as previously-modified lines can get remarked as
clean during normal operation.

13

L2TS

L2 test support. Setting L2TS causes cache block pushes from the L1 data cache that result from
dcbf and dcbst instructions to be written only into the L2 cache and marked valid, rather than being
written only to the 60x bus and marked invalid in the L2 cache in case of hit. This bit allows a

dcbz /debf instruction sequence to be used with the L1 cache enabled to easily initialize the L2 cache
with any address and data information. This bit also keeps dcbz instructions from being broadcast on
the 60x and single-beat cacheable store misses in the L2 from being written to the 60x bus.

14-30

Reserved

31

L21P

L2 global invalidate in progress (read only). This read-only bit indicates whether an L2 global
invalidate is occurring. It should be monitored after an L2 global invalidate has been initiated by the
L2l bit to determine when it has completed.

The L2CR register can be accessed withnitegpr andmfspr instructions using SPR 1017.

Page 2-26

Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

2.2 Operand Conventions

This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture—UISA and VEA. Detailed descriptions of conventions used for storing
values in registers and memory, accessing PowerPC registers, and representation of data in these
registers can be found in Chapter 3, “Operand Conventions" irPtdveerPC Microprocessor

Family: The Programming Environmentsanual.

2.2.1 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address of the
corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store multiple
and load/store string instructions, a sequence of bytes or words. The address of a memory operand
is the address of its first byte (that is, of its lowest-numbered byte). Operand length is implicit for
each instruction.

2.2.2 Alignment and Misaligned Accesses

The operand of a single-register memory access instruction has an alignment boundary equal to its
length. An operand’s address is misaligned if it is not a multiple of its width. Operands for
single-register memory access instructions have the characteristics shown in Table 2-20. Although
not permitted as memory operands, quad words are shown because quad-word alignment is
desirable for certain memory operands.

Table 2-20. Memory Operands

Operand Length ,A]cfjcirl[iéﬁ-GBdl]
Byte 8 hits XXXX
Half word 2 bytes xxx0
Word 4 bytes xx00
Double word 8 bytes x000
Quad word 16 bytes 0000

Note: An “X” in an address bit position indicates that the bit can
be 0 or 1 independent of the state of other bits in the address.

The concept of alignment is also applied more generally to data in memory. For example, a 12-byte
data item is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition, alignment
may affect performance. For single-register memory access instructions, the best performance is
obtained when memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aligned.

Gekko does not provide hardware support for floating-point memory that is not word-aligned. If a
floating-point operand is not aligned, Gekko invokes an alignment exception, and it is left up to
software to break up the offending storage access operation appropriately. In addition, some
non-double-word—-aligned memory accesses suffer performance degradation as compared to an
aligned access of the same type.

In general, floating-point word accesses should always be word-aligned and floating-point
double-word accesses should always be double-word-aligned. Frequent use of misaligned

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-27

IBM Confidential

accesses is discouraged since they can degrade overall performance.

2.2.3 Floating-Point Operand and Execution Models—UISA

The IEEE 754 standard defines conventions for 64- and 32-bit arithmetic. The standard requires that
single-precision arithmetic be provided for single-precision operands. The standard permits
double-precision arithmetic instructions to have either (or both) single-precision or double-precision
operands, but states that single-precision arithmetic instructions should not accept double-precision
operands.

The PowerPC UISA follows these guidelines:

* Double-precision arithmetic instructions may have single-precision operands but always
produce double-precision results.

» Single-precision arithmetic instructions require all operands to be single-precision and always
produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done explicitly by
software, while conversion from single- to double-precision is done implicitly by the processor.

All PowerPC implementations provide the equivalent of the execution models described in Section
3.3 of thePowerPC Microprocessor Family: The Programming Environmemdsiual to ensure that
identical results are obtained. The definition of the arithmetic instructions for infinities, denormalized
numbers, and NaNs follow conventions described in that section.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic uses two
additional bit positions to avoid potential transient overflow conditions. An extra bit is required when
denormalized double-precision numbers are prenormalized. A second bit is required to permit
computation of the adjusted exponent value in the following examples when the corresponding
exception enable bit is one:

* Underflow during multiplication using a denormalized operand
* Overflow during division using a denormalized divisor

Gekko provides hardware support for all single- and double-precision floating-point operations for
most value representations and all rounding modes. This architecture provides for hardware to
implement a floating-point system as defined in ANSI/IEEE standard 754-18Bg, Standard for

Binary Floating Point ArithmeticDetailed information about the floating-point execution model for
non-paired single mode (HID2[PSE] = 0) can be found in Chapter 3, “Operand Conventions" in the
PowerPC Microprocessor Family: The Programming Environmerdaual.

Gekko supports non-IEEE mode whenever FPSCR[29] is set. In this mode, denormalized numbers,
NaNs, and some IEEE invalid operations are treated in a non-IEEE conforming manner. This is
accomplished by delivering results that approximate the values required by the IEEE standard.

In addition to single- and double-precision operands, Gekko supports a third format, called paired
single, when HID2[PSE] = 1. (Note that HID2[PSE] can be changed only when the i-cache is
invalidated and disabled.) Paired single operands are represented in the 64 bit floating-point registers
as two 32 bit single-precision floating-point values.

We will refer to the single-precision floating-point value in the high order word as ps0, and that in the
low order word as ps1.

Page 2-28 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Figure 2-18 shows the format of an FPR containing a paired single operand.

ps0 psl
0 31 32 63

Figure 2-18 . Floating-Point Register containing a paired single operand

Most of the new instructions for manipulating these operands allow both values to be processed in
parallel in the execution unit. For example, the paired single multiply-add instrugsom@dd
multiplies ps0 in frA by psO0 in frC, then adds it to psO in frB to get a result that is placed in psO in
frD. Simultaneously, the same operations are applied to the corresponding psl values. Note that
paired single instructions, including loads, stores and moves, cause a floating-point unavailable
exception if execution is attempted when MSR[FP] = 0.

Many of the new paired single instructions perform an operation comparable to one of the existing
double-precision instructions. For exampladd adds double-precision operands from two
registers and places the result into a third register. In the corresponding paired single instruction,
ps_add two such operations are performed in parallel, one on the ps0 values, and one on the psl1
values. Several other paired single instructions are supported that do not have exact analogs to
existing double-precision instructions. See Chapter 12, "Instruction Set" in this manual for a
detailed description of the paired single instructions.

Most paired single instructions produce a pair of result values. The Floating-Point Status and
Control Register (FPSCR) contains a number of status bits that are affected by the floating-point
computation. FPSCR bits 15-19 are the result bits. They are determined by the result of the psO
computation, except fggs_cmpul ps_cmpolandps_sumlwhere the result bits are determined

by the result of the ps1l computation.The FPSCR bits that reflect exceptional conditions in the
computation are bits 0-14, and 22-23. For paired single instructions that affect any of these bits,
either the psO or the psl computation can set the bit. For the Condition Register (CR), the field
specified bycrfD is affected by the psO computation fos_cmpoGandps_cmpuQ and by the ps1
computation forps_cmpolandps_cmpul For all other paired single instructions, when RC=1,

the CRL1 field of the CR is set from FPSCR bits 0-3, which can be set by either the ps0 or the psl
computation.

When in paired single mode (HID2[PSE] = 1), all the double-precision instructions are still valid,
and execute as in non-paired single mode. In paired single mode, all the single-precision
floating-point instructionsfédds, fsubs, fmuls, fdivs, fmadds, fmsubs fnmadds, fnmsubs, fres,

frsp) are valid, and operate on the psO operand (the double-precision operand, in thefcgse of

of the specified registers. The psl value in the destination register is duplicated from the psO result
in such an operation. (See Page 12-85 for an exception &ispux The load floating-point single
instructions [fs[u][x]) load a single-precision floating-point value into the ps0 position of the FPR,
and duplicate that value in the ps1 position. The store floating-point single instrudttsps][x])

store the ps0 value only.

The relationship between the internal format for paired single operands and that for double-
precision floating-point operands is unspecified. It is a programming error to apply
double-precision instructions to paired single operands and vice versa. In particular, loading an
operand as a double and then storing it as a paired single will not yield the original value back in
memory. This presents a problem when it is desired to save the state of FPRs so that they can later
be restored, particularly in the case of an interrupt.

The solution to this problem is that the following sequence of store and load instructions, executed

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-29

IBM Confidential

when HID2[PSE] = 1, is guaranteed to restore the state of floating-point refgiXtezgardless of its
format. Assume GQRO contains the value 0, indicating that no conversion takes place on paired single
guantized loads and stores. Then save each register using the instruction pair:

psq_st frX,0(r1),0,0

stfd fr X,8(r1)

and restore each register using the instruction pair:

psq_| frX,0(r1),0,0

Ifd fr X,8(r1)

Note that restoration of the ps1 value of a paired single operand is not exact in the following sense. If
the psl value is a Denorm, it will get stored as the value 0, and so its restored value will also be the
value 0.

Programming Note—Conversion from a double-precision operand to a single-precision operand
when HID2[PSE] = 1 is accomplished usifrgp, which takes a double-precision operand as input

and produces a single-precision result in psO of the destination register. (See page 12-85.) Conversion
from a single-precision operand to a double-precision operand, on the other hand, requires a software
conversion routine, in general. However, the Gekko processor supports the following performance
enhancement to implement this conversion. Any single-precision value in ps0 can be used as the input
operand to a double-precision floating-point instruction, including a store.

Note that when HID2[PSE] = 1, tHetiw andfctiwz instructions give the expected result when used

with the stfiwx instruction to store the resultant integer. Since these are are both classified as
double-precision instructions, the integer result is placed in the low order word of the
double-precision operand in the destination FPR. Like other double-precision results, these cannot
then be operated on or stored using paired single operations.

Each of the paired single operands or result values behave the same way as single-precision operands
or results in the following two tables. Table 2-21 summarizes the conditions and mode behavior for
operands.

Table 2-21. Floating-Point Operand Data Type Behavior

Operand A Operand B Operand C IEEE Mode Non-IEEE Mode
Data Type Data Type Data Type (NI'=0) (NI'=1)
Single denormalized Single denormalized Single denormalized Normalize all three | Zero all three
Double denormalized | Double denormalized | Double denormalized
Single denormalized Single denormalized Normalized or zero Normalize Aand B | Zero A and B
Double denormalized | Double denormalized
Normalized or zero Single denormalized Single denormalized Normalize Band C | ZeroB and C
Double denormalized | Double denormalized
Single denormalized Normalized or zero Single denormalized Normalize Aand C | Zero Aand C
Double denormalized Double denormalized
Single denormalized Normalized or zero Normalized or zero Normalize A Zero A
Double denormalized
Normalized or zero Single denormalized Normalized or zero Normalize B Zero B
Double denormalized
Normalized or zero Normalized or zero Single denormalized Normalize C Zero C
Double denormalized

Page 2-30

Version 1.2

IBM Confidential

IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Table 2-21. Floating-Point Operand Data Type Behavior (Continued)

Operand A Operand B Operand C IEEE Mode Non-IEEE Mode
Data Type Data Type Data Type (NI'=0) (NI=1)
Single QNaN Don't care Don't care QNaN? OQNaN?
Single SNaN
Double QNaN
Double SNaN
Don't care Single QNaN Don't care QNaN? QNaN?
Single SNaN
Double QNaN
Double SNaN
Don'’t care Don't care Single QNaN OQNaN? OQNaN?
Single SNaN
Double QNaN
Double SNaN
Single normalized Single normalized Single normalized Do the operation Do the operation
Single infinity Single infinity Single infinity
Single zero Single zero Single zero
Double normalized Double normalized Double normalized
Double infinity Double infinity Double infinity
Double zero Double zero Double zero

1 Prioritize according to Chapter 3, “Operand Conventions” in the PowerPC Microprocessor Family: The
Programming Environments manual.

| Table 2-22 summarizes the mode behavior for results.

Table 2-22. Floating-Point Result Data Type Behavior

Precision Data Type IEEE Mode (NI = 0) Non-IEEE Mode (NI = 1)
Single Denormalized Return single-precision denormalized number | Return zero.
with trailing zeros.
Single Normalized, Return the result. Return the result.
infinity, zero
Single QNaN, SNaN Return QNaN. Return QNaN.
Single INT Place integer into low word of FPR. If (Invalid Operation)
then
Place (0x8000) into FPR[32-63]
else
Place integer into FPR[32—63].
Double Denormalized Return double-precision denormalized number. | Return zero.
Double Normalized, Return the result. Return the result.
infinity, zero
Double QNaN, SNaN Return QNaN. Return QNaN.
Double INT Not supported by Gekko Not supported by Gekko

Chapter 2. Programming Model

IBM Confidential

5/25/00 Page 2-31

IBM Confidential

2.3 Instruction Set Summary

This chapter describes instructions and addressing modes defined for Gekko. These instructions are
divided into the following functional categories:

* Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, "Integer Instructions" on Page 2-37.

* Floating-point instructions—These include floating-point arithmetic instructions
(single-precision, double-precision and paired single), as well as instructions that affect the
floating-point status and control register (FPSCR). For more information, see Section 2.3.4.2,
"Floating-Point Instructions” on Page 2-41.

» Load and store instructions—These include integer and floating-point (including quantized)
load and store instructions. For more information, see Section 2.3.4.3, "Load and Store
Instructions” on Page 2-46.

* Flow control instructions—These include branching instructions, condition register logical
instructions, trap instructions, and other instructions that affect the instruction flow. For more
information, see Section 2.3.4.4, "Branch and Flow Control Instructions" on Page 2-58.

* Processor control instructions—These instructions are used for synchronizing memory
accesses and managing caches, TLBs, and segment registers. For more information, see
Section 2.3.4.6, "Processor Control Instructions—UISA" on Page 2-61, Section 2.3.5.1,
"Processor Control Instructions—VEA" on Page 2-65, and Section 2.3.6.2, "Processor
Control Instructions—OEA" on Page 2-71.

* Memory synchronization instructions—These instructions are used for memory
synchronizing. For more information, see Section 2.3.4.7, "Memory Synchronization
Instructions—UISA" on Page 2-64 and Section 2.3.5.2, "Memory Synchronization
Instructions—VEA" on Page 2-66.

* Memory control instructions—These instructions provide control of caches, TLBs, and
segment registers. For more information, see Section 2.3.5.3, "Memory Control
Instructions—VEA" on Page 2-67 and Section 2.3.6.3, "Memory Control
Instructions—OEA" on Page 2-71.

» External control instructions—These include instructions for use with special input/output
devices. For more information, see Section 2.3.5.4, "Optional External Control Instructions™”
on Page 2-69.

NOTE: This grouping of instructions does not necessarily indicate the execution unit that
processes a particular instruction or group of instructions. That information, which is
useful for scheduling instructions most effectively, is provided in Chapter 6, "Instruction
Timing" in this manual.

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision, double-precision and paired single floating-point operands. The PowerPC
architecture uses instructions that are four bytes long and word-aligned. It provides for byte,
half-word, and word operand loads and stores between memory and a set of 32 general-purpose
registers (GPRs). It provides for word and double-word operand loads and stores between memory
and a set of 32 floating-point registers (FPRSs). In addition, the Gekko implementation provides for
byte, half word, word and double word quantized loads and stores between memory and the FPRs.
Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory
location in a computation and then modify the same or another memory location, the memory
contents must be loaded into a register, modified, and then written to the target location using load
and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands. To

Page 2-32 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

simplify assembly language programming, a set of simplified mnemonics and symbols is provided
for some of the frequently-used instructions; see Appendix F, “Simplified Mnemonics,” in the
PowerPC Microprocessor Family: The Programming Environmaemésual for a complete list of
simplified mnemonics. Note that the architecture specification refers to simplified mnemonics as
extended mnemonics. Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in that
document.

2.3.1 Classes of Instructions
The Gekko instructions belong to one of the following three classes:

* Defined
* lllegal
« Reserved

Note that while the definitions of these terms are consistent among the PowerPC processors, the
assignment of these classifications is not. For example, PowerPC instructions defined for 64-bit
implementations are treated as illegal by 32-bit implementations such as Gekko.

The class is determined by examining the primary opcode and the extended opcode, if any. If the
opcode, or combination of opcode and extended opcode, is not that of a defined instruction or of a
reserved instruction, the instruction is illegal.

Instruction encodings that are now illegal may become assigned to instructions in the architecture
or may be reserved by being assigned to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on execution can
be said to be boundedly undefined. If a user-level program executes the incorrectly coded
instruction, the resulting undefined results are bounded in that a spurious change from user to
supervisor state is not allowed, and the level of privilege exercised by the program in relation to
memory access and other system resources cannot be exceeded. Boundedly-undefined results for
a given instruction may vary between implementations, and between execution attempts in the
same implementation.

2.3.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in all PowerPC implementations, except as
stated in the instruction descriptions in Chapter 12, "Instruction Set" in this manual. Gekko
provides hardware support for all instructions defined for 32-bit implementations.

It does not support the optiorfagrt, fsqrts, andtlbia instructions.

A PowerPC processor invokes the illegal instruction error handler (part of the program exception)
when the unimplemented PowerPC instructions are encountered so they may be emulated in
software, as required. Note that the architecture specification refers to exceptions as interrupts.

A defined instruction can have invalid forms. Gekko provides limited support for instructions
represented in an invalid form.

2.3.1.3 lllegal Instruction Class

lllegal instructions can be grouped into the following categories:

* Instructions not defined in the PowerPC architecture.The following primary opcodes are
defined as illegal but may be used in future extensions to the architecture:1, 5, 6, 9, 22

Future versions of the PowerPC architecture may define any of these instructions to
perform new functions.

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-33

IBM Confidential

» Instructions defined in the PowerPC architecture but not implemented in a specific PowerPC
implementation. For example, instructions that can be executed on 64-bit PowerPC processors
are considered illegal by 32-bit processors such as Gekko.

The following primary opcodes are defined for 64-bitimplementations only and are illegal on
Gekko:2, 30, 58, 62

» Allunused extended opcodes are illegal. The unused extended opcodes can be determined
from information in Section A.1 and Section 2.3.1.4, "Reserved Instruction Class" on Page
2-34. Notice that extended opcodes for instructions defined only for 64-bit implementations
are illegal in 32-bit implementations, and vice versa.

The following primary opcodes have unused extended opcodes.

4,17,19, 31,59, 63 (Primary opcodes 30 and 62 are illegal for all 32-bit implementations, but
as 64-bit opcodes they have some unused extended opcodes.)

* An instruction consisting of only zeros is guaranteed to be an illegal instruction. This
increases the probability that an attempt to execute data or uninitialized memory invokes the
system illegal instruction error handler (a program exception). Note that if only the primary
opcode consists of all zeros, the instruction is considered a reserved instruction, as described
in Section 2.3.1.4.

Gekko invokes the system illegal instruction error handler (a program exception) when it detects any
instruction from this class or any instructions defined only for 64-bit implementations.

See Section 4.5.7, "Program Exception (0x00700)" on Page 4-19 for additional information about
illegal and invalid instruction exceptions. Except for an instruction consisting of binary zeros, illegal
instructions are available for additions to the PowerPC architecture.

2.3.1.4 Reserved Instruction Class

Reserved instructions are allocated to specific implementation-dependent purposes not defined by the
PowerPC architecture. Attempting to execute an unimplemented reserved instruction invokes the
illegal instruction error handler (a program exception). See Section 4.5.7, "Program Exception
(Ox00700)" on Page 4-19 for information about illegal and invalid instruction exceptions.

The PowerPC architecture defines four types of reserved instructions:

* Instructions in the POWER architecture not part of the PowerPC UISA. For details on
POWER architecture incompatibilities and how they are handled by PowerPC processors, see
Appendix B, “POWER Architecture Cross Reference" inRbeverPC Microprocessor
Family: The Programming Environmentsanual.

* Implementation-specific instructions required for the processor to conform to the PowerPC
architecture (none of these are implemented in Gekko)

» All other implementation-specific instructions
» Architecturally-allowed extended opcodes

2.3.1.5 Gekko’s implementation-specific instructions

The Gekko processor includes extensions to the PowerPC architecture to enhance the performance of
graphics applications. The new instructions include a new cache control instrubtion, |, four
guantized load and four quantized store instructions, and 29 paired single floating-point instructions.
These new instructions are implemented using primary opcodes 4, 56, 57, 60 and 61. See Chapter 9
for a description of the graphics enhancement features and Chapter 12, "Instruction Set" in this
manual for a detailed description of the new instructions.

Page 2-34 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

2.3.2 Addressing Modes

This section provides an overview of conventions for addressing memory and for calculating
effective addresses as defined by the PowerPC architecture for 32-bit implementations. For more
detailed information, see “Conventions” in Chapter 4, “Addressing Modes and Instruction Set
Summary" of thePowerPC Microprocessor Family: The Programming Environmerdaual.

2.3.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the processor
when it executes a memory access or branch instruction or when it fetches the next sequential
instruction.

Bytes in memory are numbered consecutively starting with zero. Each number is the address of the
corresponding byte.

2.3.2.2 Memory Operands

Memory operands may be bytes, half words, words, or double words, or, for the load/store multiple
and load/store string instructions, a sequence of bytes or words. The address of a memory operand
is the address of its first byte (that is, of its lowest-numbered byte). Operand length is implicit for
each instruction. The PowerPC architecture supports both big-endian and little-endian byte
ordering. The default byte and bit ordering is big-endian. See “Byte Ordering" in Chapter 3,
“Operand Conventions” of theowerPC Microprocessor Family: The Programming Environments
manual for more information about big- and little-endian byte ordering.

The operand of a single-register memory access instruction has a natural alignment boundary equal
to the operand length. In other words, the “natural” address of an operand is an integral multiple of
the operand length. A memory operand is said to be aligned if it is aligned at its natural boundary;
otherwise it is misaligned.

For a detailed discussion about memory operands, see Chapter 3, “Operand Conventions” of the
PowerPC Microprocessor Family: The Programming Environmerdsual.

2.3.2.3 Effective Address Calculation

An effective address is the 32-bit sum computed by the processor when executing a memory access
or branch instruction or when fetching the next sequential instruction. For a memory access
instruction, if the sum of the effective address and the operand length exceeds the maximum
effective address, the memory operand is considered to wrap around from the maximum effective
address through effective address 0, as described in the following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned binary
arithmetic. A carry from bit O is ignored.

Load and store operations have the following modes of effective address generation:
« EA =(rA|0) + offset (including offset = 0) (register indirect with immediate index)
« EA=(rA|0) +rB (register indirect with index)

Refer to Section 2.3.4.3.2, "Integer Load and Store Address Generation” on Page 2-47 for a
detailed description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:
* Immediate
* Link register indirect
* Count register indirect

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-35

IBM Confidential

2.3.2.4 Synchronization
The synchronization described in this section refers to the state of the processor that is performing the
synchronization.

2.3.2.4.1 Context Synchronization

The System Callg0) and Return from Interruptfi) instructions perform context synchronization by
allowing previously issued instructions to complete before performing a change in context. Execution
of one of these instructions ensures the following:

* No higher priority exception existsd).
» All previous instructions have completed to a point where they can no longer cause an

exception. If a prior memory access instruction causes direct-store error exceptions, the
results are guaranteed to be determined before this instruction is executed.

* Previous instructions complete execution in the context (privilege, protection, and address
translation) under which they were issued.

* Theinstructions following thecor rfi instruction execute in the context established by these
instructions.

2.3.2.4.2 Execution Synchronization

An instruction is execution synchronizing if all previously initiated instructions appear to have
completed before the instruction is initiated or, in the casgyat andisync, before the instruction
completes. For example, the Move to Machine State Regigtémgr) instruction is execution
synchronizing. It ensures that all preceding instructions have completed execution and cannot cause
an exception before the instruction executes, but does not ensure subsequent instructions execute in
the newly established environment. For example, ifrtitmsr sets the MSR[PR] bit, unless @&ync
immediately follows thentmsr instruction, a privileged instruction could be executed or privileged
access could be performed without causing an exception even though the MSR[PR] bit indicates user
mode.

2.3.2.4.3 Instruction-Related Exceptions

There are two kinds of exceptions in Gekko—those caused directly by the execution of an instruction
and those caused by an asynchronous event (or interrupts). Either may cause components of the
system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

* Anattempt to execute an illegal instruction causes the illegal instruction (program exception)
handler to be invoked. Note that tthebz_|instruction is illegal when HID2[LCE] = 0, the
psq_l, psq_lu, psq_standpsq_stuinstructions are illegal when HID2[PSQE] = 0 or
HID2[PSE] = 0, and all other paired single instructions are illegal when HID2[PSE] = 0. An
attempt by a user-level program to execute the supervisor-level instructions listed below
causes the privileged instruction (program exception) handler to be invoked. Gekko provides
the following supervisor-level instructiondcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr,
mtspr, mtsr, mtsrin, rfi, tibie, andtlbsync. Note that the privilege level of tmefspr and
mtspr instructions depends on the SPR encoding.

* Any mtspr, mfspr, or mftb instruction with an invalid SPR (or TBR) field causes an illegal
type program exception. Likewise, a program exception is taken if user-level software tries to
access a supervisor-level SPR.#tspr instruction executing in supervisor mode (MSR[PR]
= 0) with the SPR field specifying HID1 or PVR (read-only registers) executes as a no-op.

Page 2-36 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

* An attempt to access memory that is not available (page fault) causes the ISI or DSI
exception handler to be invoked.

* The execution of ascinstruction invokes the system call exception handler that permits a
program to request the system to perform a service.

» The execution of a trap instruction invokes the program exception trap handler.

* The execution of an instruction that causes a floating-point exception while exceptions are
enabled in the MSR invokes the program exception handler.

A detailed description of exception conditions is provided in Chapter 4, "Exceptions" in this
manual.
2.3.3 Instruction Set Overview

This section provides a brief overview of the PowerPC instructions implemented in Gekko and
highlights any special information with respect to how Gekko implements a particular instruction.
Note that the categories used in this section correspond to those used in Chapter 4, “Addressing
Modes and Instruction Set Summary” in thRewerPC Microprocessor Family: The Programming
Environmentsmanual. These categorizations are somewhat arbitrary and are provided for the
convenience of the programmer and do not necessarily reflect the PowerPC architecture
specification.

Note that some instructions have the following optional features:

* CR Update—The dot)(suffix on the mnemonic enables the update of the CR.
» Overflow option—Theo suffix indicates that the overflow bit in the XER is enabled.

2.3.4 PowerPC UISA Instructions

The PowerPC UISA includes the base user-level instruction set (excluding a few user-level cache
control, synchronization, and time base instructions), user-level registers, programming model,
data types, and addressing modes. This section discusses the instructions defined in the UISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:

Integer arithmetic instructions
Integer compare instructions
Integer logical instructions

Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into GPRs,
into the integer exception register (XER), and into condition register (CR) fields.

2.3.4.1.1 Integer Arithmetic Instructions
Table 2-23 lists the integer arithmetic instructions for the PowerPC processors.

Table 2-23. Integer Arithmetic Instructions

Name Mnemonic Syntax
Add Immediate addi r D,rA,SIMM
Add Immediate Shifted addis r D,rA,SIMM
Add add (add. addo addo.) rD,rA,rB

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-37

IBM Confidential

Table 2-23. Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax
Subtract From subf (subf. subfo subfo.) rD,rA,rB
Add Immediate Carrying addic r D,rA,SIMM
Add Immediate Carrying and Record addic. r D,rA,SIMM
Subtract from Immediate Carrying subfic r D,rA,SIMM
Add Carrying addc (addc. addco addco.) rD,rA,rB
Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB
Add Extended adde (adde. addeo addeo.) rD,rA,rB
Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB
Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA
Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA
Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA
Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA
Negate neg (neg. nego nego.) rD,rA
Multiply Low Immediate mulli r D,rA,SIMM
Multiply Low mullw (mullw. mullwo mullwo.) rD,rA,rB
Multiply High Word mulhw (mulhw.) rD,rA,rB
Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB
Divide Word divw (divw. divwo divwo.) rD,rA,rB
Divide Word Unsigned divwu divwu. divwuo divwuo. r| D,rArB

Although there is no Subtract Immediate instruction, its effect can be achieved by usadgian
instruction with the immediate operand negated. Simplified mnemonics are provided that include this
negation. Thesubf instructions subtract the second operand)(from the third operandr@®).
Simplified mnemonics are provided in which the third operand is subtracted from the second operand.
See Appendix F, “Simplified Mnemonics,” in théowerPC Microprocessor Family: The
Programming Environmentsanual for examples.

The UISA states that an implementation that executes instructions that set the overflow enable bit
(OE) or the carry bit (CA) may either execute these instructions slowly or prevent execution of the
subsequent instruction until the operation completes. Chapter 6 describes how Gekko handles CR
dependencies. The summary overflow bit (SO) and overflow bit (OV) in the integer exception register
are set to reflect an overflow condition of a 32-bit result. This can happen only when OE = 1.

Page 2-38 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

2.3.4.1.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of register
with either the zero-extended value of the UIMM operand, the sign-extended value of the SIMM
operand, or the contents of registeB. The comparison is signed for thempi and cmp
instructions, and unsigned for tbepli andcmpl instructions.

Table 2-24 summarizes the integer compare instructions.

Table 2-24. Integer Compare Instructions

Name Mnemonic Syntax
Compare Immediate cmpi crf D,L,rA,SIMM
Compare cmp crf D,L,rA,rB
Compare Logical Immediate cmpli crf D,L,rA,UIMM
Compare Logical cmpl crf D,L,rA,rB

ThecrfD operand can be omitted if the result of the comparison is to be placed in CRO. Otherwise
the target CR field must be specifiectiD, using an explicit field number.

For information on simplified mnemonics for the integer compare instructions see Appendix F,
“Simplified Mnemonics,” in the PowerPC Microprocessor Family: The Programming
Environmentsnanual.

2.3.4.1.3 Integer Logical Instructions

The logical instructions shown in Table 2-25 perform bit-parallel operations on the specified
operands. Logical instructions with the CR updating enabled (uses dot suffix) and instructions
andi. and andis. set CR field CRO to characterize the result of the logical operation. Logical
instructions do not affect XER[SO], XER[OV], or XER[CA.

See Appendix F, “Simplified Mnemonics,” in th®owerPC Microprocessor Family: The
Programming Environmentsnanual for simplified mnemonic examples for integer logical
operations.

Table 2-25. Integer Logical Instructions

Name Mnemonic Syntax Implementation Notes
AND Immediate andi. rA,rS,UIMM | —
AND Immediate Shifted andis. rArS,UuiMM | —
OR Immediate ori r A,rS,UIMM | The PowerPC architecture defines ori r0,r0,0 as the

preferred form for the no-op instruction. The dispatcher
discards this instruction (except for pending trace or
breakpoint exceptions).

OR Immediate Shifted oris r A,rS,UMM | —
XOR Immediate Xori rA,rS,UIMM | —
XOR Immediate Shifted xoris r ArS,UIMM | —
AND and (and.) rArS,rB —
OR or (or.) rA,rS,rB —

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-39

IBM Confidential

Table 2-25. Integer Logical Instructions (Continued)

Name Mnemonic Syntax Implementation Notes
XOR xor (xor.) rArS,rB —
NAND nand (nand.) rArS,rB —
NOR nor (nor.) rA,rS,rB —
Equivalent eqv (eqv.) rA;rS,rB —
AND with Complement andc (andc.) rArS,rB —
OR with Complement orc (orc.) rArS,rB —
Extend Sign Byte extsb (extsh.) |rArS —
Extend Sign Half Word extsh (extsh.) |rArS —
Count Leading Zeros Word | cntlzw (cntlzw.) |rA,rS —

2.3.4.1.4 Integer Rotate Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the result, is
returned to a GPR. See Appendix F, “Simplified Mnemonics,” in BosverPC Microprocessor
Family: The Programming Environmentsanual for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost bits of a
register, left justifying or right justifying an arbitrary field, and simple rotates and shifts.

Integer rotate instructions rotate the contents of a register. The result of the rotation is either inserted
into the target register under control of a mask (if a mask bit is 1 the associated bit of the rotated data
is placed into the target register, and if the mask bit is O the associated bit in the target register is

unchanged), or ANDed with a mask before being placed into the target register.
The integer rotate instructions are summarized in Table 2-26.

Table 2-26. Integer Rotate Instructions

Name

Mnemonic

Syntax

Rotate Left Word Immediate then AND with Mask

rlwinm (rlwinm.)

rA,rS,SH,MB,ME

Rotate Left Word then AND with Mask

rivnm (rlwnm.)

rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert

riwimi - (rlwimi.)

rArS,SH,MB,ME

Page 2-40

Version 1.2

IBM Confidential

IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

2.3.4.1.5 Integer Shift Instructions

The integer shift instructions perform left and right shifts. Immediate-form logical (unsigned) shift
operations are obtained by specifying masks and shift values for certain rotate instructions.
Simplified mnemonics (shown in Appendix F, “Simplified Mnemonics,” in tRewerPC
Microprocessor Family: The Programming Environmemianual) are provided to make coding of
such shifts simpler and easier to understand.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision Shifts"
in the PowerPC Microprocessor Family: The Programming Environmengnual. The integer
shift instructions are summarized in Table 2-27.

Table 2-27. Integer Shift Instructions

Name Mnemonic Syntax
Shift Left Word slw (slw.) rA,rS,rB
Shift Right Word srw - (srw.) rA;rS,rB
Shift Right Algebraic Word Immediate srawi (srawi.) rArS,SH
Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

2.3.4.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:
» Floating-point arithmetic instructions
* Floating-point multiply-add instructions
* Floating-point rounding and conversion instructions
* Floating-point compare instructions
» Floating-point status and control register instructions
* Floating-point move instructions

See Section 2.3.4.3, "Load and Store Instructions” on Page 2-46 for information about
floating-point loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE 754 standard,
but requires software support to conform with that standard. All floating-point operations conform
to the IEEE 754 standard, except if software sets the non-IEEE mode FPSCRI[NI].

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-41

IBM Confidential

2.3.4.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 2-28.

Table 2-28. Floating-Point Arithmetic Instructions

Name Mnemonic Syntax

Floating Add (Double-Precision) fadd (fadd.) frD,frAfrB
Floating Add Single fadds (fadds.) frD,frAfrB
Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB
Floating Subtract Single fsubs (fsubs.) frD,frAfrB
Floating Multiply (Double-Precision) fmul (fmul.) frD,frAfrC
Floating Multiply Single fmuls (fmuls.) frD,frAfrC
Floating Divide (Double-Precision) fdiv (fdiv.) frD,frAfrB
Floating Divide Single fdivs (fdivs.) frD,frAfrB
Floating Reciprocal Estimate Single fres (fres.) frD,frB
Floating Reciprocal Square Root Estimate 1 frsgrte (frsqgrte.) frD,frB
Floating Select 1 fsel (fsel.) frD,frA,frC,frB
Paired Single Add ? ps_add (ps_add.) frD,frAfrB
Paired Single Subtract 2 ps_sub (ps_sub.) frD,frAfrB
Paired Single Multiply 2 ps_mul (ps_mul.) frD,frAfrC
Paired Single Divide 2 ps_div (ps_div.) frD,frA,frB
Paired Single Reciprocal Estimate 2 ps_res (ps_res.) frD,frB

Paired Single Reciprocal Square Root Estimate 2 ps_rsqrte (ps_rsqrte.) frD,frB

Paired Single Select 2 ps_sel (ps_sel.) frD,frAfrC,frB
Paired Single Multiply Scalar High 2 ps_mulsO (ps_muls0.) frD,frAfrC
Paired Single Multiply Scalar Low 2 ps_mulsl (ps_mulsl.) frD,frAfrC
Paired Single Vector Sum High 2 ps_sumO (ps_sumO.) frD,frA,frC,frB
Paired Single Vector Sum Low 2 ps_suml (ps_suml.) frD,frAfrC,frB

Note: 1The fres, frsgrte and fsel instructions are optional in the PowerPC architecture.
Note: 2These instructions belong to the Gekko graphics extensions, and are legal only when HID2[PSE] = 1.

Double-precision arithmetic instructions, except those involving multiplicatiomul, fmadd,
fmsub, fnrmadd, fnmsub) execute with the same latency as their single-precision equivalents. For
additional details on floating-point performance, refer to Chapter 6, "Instruction Timing" in this
manual.

Page 2-42 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

2.3.4.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding

operation. The floating-point multiply-add instructions are summarized in Table 2-29.

Table 2-29. Floating-Point Multiply-Add Instructions

Name Mnemonic Syntax
Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frAfrC,frB
Floating Multiply-Add Single fmadds (fmadds.) frD,frAfrC,frB
Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB
Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB
Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frA,frC,frB
Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frAfrC,frB
Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frAfrC,frB
Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) frD,frAfrC,frB
Paired Single Multiply-Add 1 ps_madd (ps_madd.) frD,frA,frC,frB
Paired Single Multiply-Subtract 1 ps_msub (ps_msub.) frD,frA,frC,frB
Paired Single Negative Multiply-Add 1 ps_nmadd (ps_nmadd.) frD,frA,frC,frB
Paired Single Negative Multiply-Subtract * ps_nmsub (ps_nmsub.) frD,frAfrC,frB
Paired Single Multiply-Add Scalar High * ps_maddsO (ps_madds0.) | frD,frA,frC,frB
Paired Single Multiply-Add Scalar Low 1 ps_maddsl (ps_maddsl.) | frD,frAfrC,frB

Note: 1These instructions are Gekko-specific, and are legal only when HID2[PSE] = 1.

Chapter 2. Programming Model

IBM Confidential

5/25/00 Page 2-43

IBM Confidential

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precisiorfrsfp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The floating-point
convert instructions convert a 64-bit double-precision floating-point number to a 32-bit signed integer
number.

Examples of uses of these instructions to perform various conversions can be found in Appendix D,
“Floating-Point Models,” in thé2owerPC Microprocessor Family: The Programming Environments
manual

Table 2-30. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax
Floating Round to Single frsp (frsp.) frD,frB
Floating Convert to Integer Word fctiw (fctiw.) frD,frB
Floating Convert to Integer Word with Round toward Zero fctiwz (fctiwz.) frD,frB

2.3.4.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers. The
comparison ignores the sign of zero (that is +0 = -0).

The floating-point compare instructions are summarized in Table 2-31.

Table 2-31. Floating-Point Compare Instructions

Name Mnemonic Syntax
Floating Compare Unordered fcmpu crf D,frAfrB
Floating Compare Ordered fcmpo crf D,frA,frB
Paired Single Compare Unordered High 1 ps_cmpu0 crf D,frAfrB
Paired Single Compare Unordered Low 1 ps_cmpul crf D,frAfrB
Paired Single Compare Ordered High * ps_cmpo0 crf D,frAfrB
Paired Single Compare Ordered Low * ps_cmpol crf D,frAfrB

Note: 1These instructions are Gekko-specific, and are legal only when HID2[PSE] = 1.

The PowerPC architecture allows sfampu or fcmpo instruction with the Rc bit set to produce a
boundedly-undefined result, which may include an illegal instruction program exception. In Gekko,
crfD should be treated as undefined

Page 2-44 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

2.3.4.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point instructions

executed by a given processor. Executing an FPSCR instruction ensures that all floating-point
instructions previously initiated by the given processor appear to have completed before the
FPSCR instruction is initiated and that no subsequent floating-point instructions appear to be
initiated by the given processor until the FPSCR instruction has completed.

The FPSCR instructions are summarized in Table 2-32.

Table 2-32. Floating-Point Status and Control Register Instructions

Name Mnemonic Syntax
Move from FPSCR mffs (mffs.) frD
Move to Condition Register from FPSCR mcrfs crf D,crfS
Move to FPSCR Field Immediate mtfsfi (mtfsfi.) crfD,IMM
Move to FPSCR Fields mtfsf (mtfsf.) FM,frB
Move to FPSCR Bit 0 mtfsbO0 (mtfsb0.) crbD
Move to FPSCR Bit 1 mtfsbl (mtfsbl.) crbD

Implementation Note—The PowerPC architecture states that in some implementations, the Move
to FPSCR Fieldsnitfsf) instruction may perform more slowly when only some of the fields are
updated as opposed to all of the fields. In Gekko, there is no degradation of performance.

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-45

IBM Confidential

2.3.4.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another. The floating-point move
instructions do not modify the FPSCR. The CR update option in these instructions controls the
placing of result status into CR1.

Table 2-33 summarizes the floating-point move instructions.

Table 2-33. Floating-Point Move Instructions

Name Mnemonic Syntax
Floating Move Register fmr (fmr.) frD,frB
Floating Negate fneg (fneg.) frD,frB
Floating Absolute Value fabs (fabs.) frD,frB
Floating Negative Absolute Value fnabs (fnabs.) frD,frB
Paired Single Move Register 1 ps_mr (ps_mr.) frD,frB
Paired Single Negate 1 ps_neg (ps_neg.) frD,frB
Paired Single Absolute Value * ps_abs (ps_abs.) frD,frB
Paired Single Negative Absolute Value * ps_nabs (ps_nabs.) frD,frB
Paired Single Merge High ! ps_merge00 (ps_merge00.) frD,frAfrB
Paired Single Merge Direct * ps_merge01 (ps_merge0l.) frD,frA,frB
Paired Single Merge Swapped 1 ps_mergel0 (ps_mergelO.) frD,frAfrB
Paired Single Merge Low 1 ps_mergell (ps_mergell.) frD,frAfrB

Note: 1These instructions belong to the Gekko graphics extensions, and are legal only when HID2[PSE] = 1.

2.3.4.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the accesses can
occur out of order. Synchronizing instructions are provided to enforce strict ordering. This section
describes the load and store instructions, which consist of the following:

* Integer load instructions
* Integer store instructions
* Integer load and store with byte-reverse instructions
* Integer load and store multiple instructions
* Floating-point load instructions, including quantized loads
* Floating-point store instructions, including quantized stores
* Memory synchronization instructions
Implementation Notes—The following describes how Gekko handles misalignment:

Gekko provides hardware support for misaligned memory accesses. It performs those accesses within
a single cycle if the operand lies within a double-word boundary. Misaligned memory accesses that
cross a double-word boundary degrade performance.

For string operations, the hardware makes no attempt to combine register values to reduce the number

Page 2-46 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

of discrete accesses. Combining stores enhances performance if store gathering is enabled and the
accesses meet the criteria described in Section 6.4.7, "Integer Store Gathering" on Page 6-25. Note
that the PowerPC architecture requires load/store multiple instruction accesses to be aligned. At a
minimum, additional cache access cycles are required.

Although many unaligned memory accesses are supported in hardware, the frequent use of them is
discouraged since they can compromise the overall performance of the processor.

Accesses that cross a translation boundary may be restarted. That is, a misaligned access that
crosses a page boundary is completely restarted if the second portion of the access causes a page
fault. This may cause the first access to be repeated.

On some processors, such as the 603, a TLB reload would cause an instruction restart. On Gekko,
TLB reloads are done transparently and only a page fault causes a restart.

2.3.4.3.1 Self-Modifying Code

When a processor modifies a memory location that may be contained in the instruction cache,
software must ensure that memory updates are visible to the instruction fetching mechanism. This
can be achieved by the following instruction sequence:

dcbst ! update memory

sync ! wait for update

icbi ! remove (invalidate) copy in instruction cache
isync ! remove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Since instruction
fetching bypasses the data cache, changes to items in the data cache may not be reflected in
memory until the fetch operations complete.

Special care must be taken to avoid coherency paradoxes in systems that implement unified
secondary caches, and designers should carefully follow the guidelines for maintaining cache
coherency that are provided in the VEA, and discussed in Chapter 5, “Cache Model and Memory
Coherency"” in thePowerPC Microprocessor Family: The Programming Environmengnual.
Because Gekko does not broadcast the M bit for instruction fetches, external caches are subject to
coherency paradoxes.

2.3.4.3.2 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, "Effective Address Calculation” on Page 2-35 for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally aligned
may suffer performance degradation. Refer to Section 4.5.6, "Alignment Exception (0x00600)" on
Page 4-19 for additional information about load and store address alignment exceptions.

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-47

IBM Confidential

2.3.4.3.3 Integer Load Instructions

For integer load instructions, the byte, half word, or word addressed by the EA (effective address) is
loaded intar D. Many integer load instructions have an update form, in whiels updated with the
generated effective address. For these formsAik 0 andrA # rD (otherwise invalid), the EA is
placed intar A and the memory element (byte, half word, or word) addressed by the EA is loaded into
rD. Note that the PowerPC architecture defines load with update instructions with opArartor

rA =rD as invalid forms.

Table 2-34 summarizes the integer load instructions.

Table 2-34. Integer Load Instructions

Name Mnemonic Syntax
Load Byte and Zero Ibz rD,d(rA)
Load Byte and Zero Indexed Ibzx rD,rArB
Load Byte and Zero with Update Ibzu rD,d(rA)
Load Byte and Zero with Update Indexed Ibzux r D,rA,rB
Load Half Word and Zero Ihz rD,d(rA)
Load Half Word and Zero Indexed lhzx rD,rArB
Load Half Word and Zero with Update Ihzu rD,d(rA)
Load Half Word and Zero with Update Indexed lhzux r D,rA,rB
Load Half Word Algebraic Iha rD,d(rA)
Load Half Word Algebraic Indexed Ihax rD,rArB
Load Half Word Algebraic with Update Ihau rD,d(rA)
Load Half Word Algebraic with Update Indexed | Ihaux r D,rA,rB
Load Word and Zero lwz rD,d(rA)
Load Word and Zero Indexed lwzx rD,rA,rB
Load Word and Zero with Update lwzu rD,d(rA)
Load Word and Zero with Update Indexed Iwzux r D,rA,rB

Implementation Notes—The following notes describe the Gekko implementation of integer load
instructions:

» The PowerPC architecture cautions programmers that some implementations of the
architecture may execute the load half algebrhua,(Ihax) instructions with greater latency
than other types of load instructions. This is not the case for Gekko; these instructions operate
with the same latency as other load instructions.

* The PowerPC architecture cautions programmers that some implementations of the
architecture may run the load/store byte-revdrd®aX, lbrx, sthbrx, stwbrx) instructions
with greater latency than other types of load/store instructions. This is not the case for Gekko.
These instructions operate with the same latency as the other load/store instructions.

Page 2-48 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

» The PowerPC architecture describes some preferred instruction forms for load and store
multiple instructions and integer move assist instructions that may perform better than other
forms in some implementations. None of these preferred forms affect instruction
performance on Gekko.

* The PowerPC architecture defineslimarx andstwcx. as a way to update memory
atomically. In Gekko, reservations are made on behalf of aligned 32-byte sections of the
memory address space. Executiwgrx andstwcx.to a page marked write-through does
not cause a DSI exception if the W bit is set, but as with other memory accesses, DSI
exceptions can result for other reasons such as protection violations or page faults.

* In general, becaustwcx. always causes an external bus transaction it has slightly worse
performance characteristics than normal store operations.

2.3.4.3.4 Integer Store Instructions

For integer store instructions, the contents Sfare stored into the byte, half word or word in
memory addressed by the EA (effective address). Many store instructions have an update form, in
whichrA is updated with the EA. For these forms, the following rules apply:

* If rA £0, the effective address is placed info

* If rS =rA, the contents of registet are copied to the target memory element, then the
generated EA is placed inté (rS).

The PowerPC architecture defines store with update instructions &vitt0 as an invalid form. In
addition, it defines integer store instructions with the CR update option enabled (Rc field, bit 31, in
the instruction encoding = 1) to be an invalid form.

Table 2-35 summarizes the integer store instructions.

Table 2-35. Integer Store Instructions

Name Mnemonic Syntax
Store Byte stb rS,d(rA)
Store Byte Indexed stbx r S,rArB
Store Byte with Update stbu r S,d(rA)
Store Byte with Update Indexed stbux r SrArB
Store Half Word sth rS,d(rA)
Store Half Word Indexed sthx rS,rA,rB
Store Half Word with Update sthu r S,d(rA)
Store Half Word with Update Indexed sthux r SrArB
Store Word stw rS,d(rA)
Store Word Indexed stwx rS,rArB
Store Word with Update stwu r S,d(rA)
Store Word with Update Indexed stwux r SrA,rB

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-49

IBM Confidential

2.3.4.3.5 Integer Store Gathering

Gekko performs store gathering for write-through accesses to nonguarded space or to cache-inhibited
stores to nonguarded space if the stores are 4 bytes and they are word-aligned. These stores are
combined in the load/store unit (LSU) to form a double word and are sent out on the 60x bus as a
single-beat operation. However, stores can be gathered only if the successive stores that meet the
criteria are queued and pending. Store gathering takes place regardless of the address order of the
stores. The store gathering feature is enabled by setting HIDO[SGE]. Store gathering is done for both
big- and little-endian modes.

Store gathering is not done for the following:
» Cacheable stores
» Stores to guarded cache-inhibited or write-through space
* Byte-reverse store
» stwcx. andecowxaccesses
* Floating-point stores
» Store operations attempted during a hardware table search

If store gathering is enabled and the stores do not fall under the above categogespan sync
instruction must be used to prevent two stores from being gathered.

Note that the write gather pipe facility provides a separate mechanism for gathering operands before
transferring them to memory. See Chapter 9 for a description of this facility.

2.3.4.3.6 Integer Load and Store with Byte-Reverse Instructions

Table 2-36 describes integer load and store with byte-reverse instructions. When used in a PowerPC
system operating with the default big-endian byte order, these instructions have the effect of loading
and storing data in little-endian order. Likewise, when used in a PowerPC system operating with
little-endian byte order, these instructions have the effect of loading and storing data in big-endian
order. For more information about big-endian and little-endian byte ordering, see “Byte Ordering" in
Chapter 3, “Operand Conventions" in tiRewerPC Microprocessor Family: The Programming
Environmentgnanual.

Table 2-36. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Syntax
Load Half Word Byte-Reverse Indexed lhbrx r D,rA,rB
Load Word Byte-Reverse Indexed Iwbrx r D,rA,rB
Store Half Word Byte-Reverse Indexed sthbrx r S,rArB
Store Word Byte-Reverse Indexed stwhbrx r S,rArB

2.3.4.3.7 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of data to and from the GPRs. The load
multiple and store multiple instructions may have operands that require memory accesses crossing a
4-Kbyte page boundary. As a result, these instructions may be interrupted by a DSI exception
associated with the address translation of the second page.

Page 2-50 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Implementation Notes—The following describes the Gekko implementation of the load/store
multiple instruction:

» For load/store string operations, the hardware does not combine register values to reduce
the number of discrete accesses. However, if store gathering is enabled and the accesses fall
under the criteria for store gathering the stores may be combined to enhance performance.
At a minimum, additional cache access cycles are required.

» Gekko supports misaligned, single-register load and store accesses in little-endian mode
without causing an alignment exception. However, execution of misaligned load/store
multiple/string operations causes an alignment exception.

The PowerPC architecture defines the load multiple wimnav() instruction withr A in the range
of registers to be loaded as an invalid form.

Table 2-37. Integer Load and Store Multiple Instructions

Name Mnemonic Syntax
Load Multiple Word | Imw rD,d(rA)
Store Multiple Word | stmw r S,d(rA)

2.3.4.3.8 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to registers or
from registers to memory without concern for alignment. These instructions can be used for a short
move between arbitrary memory locations or to initiate a long move between misaligned memory
fields. However, in some implementations, these instructions are likely to have greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.

Table 2-36 summarizes the integer load and store string instructions. In other PowerPC
implementations operating with little-endian byte order, execution of a load or string instruction
invokes the alignment error handler; see “Byte Ordering" irRberPC Microprocessor Family:

The Programming Environmemsanual for more information.

Table 2-38. Integer Load and Store String Instructions

Name Mnemonic Syntax
Load String Word Immediate Iswi r D,rA,NB
Load String Word Indexed Iswx r D,rA,rB
Store String Word Immediate | stswi r S,rA,NB
Store String Word Indexed stswx r SrArB

Load string and store string instructions may involve operands that are not word-aligned.

As described in Section 4.5.6, "Alignment Exception (0x00600)" on Page 4-19, a misaligned string
operation suffers a performance penalty compared to an aligned operation of the same type.

A non-word-aligned string operation that crosses a 4-Kbyte boundary, or a word-aligned string
operation that crosses a 256-Mbyte boundary always causes an alignment exception. A
non-word-aligned string operation that crosses a double-word boundary is also slower than a
word-aligned string operation.

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-51

IBM Confidential

Implementation Note—The following describes the Gekko implementation of load/store string
instructions:

For load/store string operations, the hardware does not combine register values to reduce the
number of discrete accesses. However, if store gathering is enabled and the accesses fall under
the criteria for store gathering the stores may be combined to enhance performance. At a
minimum, additional cache access cycles are required.

Gekko supports misaligned, single-register load and store accesses in little-endian mode
without causing an alignment exception. However, execution of misaligned load/store
multiple/string operations cause an alignment exception.

2.3.4.3.9 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register indirect with
immediate index addressing mode and register indirect with index addressing mode. Floating-point
loads and stores are not supported for direct-store accesses. The use of floating-point loads and stores
for direct-store access results in an alignment exception.

Implementation Notes—Gekko treats exceptions as follows:

The FPU can be run in two different modes—ignore exceptions mode (MSR[FEOQ] =
MSR[FE1] = 0) and precise mode (any other settings for MSR[FEO,FE1]). For Gekko, ignore
exceptions mode allows floating-point instructions to complete earlier and thus may provide
better performance than precise mode.

The floating-point load and store indexed instructidisg,(Ifsux, Ifdx, Ifdux, stfsx, stfsux,

stfdx, stfdux) are invalid when the Rc bit is one. In Gekko, executing one of these invalid
instruction forms causes CRO to be set to an undefined value.

Page 2-52 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

2.3.4.3.10 Floating-Point Load Instructions

There are three forms of the floating-point load instruction—single-precision, double-precision

and paired single (quantized) operand formats. The behavior of double- precision floating-point
load instructions, and the behavior of single-precision floating- point load instructions when

HID2[PSH = 0 are described here. Paired single floating-point load instructions are illegal when

HID2[PSE] = 0. The behavior of single-precision floating-point load instructions and paired single

(quantized) load instructions when HID2[PSE] = 1 are described in Section 2.3.4.3.12, "Paired
Single Load and Store Instructions" on Page 2-55.

Single-precision floating-point load instructions convert single-precision data to double-precision
format before loading an operand into an FPR.

The PowerPC architecture defines a load with update instructiomAvith0 as an invalid form.
Table 2-39 summarizes the single- and double-precision floating-point load instructions.

Table 2-39. Floating-Point Load Instructions

Name Mnemonic Syntax
Load Floating-Point Single Ifs fr D,d(rA)
Load Floating-Point Single Indexed Ifsx fr D,rA,rB
Load Floating-Point Single with Update Ifsu fr D,d(rA)
Load Floating-Point Single with Update Indexed Ifsux fr D,rA,rB
Load Floating-Point Double Ifd fr D,d(rA)
Load Floating-Point Double Indexed [fdx fr D,rA,rB
Load Floating-Point Double with Update Ifdu fr D,d(rA)
Load Floating-Point Double with Update Indexed [fdux fr D,rA,rB

2.3.4.3.11 Floating-Point Store Instructions

This section describes floating-point store instructions. There are four basic forms of the store
instruction—single-precision, double-precision, paired single (quantized) and integer. The integer
form is supported by the optionatfiwx instruction. The behavior of double- precision
floating-point store instructions, and the behavior of single-precision floating- point store
instructions when HID2[PSE] = 0 are described here. Paired single floating-point store instructions
are illegal when HID2[PSE] = 0. The behavior of single-precision floating-point store instructions
and paired single (quantized) store instructions when HID2]PSE1l is described in
Section 2.3.4.3.12, "Paired Single Load and Store Instructions” on Page 2-55. Single-precision
floating-point store instructions convert double-precision data to single-precision format before
storing the operands.

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-53

Table 2-40 summarizes the single- and double-precision floating-point stastiamdnstructions.

IBM Confidential

Some floating-point store instructions require conversions in the LSU.

Table 2-40. Floating-Point Store Instructions

Name Mnemonic Syntax
Store Floating-Point Single stfs fr S,d(rA)
Store Floating-Point Single Indexed stfsx fr SrB
Store Floating-Point Single with Update stfsu fr S,d(rA)
Store Floating-Point Single with Update Indexed stfsux fr SrB
Store Floating-Point Double stfd fr S,d(rA)
Store Floating-Point Double Indexed stfdx fr S,rB
Store Floating-Point Double with Update stfdu fr S,d(rA)
Store Floating-Point Double with Update Indexed stfdux fr SrB
Store Floating-Point as Integer Word Indexed 1 stfiwx fr S,rB

Note: 1The stfiwx instruction is optional to the PowerPC architecture.

Table 2-41 shows conversions the LSU makes when executing a Store Floating-Point Single
instruction (when HID2[PSE] =

0).

Table 2-41. Store Floating-Point Single Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Store
Single Zero, infinity, QNaN Store
Single SNaN Store
Double Normalized If(exp < 896)
then Denormalize and Store
else
Store
Double Denormalized Store zero
Double Zero, infinity, QNaN Store
Double SNaN Store

NOTE:

The FPRs are not initialized BYRESET, and they must be initialized with some valid

value after PORHRESET and before being stored.

Page 2-54 Version 1.2

IBM Confidential

IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

| Table2-42 shows the conversions made when performing a Store Floating-Point Double
instruction. Most entries in the table indicate that the floating-point value is simply stored. Only in
a few cases are any other actions taken.

Table 2-42. Store Floating-Point Double Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Normalize and Store
Single Zero, infinity, QNaN Store
Single SNaN Store
Double Normalized Store
Double Denormalized Store
Double Zero, infinity, QNaN Store
Double SNaN Store

Architecturally, all single- and double-precision floating-point numbers are represented in
double-precision format within Gekko. Execution of a store floating-point sirstfie §tfsu, stfsx,

stfsux) instruction requires conversion from double- to single-precision format. If the exponent is

not greater than 896, this conversion requires denormalization. Gekko supports this
denormalization by shifting the mantissa one bit at a time. Anywhere from 1 to 23 clock cycles are
required to complete the denormalization, depending upon the value to be stored.

Because of how floating-point numbers are implemented in Gekko, there is also a case when
execution of a store floating-point doublstfl, stfdu, stfdx, stfdux) instruction can require
internal shifting of the mantissa. This case occurs when the operand of a store floating-point double
instruction is a denormalized single-precision value. The value could be the result of a load
floating-point single instruction, a single-precision arithmetic instruction, or a floating round to
single-precision instruction. In these cases, shifting the mantissa takes from 1 to 23 clock cycles,
depending upon the value to be stored. These cycles are incurred during the store.

2.3.4.3.12 Paired Single Load and Store Instructions

In addition to the floating-point load and store instructions defined in the PowerPC architecture,
Gekko includes eight additional load and store instructions that can implicitly convert their
operands between single-precision floating-point and lower precision, quantized data types. For
load instructions, this conversion is an inverse quantization, or dequantization, operation that
converts signed or unsigned, 8 or 16 bit integers to 32 bit single-precision floating-point operands.
This conversion takes place in the load/store unit as the data is being transfered to a floating-point
register (FPR). For store instructions, the conversion is a quantization operation that converts
single-precision floating-point numbers to operands having one of the quantized data types. This
conversion takes place in the load/store unit as the data is transfered out of an FPR.

The load and store instructions for which data quantization applies are for ‘paired single’ operands,
and so are valid only when HID2[PSE] = 1. These new load and store instructions cause an illegal
instruction exception if execution is attempted when HID2[PSE] = 0. Furthermore, the nonindexed
forms of these loads and storgs(_lJu] and psq_sfu]) are illegal unless HID2[LSQE] =1 as

well. The quantization/dequantization hardware in the load/store unit assumes big-endian ordering
of the data in memory. Use of these instructions in little-endian mode (MSR[LE] = 1) will give

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-55

IBM Confidential

undefined results. Whenever a pair of operands are converted, they are both converted in the same
manner.

When operating in paired single mode (HID2[PSE] = 1), the behavior of single-precision
floating-point load and store instructions is different from that described in the previous two sections.

In this mode, a single-precision floating-point load instruction will load one single-precision operand
into both the high and low order words of the operand pair in an FPR. A single-precision
floating-point store instruction will store only the high order word of the operand pair in an FPR.

Table 2-43 summarizes the paired single load and store instructions.

Table 2-43. Paired Single Load and Store Instructions

Name Mnemonic Syntax
Paired Single Quantized Load ? psq_| fr D,d(rA),W,qrl
Paired Single Quantized Load Indexed * psq_Ix fr D,rA,rB,W,qrl
Paired Single Quantized Load with Update 2 psq_lu fr D,d(rA),W,qrl
Paired Single Quantized Load with Update Indexed * psq_lux fr D,rA,rB,W,qgrl
Paired Single Quantized Store 2 psq_st fr S,d(rA),W,qgrl
Paired Single Quantized Store Indexed 1 psq_stx fr S,rA,rB,W,qrl
Paired Single Quantized Store with Update 2 psq_stu fr S,d(rA),w,agrl
Paired Single Quantized Store with Update Indexed * psq_stux fr S,;rA,rB,W,qrl

Note: 1These instructions belong to the Gekko graphics extensions, and are legal only when HID2[PSE] = 1.
Note: 2These instructions belong to the Gekko graphics extensions, and are legal only when HID2[PSE] = 1
and HID2[LSQE] = 1.

Two paired single loadpsg_|, psq_lu) and two paired single storpgqg_st psqg_stu instructions use

a variation of the D-form instruction format. Instead of having a 16 bit displacement field, 12 bits are
used for displacement, and the remaining four are used to specify whether one or two operands are to
be processed (the 1 bit W field) and which of the eight GQRs is to be used to specify the scale and
type for the conversion (the 3 bit I field). The two remaining paired single lpsql (Ix, psqg_lux) and

the two remaining paired single stomes_stx psq_stuy instructions use a variation of the X-form
instruction format. Instead of having a 10 bit secondary opcode field, 6 bits are used for the secondary
opcode, and the remaining four are used for the W field and the | field.

See Chapter 12, "Instruction Set" in this manual for more information on the instruction format.

The dequantization algorithm used to convert each integer of a pair to a single-precision floating-point
operand is as follows:

1. read integer operand from L1 cache

convert data to sign and magnitude according to type specified in the selected GQR
convert magnitude to normalized mantissa and exponent

subtract scaling factor specified in the selected GQR from the exponent

load the converted value into the target FPR

For an integer value, I, in memory, the floating-point value F, loaded into the target §PR; | *
2**(-S), where S is the twos compliment value in the LD_SCALE field of the selected GQR.

o bk~ w

Page 2-56 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Table 2-44 shows how an integer value of 1 is converted to a single-precision floating-point value
for various scaling factors.

Table 2-44. Conversion of integer value 1 to single-precision floating point

GQRX[LD_SCALE] scaling factor (S) floating-point value

100000 -32 4.29 E+9
100001 -31 2.15 E+9
111110 -2 4.00 E+O
111111 -1 2.00 E+O
000000 0 1.00 E+O
000001 1 5.00 E-1

000010 2 2.50 E-1

011110 30 9.31 E-10
011111 31 4.66 E-10

For a single-precision floating-point operand (type = 0), the value from the L1 cache is passed
directly to the register without any conversion. This includes the case where the operand is a
denorm.

The quantization algorithm used to convert each single-precision floating-point operand of a pair
to an integer is as follows:

1. Move the single-precision floating-point operand from the FPR to the completion
store queue.

Add the scaling factor specified in the selected GQR to the exponent
Shift mantissa and increment/decrement exponent until exponent is zero
Convert sign and magnitude to 2s complement representation, and
Round toward zero to get the type specified in the selected GQR

Adjust the resulting value on overflow

Store the converted value in the L1 cache.

The adjusted result value for overflow of unsigned integers is zero for negative values, 255 and
65535 for positive values, for 8 and 16 bit types, respectively. The adjusted result value for overflow
of signed integers is -128 and -32768 for negative values, 127 and 32767 for positive values, for 8
and 16 bit types, respectively. The converted value produced when the input operand is +Inf or NaN
is the same as the adjusted result value for overflow of positive values for the target data type. The
converted value produced when the input operand is -Inf is the same as the adjusted result value for

No kDN

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-57

IBM Confidential

overflow of negative values.

For a single-precision floating-point value, F, in an FPR, the integer value |, stored to memory,

is | = ROUND(F * 2**(S)), where S is the twos compliment value in the ST_SCALE field of the
selected GQR, and ROUND applies the rounding and clamping appropriate to the particular target
integer format.

Table 2-45 shows how a floating-point value of 1.00 E+2 is converted to an integer value for various
scaling factors.

Table 2-45. Conversion of Floating-point Value 1.00 E+2 to Integer

GSCR ;\(I[_LE?_ fjc(::tilin(%) u8 value ul6é s8 s16
100000 -32 0 0 0

100001 -31 0 0 0

111110 -2 25 25 25 25
111111 -1 50 50 50 50
000000 0 100 100 100 100
000001 1 200 200 127 200
000010 2 255 400 127 400
011110 30 255 65535 127 32767
011111 31 255 65525 127 32767

For a single-precision floating-point operand (type = 0), the value from the FPR is passed directly to
the L1 cache without any conversion, except when this operand is a denorm. In the case of a denorm,
the value 0.0 is stored in the L1 cache.

2.3.4.4 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the value of bits
in the CR. When the processor encounters one of these instructions, it scans the execution pipelines
to determine whether an instruction in progress may affect the particular CR bit. If no interlock is
found, the branch can be resolved immediately by checking the bit in the CR and taking the action
defined for the branch instruction.

2.3.4.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses are always
assumed to be word aligned; the PowerPC processors ignore the two low-order bits of the generated
branch target address.

Page 2-58 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Branch instructions compute the EA of the next instruction address using the following addressing
modes:

e Branch relative

» Branch conditional to relative address
e Branch to absolute address

e Branch conditional to absolute address
* Branch conditional to link register

» Branch conditional to count register

Note that in Gekko, all branch instructions, pa, bl, bla, bc, bca, bcl, bcla, belr, belrl, bectr,

bccetrl) and condition register logical instructionsrénd, cror, crxor, crnand, crnor, crandc,

creqv, crorc, and mcrf) are executed by the BPU. Some of these instructions can redirect
instruction execution conditionally based on the value of bits in the CR. Whenever the CR bits
resolve, the branch direction is either marked as correct or mispredicted. Correcting a mispredicted
branch requires that Gekko flush speculatively executed instructions and restore the machine state
to immediately after the branch. This correction can be done immediately upon resolution of the
condition registers bits.

2.3.4.4.2 Branch Instructions

Table 2-46 lists the branch instructions provided by the PowerPC processors. To simplify assembly
language programming, a set of simplified mnemonics and symbols is provided for the most
frequently used forms of branch conditional, compare, trap, rotate and shift, and certain other
instructions.

See Appendix F, “Simplified Mnemonics" in th@owerPC Microprocessor Family: The
Programming Environmentsanual for a list of simplified mnemonic examples.

Table 2-46. Branch Instructions

Name Mnemonic Syntax
Branch b (ba bl bla) target_addr
Branch Conditional bc (bca bcl bcla) BO,Bl,target_addr
Branch Conditional to Link Register belr (bclrl) BO,BI
Branch Conditional to Count Register beetr (bectrl) BO,BI

2.3.4.4.3 Condition Register Logical Instructions

Condition register logical instructions and the Move Condition Register Fietitf(instruction
are also defined as flow control instructions.

Table 2-47 shows these instructions.

Table 2-47. Condition Register Logical Instructions

Name Mnemonic Syntax
Condition Register AND crand crb D,crbA,crbB
Condition Register OR cror crb D,crbA,crbB

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-59

IBM Confidential

Table 2-47. Condition Register Logical Instructions (Continued)

Name Mnemonic Syntax

Condition Register XOR crxor crb D,crbA,crbB
Condition Register NAND crnand crb D,crbA,crbB
Condition Register NOR crnor crb D,crbA,crbB
Condition Register Equivalent creqv crb D,crb A, crbB
Condition Register AND with Complement crandc crb D,crb A, crbB
Condition Register OR with Complement crorc crb D,crbA, crbB
Move Condition Register Field mcrf crf D,crfS

NOTE: Ifthe LR update option is enabled for any of these instructions, the PowerPC architecture

defines these forms of the instructions as invalid.

2.3.4.4.4 Trap Instructions

The trap instructions shown in Table 2-48 are provided to test for a specified set of conditions. If any
of the conditions tested by a trap instruction are met, the system trap type program exception is taken.
For more information, see Section 4.5.7, "Program Exception (0x00700)" on Page 4-19. If the tested
conditions are not met, instruction execution continues normally.

Table 2-48. Trap Instructions

Name Mnemonic Syntax
Trap Word Immediate twi TO,rA,SIMM
Trap Word tw TO,rA,rB

See Appendix F, “Simplified Mnemonics" in thé&owerPC Microprocessor Family: The
Programming Environmentsanual for a complete set of simplified mnemonics.
2.3.4.5 System Linkage Instruction—UISA

The System Call (sc) instruction permits a program to call on the system to perform a service; see
Table 2-49. See also Section 2.3.6.1, "System Linkage Instructions—OEA" on Page 2-70 for
additional information.

Table 2-49. System Linkage Instruction—UISA

Name Mnemonic Syntax

System Call sc —

Executing this instruction causes the system call exception handler to be evoked. For more
information, see Section 4.5.10, "System Call Exception (Ox00C00)" on Page 4-20.

Page 2-60 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

2.3.4.6 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the condition register (CR),
machine state register (MSR), and special-purpose registers (SPRs).

See Section 2.3.5.1, "Processor Control Instructions—VEA" on Page 2-65 foiftinenstruction
and Section 2.3.6.2, "Processor Control Instructions—OEA" on Page 2-71 for information about
the instructions used for reading from and writing to the MSR and SPRs.

2.3.4.6.1 Move to/from Condition Register Instructions
Table 2-50 summarizes the instructions for reading from or writing to the condition register.

Table 2-50. Move to/from Condition Register Instructions

Name Mnemonic Syntax
Move to Condition Register Fields mtcrf CRM,rS
Move to Condition Register from XER | mcrxr crf D
Move from Condition Register mfcr rb

Implementation Note—The PowerPC architecture indicates that in some implementations the
Move to Condition Register Fieldsntcrf) instruction may perform more slowly when only a
portion of the fields are updated as opposed to all of the fields. The condition register access latency
for Gekko is the same in both cases.

2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)
Table 2-51 lists thentspr andmfspr instructions.

Table 2-51. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Syntax
Move to Special-Purpose Register mtspr SPR,rS
Move from Special-Purpose Register mfspr r D,SPR

Table 2-52 lists the SPR numbers for both user- and supervisor-level accesses.

Table 2-52. PowerPC Encodings

SPR"
Register Name Access mfspr/mtspr
Decimal spr[5-9] spr[0—4]
CTR 9 00000 01001 User (UISA) Both
DABR 1013 11111 10101 Supervisor (OEA) Both
DAR 19 00000 10011 Supervisor (OEA) Both
DBATOL 537 10000 11001 Supervisor (OEA) Both
DBATOU 536 10000 11000 Supervisor (OEA) | Both
DBAT1L 539 10000 11011 Supervisor (OEA) Both
DBAT1U 538 10000 11010 Supervisor (OEA) Both

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-61

IBM Confidential

Table 2-52. PowerPC Encodings (Continued)

SPRl
Register Name Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]

DBAT2L 541 10000 11101 Supervisor (OEA) Both
DBAT2U 540 10000 11100 Supervisor (OEA) Both
DBAT3L 543 10000 11111 Supervisor (OEA) Both
DBAT3U 542 10000 11110 Supervisor (OEA) | Both
DEC 22 00000 10110 Supervisor (OEA) Both
DSISR 18 00000 10010 Supervisor (OEA) Both
EAR 282 01000 11010 Supervisor (OEA) Both
IBATOL 529 10000 10001 Supervisor (OEA) Both
IBATOU 528 10000 10000 Supervisor (OEA) Both
IBAT1L 531 10000 10011 Supervisor (OEA) | Both
IBAT1U 530 10000 10010 Supervisor (OEA) Both
IBAT2L 533 10000 10101 Supervisor (OEA) Both
IBAT2U 532 10000 10100 Supervisor (OEA) Both
IBAT3L 535 10000 10111 Supervisor (OEA) Both
IBAT3U 534 10000 10110 Supervisor (OEA) Both
LR 8 00000 01000 User (UISA) Both
PVR 287 01000 11111 Supervisor (OEA) | mfspr
SDR1 25 00000 11001 Supervisor (OEA) Both
SPRGO 272 01000 10000 Supervisor (OEA) | Both
SPRG1 273 01000 10001 Supervisor (OEA) | Both
SPRG2 274 01000 10010 Supervisor (OEA) Both
SPRG3 275 01000 10011 Supervisor (OEA) | Both
SRRO 26 00000 11010 Supervisor (OEA) Both
SRR1 27 00000 11011 Supervisor (OEA) Both
TBL 2 268 01000 01100 User (VEA) mfspr

284 01000 11100 Supervisor (OEA) | mtspr
TBU 2 269 01000 01101 User (VEA) mfspr

285 01000 11101 Supervisor (OEA) | mtspr
XER 1 00000 00001 User (UISA) Both

Notes:

Page 2-62 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

L The order of the two 5-bit halves of the SPR number is reversed compared with actual
instruction coding. For mtspr and mfspr instructions, the SPR number coded in assembly
language does not appear directly as a 10-bit binary number in the instruction. The number
coded is split into two 5-bit halves that are reversed in the instruction, with the high-order five
bits appearing in bits 16—20 of the instruction and the low-order five bits in bits 11-15.

2 The TB registers are referred to as TBRs rather than SPRs and can be written to using the
mtspr instruction in supervisor mode and the TBR numbers here. The TB registers can be read
in user mode using either the mftb or mfspr instruction and specifying TBR 268 for TBL and
SPR 269 for TBU.

| Encodings for the Gekko-specific SPRs are listed in Table 2-53.

Table 2-53. SPR Encodings for Gekko-Defined Registers (mfspr)

1
Register SPR
Name Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]
DABR 1013 11111 10101 User Both
DMAL 2 923 11100 11011 Supervisor Both
DMAU 2 922 11100 11010 Supervisor Both
GOQRO 2 912 11100 10000 Supervisor Both
GQR1?2 913 11100 10001 Supervisor Both
GQR2 2 914 11100 10010 Supervisor Both
GQR3?2 915 11100 10011 Supervisor Both
GQR4 ? 916 11100 10100 Supervisor Both
GQR5 2 917 11100 10101 Supervisor Both
GOQR6 2 918 11100 10110 Supervisor Both
GQR7 2 919 11100 10111 Supervisor Both
HIDO 1008 11111 10000 Supervisor Both
HID1 1009 11111 10001 Supervisor Both
HID2 2 920 11100 11000 Supervisor Both
IABR 1010 11111 10010 Supervisor Both
ICTC 1019 11111 11011 Supervisor Both
L2CR 1017 11111 11001 Supervisor Both
MMCRO 952 11101 11000 Supervisor Both
MMCR1 956 11101 11100 Supervisor Both
PMC1 953 11101 11001 Supervisor Both
PMC2 954 11101 11010 Supervisor Both
PMC3 957 11101 11101 Supervisor Both
Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-63

IBM Confidential

Table 2-53. SPR Encodings for Gekko-Defined Registers (mfspr) (Continued)

1
Register SPR
Name Access mfspr/mtspr
Decimal spr[5-9] spr[0—4]

PMC4 958 11101 11110 Supervisor Both
SIA 955 11101 11011 Supervisor Both
THRM1 1020 11111 11100 Supervisor Both
THRM2 1021 11111 11101 Supervisor Both
THRM3 1022 11111 11110 Supervisor Both
UMMCRO 936 11101 01000 User mfspr
UMMCR1 940 11101 01100 User mfspr
UPMC1 937 11101 01001 User mfspr
UPMC2 938 11101 01010 User mfspr
UPMC3 941 11101 01101 User mfspr
UPMC4 942 11101 01110 User mfspr
USIA 939 11101 01011 User mfspr
WPAR 2 921 11100 11001 Supervisor Both

Note:

INote that the order of the two 5-bit halves of the SPR number is reversed compared with actual
instruction coding.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly
as a 10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are
reversed in the instruction, with the high-order 5 bits appearing in bits 16—20 of the instruction and the

low-order 5 bits in bits 11-15.

2This register is part of the Gekko graphics extensions.

2.3.4.7 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are completed
with respect to asynchronous events, and the order in which memory operations are seen by other
processors or memory access mechanisms. See Chapter 3, "Gekko Instruction and Data Cache
Operation” in this manual for additional information about these instructions and about related

Page 2-64 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

aspects of memory synchronization. See Table 2-54 for a summary.

Table 2-54. Memory Synchronization Instructions—UISA

Name Mnemonic |Syntax Implementation Notes

Load Word | lwarx r D,rA,rB | Programmers can use lwarx with stwcx. to emulate common semaphore

and Reserve operations such as test and set, compare and swap, exchange memory, and

Indexed fetch and add. Both instructions must use the same EA. Reservation
granularity is implementation-dependent. Gekko makes reservations on behalf

Store Word | stwex. I S,rATB | of aligned 32-byte sections of the memory address space. If the W bit is set,

Conditional executing lwarx and stwcx. to a page marked write-through does not cause a

Indexed DSl exception, but DSI exceptions can result for other reasons. If the location is

not word-aligned, an alignment exception occurs.

The stwex. instruction is the only load/store instruction with a valid form if Rc is
set. If Rc is zero, executing stwex. sets CRO to an undefined value. In general,
stwcx. always causes a transaction on the external bus and thus operates with
slightly worse performance characteristics than normal store operations.

Synchronize sync — Because it delays subsequent instructions until all previous instructions
complete to where they cannot cause an exception, sync is a barrier against
store gathering when HID2[LCE] = 0 and HID2[WPE] = 0. See Chapter 9, "L2
Cache, Locked D-Cache, DMA and Write Gather Pipe" in this manual for a
description of the modified sync behavior when HID2[LCE] = 1 or HID2[WPE]
= 1. Additionally, all load/store cache/bus activities initiated by prior instructions
are completed. Touch load operations (dcbt, dcbtst) must complete address
translation, but need not complete on the bus. If HIDO[ABE] = 1, sync
completes after a successful broadcast.

The latency of sync depends on the processor state when it is dispatched and
on various system-level situations. Therefore, frequent use of sync may
degrade performance.

System designs with an L2 cache should take special care to recognize the hardware signaling
caused by a SYNC bus operation and perform the appropriate actions to guarantee that memory
references that may be queued internally to the L2 cache have been performed globally.

See 2.3.5.2, “Memory Synchronization Instructions—VEA" for details about additional memory
synchronizationdieio andisync) instructions.

In the PowerPC architecture, the Rc bit must be zero for most load and store instructions. If Rc is
set, the instruction form is invalid faync andlwarx instructions. If Gekko encounters one of
these invalid instruction forms, it sets CRO to an undefined value.

2.3.5 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the memory
model that can be assumed by software processes, and includes descriptions of the cache model,
cache control instructions, address aliasing, and other related issues. Implementations that conform
to the VEA also adhere to the UISA, but may not necessarily adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

2.3.5.1 Processor Control Instructions—VEA

In addition to the move to condition register instructions (specified by the UISA), the VEA defines
themftb instruction (user-level instruction) for reading the contents of the time base register; see
Chapter 3, "Gekko Instruction and Data Cache Operation™ in this manual for more information.

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-65

IBM Confidential

Table 2-55 shows thmftb instruction.

Table 2-55. Move from Time Base Instruction

Name Mnemonic Syntax

Move from Time Base mftb rD, TBR

Simplified mnemonics are provided for th&tb instruction so it can be coded with the TBR name

as part of the mnemonic rather than requiring it to be coded as an operand. See Appendix F,
“Simplified Mnemonics" in théPowerPC Microprocessor Family: The Programming Environments
manual for simplified mnemonic examples and for simplified mnemonics for Move from Time Base
(mftb) and Move from Time Base Uppem(tbu), which are variants of theftb instruction rather

than of mfspr. The mftb instruction serves as both a basic and simplified mnemonic. Assemblers
recognize amftb mnemonic with two operands as the basic form, antchétbh mnemonic with one
operand as the simplified form. Note that Gekko ignores the extended opcode differences between
mftb andmfspr by ignoring bit 25 and treating both instructions identically.

Implementation Notes—The following information is useful with respect to using the time base
implementation in Gekko:

» Gekko allows user-mode read access to the time base counter through the use of the Move
from Time Basertiftb) and the Move from Time Base Upperftbu) instructions. As a
32-bit PowerPC implementation, Gekko can access TBU and TBL only separately, whereas
64-bit implementations can access the entire TB register at once.

* The time base counter is clocked at a frequency that is one-fourth that of the bus clock.

2.3.5.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are completed
with respect to asynchronous events, and the order in which memory operations are seen by other
processors or memory access mechanisms. See Chapter 3, "Gekko Instruction and Data Cache
Operation" in this manual for more information about these instructions and about related aspects of
memory synchronization.

In addition to thesync instruction (specified by UISA), the VEA defines the Enforce In-Order
Execution of 1/0 éieig and Instruction Synchronizasync) instructions. The number of cycles
required to complete agieioinstruction depends on system parameters and on the processor's state
when the instruction is issued. As a result, frequent use of this instruction may degrade performance
slightly.

Page 2-66 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Table 2-56 describes the memory synchronization instructions defined by the VEA.

Table 2-56. Memory Synchronization Instructions—VEA

Name Mnemonic [Syntax Implementation Notes
Enforce eieio — | The eieio instruction is dispatched to the LSU and executes after all previous
In-Order cache-inhibited or write-through accesses are performed; all subsequent
Execution of instructions that generate such accesses execute after eieio. If HIDO[ABE] = 1 an
I/O EIEIO operation is broadcast on the external bus to enforce ordering in the

external memory system. The eieio operation bypasses the L2 cache and is
forwarded to the bus unit. If HIDO[ABE] = 0, the operation is not broadcast.
Because Gekko does not reorder noncacheable accesses, eieio is not needed to
force ordering. However, if store gathering is enabled and an eieio is detected in
a store queue, stores are not gathered. If HIDO[ABE] = 1, broadcasting eieio
prevents external devices, such as a bus bridge chip, from gathering stores. The
behavior of eieio is modified when either HID2[LCE] = 1 or HID2[WPE] = 1. See
Chapter 9, "L2 Cache, Locked D-Cache, DMA and Write Gather Pipe" in this
manual for a description of this modified behavior.

Instruction |isync — | Theisync instruction is refetch serializing; that is, it causes Gekko to purge its
Synchronize instruction queue and wait for all prior instructions to complete before refetching
the next instruction, which is not executed until all previous instructions complete
to the point where they cannot cause an exception. The isync instruction does
not wait for all pending stores in the store queue to complete. Any instruction

after an isync sees all effects of prior instructions.

2.3.5.3 Memory Control Instructions—VEA
Memory control instructions can be classified as follows:

» Cache management instructions (user-level and supervisor-level)
* Segment register manipulation instructions (OEA)
» Translation lookaside buffer management instructions (OEA)

This section describes the user-level cache management instructions defined by the VEA. See
Section 2.3.6.3, "Memory Control Instructions—OEA" on Page 2-71 for information about
supervisor-level cache, segment register manipulation, and translation lookaside buffer
management instructions.

2.3.5.3.1 User-Level Cache Instructions—VEA

The instructions summarized in this section help user-level programs manage on-chip caches if
they are implemented. See Chapter 3, "Gekko Instruction and Data Cache Operation” in this
manual for more information about cache topics. The following sections describe how these
operations are treated with respect to Gekko’s cache.

As with other memory-related instructions, the effects of cache management instructions on
memory are weakly-ordered. If the programmer must ensure that cache or other instructions have
been performed with respect to all other processors and system mechansgmes,jrastruction

must be placed after those instructions.

Note that Gekko interprets cache control instructioasi(dcbi, dcbf, dcbz, anddcbst) as if they

pertain only to the local L1 and L2 cache d&bz (with M set) is always broadcast on the 60x bus.
Thedchi, dcbf, anddcbst operations are broadcast if HIDO[ABE] is set.

Gekko never broadcasts a@rbi. Of the broadcast cache operations, Gekko snoops delly,
regardless of the HIDO[ABE] setting. Any bus activity caused by other cache instructions results

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-67

IBM Confidential

directly from performing the operation on the Gekko cache. All cache control instructohstl

space are no-ops. For information on how cache control instructions affect the L2, see Chapter 9, "L2
Cache, Locked D-Cache, DMA and Write Gather Pipe" in this manual.

Table 2-57 summarizes the cache instructions defined by the VEA. Note that these instructions are
accessible to user-level programs.

Table 2-57. User-Level Cache Instructions

Name Mnemonic [Syntax Implementation Notes
Data Cache Block | dcbt r AirB | The VEA defines this instruction to allow for potential system performance
Touch 1 enhancements through the use of software-initiated prefetch hints.

Implementations are not required to take any action based on execution of
this instruction, but they may prefetch the cache block corresponding to
the EA into their cache. When dcbt executes, Gekko checks for protection
violations (as for a load instruction). This instruction is treated as a no-op
for the following cases:

» Avalid translation is not found either in BAT or TLB

* The access causes a protection violation.

* The page is mapped cache-inhibited, G = 1 (quarded), or T = 1.

* The cache is locked or disabled

* HIDO[NOOPTI] =1

Otherwise, if no data is in the cache location, Gekko requests a cache line
fill (with intent to modify). Data brought into the cache is validated as if it
were a load instruction. The memory reference of a dcbt sets the
reference bit. The behavior of dcbt is modified when either HID2[LCE] = 1
or HID2[WPE] = 1. See Chapter 9, "L2 Cache, Locked D-Cache, DMA and
Write Gather Pipe" in this manual for a description of this modified

behavior.
Data Cache Block | dcbtst r A,rB | This instruction behaves like dcbt .
Touch for Store *
Data Cache Block |dcbz rA,rB | The EA is computed, translated, and checked for protection violations. For
Set to Zero cache hits, four beats of zeros are written to the cache block and the tag is

marked M. For cache misses with the replacement block marked E, the
zero line fill is performed and the cache block is marked M. However, if the
replacement block is marked M, the contents are written back to memory
first. The instruction executes regardless of whether the cache is locked; if
the cache is disabled, an alignment exception occurs. If M = 1 (coherency
enforced), the address is broadcast to the bus before the zero line fill.
The exception priorities (from highest to lowest) are as follows:

1 Cache disabled—Alignment exception

2 Page marked write-through or cache Inhibited—Alignment exception
3 BAT protection violation—DSI exception

4 TLB protection violation—DSI exception

dcbz is the only cache instruction that broadcasts even if HIDO[ABE] = 0.
The behavior of dcbz is modified when either HID2[LCE] = 1 or
HID2[WPE] = 1. SeeChapter 9 for a description of this modified behavior.

Data Cache Block |dcbz_| r A,rB | This instruction is illegal when HID2[LCE] = 0. See Chapter 9, "L2 Cache,
Set to Zero Locked D-Cache, DMA and Write Gather Pipe" in this manualfor a
Locked description of this instruction when HID2[LCE] = 1.

Page 2-68 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Table 2-57. User-Level Cache Instructions (Continued)

Name Mnemonic [Syntax Implementation Notes
Data Cache Block |dcbst r ArB | The EA is computed, translated, and checked for protection violations.
Store » For cache hits with the tag marked E, no further action is taken.

» For cache hits with the tag marked M, the cache block is written back
to memory and marked E.

A dcbst is not broadcast unless HIDO[ABE] = 1 regardless of WIMG

settings. The instruction acts like a load with respect to address

translation and memory protection. It executes regardless of whether the

cache is disabled or locked.

The exception priorities (from highest to lowest) for dcbst are as follows:

1 BAT protection violation—DSI exception

2 TLB protection violation—DSI exception

The behavior of dcbst is modified when either HID2[LCE] = 1 or

HID2[WPE] = 1. See Chapter 9 for a description of this modified behavior.

Data Cache Block | dcbf r ArB | The EA is computed, translated, and checked for protection violations.

Flush » For cache hits with the tag marked M, the cache block is written back
to memory and the cache entry is invalidated.

» For cache hits with the tag marked E, the entry is invalidated.

* For cache misses, no further action is taken.

A dcbf is not broadcast unless HIDO[ABE] = 1 regardless of WIMG

settings. The instruction acts like a load with respect to address

translation and memory protection. It executes regardless of whether the

cache is disabled or locked.

The exception priorities (from highest to lowest) for dcbf are as follows:

1 BAT protection violation—DSI exception

2 TLB protection violation—DSI exception

The behavior of dcbf is modified when either HID2[LCE] = 1 or

HID2[WPE] = 1. See Chapter 9 for a description of this modified behavior.

Instruction Cache |[icbi r A,rB | This instruction performs a virtual lookup into the instruction cache (index
Block Invalidate only). The address is not translated, so it cannot cause an exception. All

ways of a selected set are invalidated regardless of whether the cache is
disabled or locked. Gekko never broadcasts icbi onto the 60x bus.

Note:
1A program that uses dcbt and dcbtst instructions improperly performs less efficiently. To improve
performance, HIDO[NOOPTI] may be set, which causes dcbt and dcbtst to be no-oped at the
cache. They do not cause bus activity and cause only a 1-clock execution latency. The default
state of this bit is zero which enables the use of these instructions.

2.3.5.4 Optional External Control Instructions

The PowerPC architecture defines an optional external control feature that, if implemented, is
supported by the two external control instructioesiwx andecowx These instructions allow a
user-level program to communicate with a special-purpose device. These instructions are provided

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-69

IBM Confidential

and are summarized in Table 2-58.

Table 2-58. External Control Instructions

Name Mnemonic | Syntax Implementation Notes
External eciwx r D,rA,rB | A transfer size of 4 bytes is implied; the TBST and TSIZ[0-2] signals are
Control In redefined to specify the Resource ID (RID), copied from bits EAR[28-31]. For
Word Indexed these operations, TBST carries the EAR[28] data. Misaligned operands for

these instructions cause an alignment exception. Addressing a location

External ecowx r S,FATB |where SR[T] = 1 causes a DSI exception. If MSR[DR] = 0 a programming
Control Out error occurs and the physical address on the bus is undefined.
Word Indexed Note: These instructions are optional to the PowerPC architecture.

The eciwx/ecowxinstructions let a system designer map special devices in an alternative way. The
MMU translation of the EA is not used to select the special device, as it is used in most instructions
such as loads and stores. Rather, it is used as an address operand that is passed to the device over the
address bus. Four other signals (the burst and size signals on the 60x bus) are used to select the device;
these four signals output the 4-bit resource ID (RID) field located in the EARe€hex instruction

also loads a word from the data bus that is output by the special device. For more information about
the relationship between these instructions and the system interface, refer to Chapter 7, "Signal
Descriptions" in this manual.

2.3.6 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the memory

management model, supervisor-level registers, and the exception model. Implementations that
conform to the OEA also adhere to the UISA and the VEA. This section describes the instructions

provided by the OEA.

2.3.6.1 System Linkage Instructions—OEA

This section describes the system linkage instructions (see Table 2-59). The usscilesteliction
lets a user program call on the system to perform a service and causes the processor to take a system
call exception. The supervisor-levél instruction is used for returning from an exception handler.

Table 2-59. System Linkage Instructions—OEA

Name Mnemonic | Syntax Implementation Notes
System Call | sc — The sc instruction is context-synchronizing.
Return from | rfi — The rfi instruction is context-synchronizing. For Gekko, this means the rfi
Interrupt instruction works its way to the final stage of the execution pipeline,
updates architected registers, and redirects the instruction flow.

Page 2-70 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

2.3.6.2 Processor Control Instructions—OEA

This section describes the processor control instructions used to access the MSR and the SPRs.
Table 2-60 lists instructions for accessing the MSR.

Table 2-60. Move to/from Machine State Register Instructions

Name Mnemonic Syntax
Move to Machine State Register mtmsr rs
Move from Machine State Register mfmsr rD

The OEA defines encodings oftspr andmfspr to provide access to supervisor-level registers.
The instructions are listed in Table 2-61.

Table 2-61. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Syntax
Move to Special-Purpose Register mtspr SPR,IS
Move from Special-Purpose Register mfspr r D,SPR

Encodings for the architecture-defined SPRs are listed in Table 2-53 on Page 2-63. Encodings for
Gekko-specific, supervisor-level SPRs are listed in Table 2-54 on Page 2-65. Simplified
mnemonics are provided fontspr and mfspr in Appendix F, “Simplified Mnemonics" in the
PowerPC Microprocessor Family: The Programming Environmerdgaual.

For a discussion of context synchronization requirements when altering certain SPRs, refer to
Appendix E, “Synchronization Programming Examples" inFlogverPC Microprocessor Family:
The Programming Environmemtsanual.

2.3.6.3 Memory Control Instructions—OEA
Memory control instructions include the following:

» Cache management instructions (supervisor-level and user-level)
» Segment register manipulation instructions
» Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. Section 2.3.5.3, "Memory
Control Instructions—VEA" on Page 2-67 describes user-level memory control instructions.

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-71

IBM Confidential

2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA)
| Table 2-62 lists the only supervisor-level cache management instruction.

Table 2-62. Supervisor-Level Cache Management Instruction

Name | Mnemonic |Syntax Implementation Notes
Data dchi r A,rB | The EA is computed, translated, and checked for protection violations. For cache
Cache hits, the cache block is marked | regardless of whether it was marked E or M. A
Block dcbi is not broadcast unless HIDO[ABE] = 1, regardless of WIMG settings. The
Invalidate instruction acts like a store with respect to address translation and memory

protection. It executes regardless of whether the cache is disabled or locked.
The exception priorities (from highest to lowest) for dcbi are as follows:

1 BAT protection violation—DSI exception

2 TLB protection violation—DSI exception

The behavior of dcbi is modified when either HID2[LCE] = 1 or HID2[WPE] = 1.
See Chapter 9 for a description of this modified behavior.

See Section 2.3.5.3.1, "User-Level Cache Instructions—VEA" on Page 2-67 for cache instructions
that provide user-level programs the ability to manage the on-chip caches. If the effective address

references a direct-store segment, the instruction is treated as a no-op.
2.3.6.3.2 Segment Register Manipulation Instructions (OEA)

| The instructions listed in Table 2-63 provide access to the segment registers for 32-bit
implementations. These instructions operate completely independently of the MSR[IR] and
MSR[DR] bit settings. Refer to “Synchronization Requirements for Special Registers and for
Lookaside Buffers" in Chapter 2, “PowerPC Register Set" ofRbeerPC Microprocessor Family:
The Programming Environmentsanual for serialization requirements and other recommended

precautions to observe when manipulating the segment registers.

Table 2-63. Segment Register Manipulation Instructions

Name Mnemonic |Syntax Implementation Notes
Move to Segment Register mtsr SRS |—
Move to Segment Register Indirect | mtsrin rSrmB |—
Move from Segment Register mfsr r D,SR | The shadow SRs in the instruction MMU can be read

by setting HIDO[RISEG] before executing mfsr.

Move from Segment Register Indirect | mfsrin rD,B |—

Page 2-72

Version 1.2

IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

2.3.6.3.3 Translation Lookaside Buffer Management Instructions—(OEA)

The address translation mechanism is defined in terms of the segment descriptors and page table
entries (PTEs) PowerPC processors use to locate the logical-to-physical address mapping for a
particular access. These segment descriptors and PTEs reside in segment registers and page tables
in memory, respectively.

See Chapter 7, "Signal Descriptions" in this manual for more information about TLB operations.

Table 2-64 summarizes the operation of the TLB instructions in Gekko.

Table 2-64. Translation Lookaside Buffer Management Instruction

Name Mnemonic [Syntax Implementation Notes
TLB tibie rB Invalidates both ways in both instruction and data TLB entries at the index
Invalidate provided by EA[14-19]. It executes regardless of the MSR[DR] and MSR[IR]
Entry settings.To invalidate all entries in both TLBs, the programmer should issue 64
tibie instructions that each successively increment this field.
TLB tibsync — On Gekko, the only function tlbsync serves is to wait for the TLBISYNC signal to
Synchronize go inactive.

Implementation Note—Thetlbia instruction is optional for an implementation if its effects can

be achieved through some other mechanism. Therefore, it is not implemented on Gekko. As
described abovetlbie can be used to invalidate a particular index of the TLB based on
EA[14-19]—a sequence of Gibie instructions followed by @lbsync instruction invalidates all

the TLB structures (for EA[14-19] =0, 1, 2,..., 63). Attempting to exetlbia causes an illegal
instruction program exception.

The presence and exact semantics of the TLB management instructions are
implementation-dependent. To minimize compatibility problems, system software should
incorporate uses of these instructions into subroutines.

2.3.7 Recommended Simplified Mnemonics

To simplify assembly language coding, a set of alternative mnemonics is provided for some
frequently used operations (such as no-op, load immediate, load address, move register, and
complement register). Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in this
document.

For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics” in the
PowerPC Microprocessor Family: The Programming Environmerdsual.

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-73

IBM Confidential

Page 2-74 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Chapter 3 Gekko Instruction and
Data Cache Operation

Gekko microprocessor contains separate 32-Kbyte, eight-way set associative instruction and data
caches to allow the execution units and registers rapid access to instructions and data. This chapter
describes the organization of the on-chip instruction and data caches, the MEI cache coherency
protocol, cache control instructions, various cache operations, and the interaction between the
caches, the load/store unit (LSU), the instruction unit, and the bus interface unit (BIU).
At power-on, Gekko sets HID2[LJE= 0 and the corresponding L1 data cache’s operation is
described in this chapter. Whennatspr instruction sets HID2[LCE] = 1, the L1 data cache is
partitioned as a 16 Kbyte normal cache and a 16 Kbyte locked cache.
The operation is described in Chapter 9, "L2 Cache, Locked D-Cache, DMA and Write Gather
Pipe" of this manaul. Also, in Gekko, locked cache and bus snoop are incompatible. HID2[LCE]
shall be kept at O for systems which generate snoop transactions.
Note that in this chapter, the term ‘multiprocessor’ is used in the context of maintaining cache
coherency. These multiprocessor devices could be actual processors or other devices that can
access system memory, maintain their own caches, and function as bus masters requiring cache
coherency.
The Gekko cache implementation has the following characteristics:

* There are two separate 32-Kbyte instruction and data caches (Harvard architecture).

» Both instruction and data caches are eight-way set associative.

* The caches implement a pseudo least-recently-used (PLRU) replacement algorithm within

each set.

* The cache directories are physically addressed. The physical (real) address tag is stored in
the cache directory.

* Both the instruction and data caches have 32-byte cache blocks. A cache block is the block
of memory that a coherency state describes, also referred to as a cache line.

» Two coherency state bits for each data cache block allow encoding for three states:
— Modified (Exclusive) (M)
— Exclusive (Unmodified) (E)
— Invalid (1)

» A single coherency state bit for each instruction cache block allows encoding for two
possible states:
— Invalid (INV)
— Valid (VAL)

» [Each cache can be invalidated or locked by setting the appropriate bits in the hardware

implementation-dependent register 0 (HIDO), a special-purpose register (SPR) specific to
Gekko.
Gekko supports a fully-coherent 4-Gbyte physical memory address space. Bus snooping is used to
drive the MEI three-state cache coherency protocol that ensures the coherency of global memory
with respect to the processor’s data cache. The MEI protocol is described in 3.3.2.”
On a cache miss, Gekko’s cache blocks are filled in four beats of 64 bits each. The burst fill is
performed as a critical-double-word-first operation; the critical double word is simultaneously

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-1

IBM Confidential

written to the cache and forwarded to the requesting unit, thus minimizing stalls due to cache fill
latency.
The instruction and data caches are integrated into Gekko as shown in Figure 3-1.

Load/Store Unit
Instruction Unit (LSU)
A A
Instructions (0-127) EA (20-26) Data (0-63)
y A y
Cache Tags Cache Tags
I-Cache D-Cache
32-Kbyte y PA(0-19 A 32-Kbyte
8-Way Set Associative 8-Way Set Associative
Cache Logic Cache Logic [—>
A A
Instructions (0-63) PA (0-31) Data (0-63)
,,,,,,,,,,,,, Yy Y
MMU/L2/60x BIU

EA: Effective Address
PA: Physical Address

Figure 3-1. Cache Integration

Both caches are tightly coupled into Gekko’s bus interface unit to allow efficient access to the system
memory controller and other bus masters. The bus interface unit receives requests for bus operations
from the instruction and data caches, and executes the operations per the 60x bus protocol. The BIU
provides address queues, prioritizing logic, and bus control logic. The BIU captures snoop addresses
for data cache, address queue, and memory reserMatam® @ndstwcx. instruction) operations.

The data cache provides buffers for load and store bus operations. All the data for the corresponding
address queues (load and store data queues) is located in the data cache. The data queues are
considered temporary storage for the cache and not part of the BIU. The data cache also provides
storage for the cache tags required for memory coherency and performs the cache block replacement
PLRU function.

The data cache supplies data to the GPRs and FPRs by means of the load/store unit. Gekko’s LSU is
directly coupled to the data cache to allow efficient movement of data to and from the general-purpose
and floating-point registers. The load/store unit provides all logic required to calculate effective
addresses, handles data alignment to and from the data cache, and provides sequencing for load and
store string and multiple operations. Write operations to the data cache can be performed on a byte,
half-word, word, or double-word basis.

The instruction cache provides a 128-bit interface to the instruction unit, so four instructions can be
made available to the instruction unit in a single clock cycle. The instruction unit accesses the
instruction cache frequently in order to sustain the high throughput provided by the six-entry
instruction queue.

Page 3-2 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

3.1 Data Cache Organization

The data cache is organized as 128 sets of eight ways as shown in Figure 3-2. Each way consists
of 32 bytes, two state bits, and an address tag. Note that in the PowerPC architecture, the term
‘cache block,” or simply ‘block,” when used in the context of cache implementations, refers to the
unit of memory at which coherency is maintained. For Gekko, this is the eight-word (32 byte) cache
line. This value may be different for other PowerPC implementations.

Each cache block contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bits A[27-31] of the logical (effective) addresses are zero); as a
result, cache blocks are aligned with page boundaries. Note that address bits A[20—26] provide the
index to select a cache set. Bits A[27—-31] select a byte within a block. The two state bits implement
a three-state MEI (modified/exclusive/invalid) protocol, a coherent subset of the standard four-state
MESI (modified/exclusive/shared/invalid) protocol. The MEI protocol is described in 3.3.2.” The
tags consist of bits PA[0-19]. Address translation occurs in parallel with set selection (from
A[20-26]), and the higher-order address bits (the tag bits in the cache) are physical.

Gekko’s on-chip data cache tags are single-ported, and load or store operations must be arbitrated
with snoop accesses to the data cache tags. Load or store operations can be performed to the cache
on the clock cycle immediately following a snoop access if the snoop misses; snoop hits may block
the data cache for two or more cycles, depending on whether a copy-back to main memory is

required.
/ I I I I I I I

128 Sets . | | i | | | |
) [[o [[[[
[] []
[] [

[! L T T T T T T

Way 0 Address Tag0 | | [State Words [0-7] R
| | | | | | |
[[[[[[[

Way 1 AddressTagl | | 1 State Words [0-7] L[]
| | | | | | |
T T T T T T T

Way 2 AddressTag2 [| | State Words [0-7] R
| | | | | | |
[[[[[[[

Way 3 AddressTag3 | [| State Words [0-7] L]
L L L L L L L
1 1 1 1 1 1 1

Way 4 Address Tag4 | | [State Words [0-7] R
| | | | | | |
[[[[[[[

Way 5 Address Tag5 | | — State Words [0-7] L[]
| | | | | | |
T T T T T T T

Way 6 Address Tag 6 L] State Words [0-7] R
| | | | | | |
[[[[[[[

Way 7 AddressTag7 |[™ State Words [0-7] L

| | |
|« 8 Words/Block———————————»|

Figure 3-2. Data Cache Organization

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-3

IBM Confidential

3.2 Instruction Cache Organization

The instruction cache also consists of 128 sets of eight ways, as shown in Figure 3-3 on Page 3-5.
Each way consists of 32 bytes, a single state bit, and an address tag. As with the data cache, each
instruction cache block contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bits A[27—-31] of the logical (effective) addresses are zero); as a result,
cache blocks are aligned with page boundaries. Also, address bits A[20—26] provide the index to
select a set, and bits A[27-29] select a word within a block.

The tags consist of bits PA[0—19]. Address translation occurs in parallel with set selection (from
A[20-26]), and the higher order address bits (the tag bits in the cache) are physical.

The instruction cache differs from the data cache in that it does not implement MEI cache coherency
protocol, and a single state bit is implemented that indicates only whether a cache block is valid or
invalid. The instruction cache is not snooped, so if a processor modifies a memory location that may
be contained in the instruction cache, software must ensure that such memory updates are visible to
the instruction fetching mechanism. This can be achieved with the following instruction sequence:

dcbst # update memory

sync # wait for update

icbi # remove (invalidate) copy in instruction cache
sync # wait for ICBI operation to be globally performed
isync # remove copy in own instruction buffer

Page 3-4 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

These operations are necessary because the processor does not maintain instruction memory
coherent with data memory. Software is responsible for enforcing coherency of instruction caches
and data memory.

Since instruction fetching may bypass the data cache, changes made to items in the data cache may
not be reflected in memory until after the instruction fetch completes.

/ T T T T T T T

128 Sets hd | | @ | | | |
° [[Y [[[[
[] []
[: [I ‘

T T T

Way 0 Address Tag 0 Valid Words [0-7]
| | |
[[[

Way 1 Address Tag 1 Valid Words [0-7]
| | |
T T T

Way 2 Address Tag 2 Valid Words [0-7]
| | |
[[[

Way 3 Address Tag 3 Valid Words [0-7]
| | |
1 1 1

Way 4 Address Tag 4 Valid Words [0-7]
| | |
[[[

Way 5 Address Tag 5 Valid Words [0-7]
| | |
T T T

Way 6 Address Tag 6 Valid Words [0-7]
| | |
[[[

Way 7 Address Tag 7 Valid Words [0-7]

L L L
|«————————————8 Words/Block———————————»|

Figure 3-3. Instruction Cache Organization

3.3 Memory and Cache Coherency

The primary objective of a coherent memory system is to provide the same image of memory to all
devices using the system. Coherency allows synchronization and cooperative use of shared
resources. Otherwise, multiple copies of a memory location, some containing stale values, could
exist in a system resulting in errors when the stale values are used. Each potential bus master must
follow rules for managing the state of its cache. This section describes the coherency mechanisms
of the PowerPC architecture and the three-state cache coherency protocol of Gekko’s data cache.

Note that unless specifically noted, the discussion of coherency in this section applies to Gekko’s
data cache only. The instruction cache is not snooped. Instruction cache coherency must be
maintained by software. However, Gekko does support a fast instruction cache invalidate capability
as described in 3.4.1.4.

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-5

IBM Confidential

3.3.1 Memory/Cache Access Attributes (WIMG Bits)

Some memory characteristics can be set on either a block or page basis by using the WIMG bits in
the BAT registers or page table entry (PTE), respectively. The WIMG attributes control the following
functionality:

* Write-through (W bit)
» Caching-inhibited (I bit)
* Memory coherency (M bit)

* Guarded memory (G bit)

These bits allow both uniprocessor and multiprocessor system designs to exploit numerous
system-level performance optimizations.

The WIMG attributes are programmed by the operating system for each page and block. The
W and | attributes control how the processor performing an access uses its own cache. The M
attributeensures that coherency is maintained for all copies of the addressed memory location.
The G attribute prevents out-of-order loading and prefetching from the addressed memory
location.

The WIMG attributes occupy four bits in the BAT registers for block address translation and in the
PTEs for page address translation. The WIMG bits are programmed as follows:

» The operating system uses thespr instruction to program the WIMG bits in the BAT
registers for block address translation. The IBAT register pairs do not have a G bit and all
accesses that use the IBAT register pairs are considered not guarded.

* The operating system writes the WIMG bits for each page into the PTEs in system memory
as it sets up the page tables.

When an access requires coherency, the processor performing the access must inform the coherency
mechanisms throughout the system that the access requires memory coherency. The M attribute
determines the kind of access performed on the bus (global or local).

Software must exercise care with respect to the use of these bits if coherent memory support is
desired. Careless specification of these bits may create situations that present coherency paradoxes to
the processor. In particular, this can happen when the state of these bits is changed without
appropriate precautions (such as flushing the pages that correspond to the changed bits from the
caches of all processors in the system) or when the address translations of aliased real addresses
specify different values for any of the WIMG bits. These coherency paradoxes can occur within a
single processor or across several processors. It is important to note that in the presence of a paradox,
the operating system software is responsible for correctness.

For real addressing mode (that is, for accesses performed with address translation
disabled—MSR][IR] = 0 or MSR[DR] = 0 for instruction or data access, respectively), the WIMG bits

are automatically generated as 0b0011 (the data is write-back, caching is enabled, memory coherency
is enforced, and memory is guarded).

3.3.2 MEI Protocol

Gekko data cache coherency protocol is a coherent subset of the standard MESI four-state cache
protocol that omits the shared state. Gekko’s data cache characterizes each 32-byte block it contains
as being in one of three MEI states. Addresses presented to the cache are indexed into the cache
directory with bits A[20-26], and the upper-order 20 bits from the physical address translation
(PA[0-19]) are compared against the indexed cache directory tags. If neither of the indexed tags
matches, the result is a cache miss. If a tag matches, a cache hit occurred and the directory indicates
the state of the cache block through two state bits kept with the tag. The three possible states for a
cache block in the cache are the modified state (M), the exclusive state (E), and the invalid state (I).

Page 3-6 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

The three MEI states are defined in Table 3-1.
Table 3-1. MEI State Definitions

MEI State Definition

Modified (M) | The addressed cache block is present in the cache, and is modified with respect to system
memory—that is, the modified data in the cache block has not been written back to memory. The
cache block may be present in Gekko’s L2 cache, but it is not present in any other coherent cache.

Exclusive (E) | The addressed cache block is present in the cache, and this cache has exclusive ownership of the
addressed block. The addressed block may be present in Gekko’s L2 cache, but it is not present in
any other processor’s cache. The data in this cache block is consistent with system memory.

Invalid (1) This state indicates that the address block does not contain valid data or that the addressed cache
block is not resident in the cache.

Gekko provides dedicated hardware to provide memory coherency by snooping bus transactions.
Figure 3-4 on Page 3-8 shows the MEI cache coherency protocol, as enforced by Gekko. The
information in this figure assumes that the WIM bits for the page or block are set to 001; that is,
write-back, caching-not-inhibited, and memory coherency enforced. Since data cannot be shared,
Gekko signals all cache block fills as if they were write misses (read-with-intent-to-modify), which
flushes the corresponding copies of the data in all caches external to Gekko prior to the
cache-block-fill operation. Following the cache block load, Gekko is the exclusive owner of the
data and may write to it without a bus broadcast transaction. To maintain the three-state coherency,
all global reads observed on the bus by Gekko are snooped as if they were writes, causing Gekko
to flush the cache block (write the cache block back to memory and invalidate the cache block if it
is modified, or simply invalidate the cache block if it is unmodified). The exception to this rule
occurs when a snooped transaction is a caching-inhibited read (either burst or single-beat, where
TT[0-4] = X1010; see Table 7-1 on Page 7-6 for clarification), in which case Gekko does not
invalidate the snooped cache block. If the cache block is modified, the block is written back to
memory, and the cache block is marked exclusive. If the cache block is marked exclusive, no bus
action is taken, and the cache block remains in the exclusive state.

This treatment of caching-inhibited reads decreases the possibility of data thrashing by allowing
noncaching devices to read data without invalidating the entry from Gekko’s data cache.

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-7

IBM Confidential

SHICRW SHICRW
RM

RH Modified

SH 0 R

WH SHICIR

Bus Transactions

SH = Snoop Hit @ = Snoop Push
RH = Read Hit

RM = Read Miss

WH = Write Hit @ = Cache Block Fill
WM = Write Miss

SH/CRW = Snoop Hit, Cacheable Read/Write
SHICIR = Snoop Hit, Caching-Inhibited Read

Figure 3-4. MEI Cache Coherency Protocol—State Diagram (WIM = 001)

Section 3.7 on Page 3-26 provides a detailed list of MEI transitions for various operations and WIM
bit settings.

3.3.2.1 MEI Hardware Considerations

While Gekko provides the hardware required to monitor bus traffic for coherency, Gekko’s data cache
tags are single-ported, and a simultaneous load/store and snoop access represents a resource conflict.
In general, the snoop access has highest priority and is given first access to the tags. The load or store
access will then occur on the clock following the snoop. The snoop is not given priority into the tags
when the snoop coincides with a tag write (for example, validation after a cache block load). In these
situations, the snoop is retried and must re-arbitrate before the lookup is possible.

Occasionally, cache snoops cannot be serviced and must be retried. These retries occur if the cache
is busy with a burst read or write when the snoop operation takes place.

Note that it is possible for a snoop to hit a modified cache block that is already in the process of being
written to the copy-back buffer for replacement purposes. If this happens, Gekko retries the snoop,
and raises the priority of the castout operation to allow it to go to the bus before the cache block fill.

Another consideration is page table aliasing. If a store hits to a modified cache block but the page table

Page 3-8 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

entry is marked write-through (WIMG = 1xxx), then the page has probably been aliased through
another page table entry which is marked write-back (WIMG = 0Oxxx). If this occurs, Gekko
ignores the modified bit in the cache tag. The cache block is updated during the write-through
operation and the block remains in the modified state.

The global GBL) signal, asserted as part of the address attribute field during a bus transaction,
enables the snooping hardware of Gekko. Address bus masters @Beto indicate that the

current transaction is a global access (that is, an access to memory shared by more than one device).
If GBL is not asserted for the transaction, that transaction is not snooped by Gekko. Note that the
GBL signal is not asserted for instruction fetches, and@it is asserted for all data read or write
operations when using real addressing mode (that is, address translation is disabled).
Normally, GBL reflects the M-bit value specified for the memory reference in the corresponding
translation descriptor(s). Care should be taken to minimize the number of pages marked as global,
because the retry protocol enforces coherency and can use considerable bus bandwidth if much
data is shared. Therefore, available bus bandwidth decreases as more memory is marked as global.
Gekko snoops a transaction if the transfer stag)(andGBL signals are asserted together in the
same bus clock (this is a qualified snooping condition). No snoop update to Gekko cache occurs if
the snooped transaction is not marked global. Also, because cache block castouts and snoop pushes
do not require snooping, tl@&BL signal is not asserted for these operations.

When Gekko detects a qualified snoop condition, the address associated witB gignal is
compared with the cache tags. Snooping finishes if no hit is detected. If, however, the address hits
in the cache, Gekko reacts according to the MEI protocol shown in Figure 3-4 on Page 3-8.

3.3.3 Coherency Precautions in Single Processor Systems
The following coherency paradoxes can be encountered within a single-processor system:

* Load or store to a caching-inhibited page (WIMG = x1xx) and a cache hit occurs.

Gekko ignores any hits to a cache block in a memory space marked
caching-inhibited (WIMG = x1xx). The access is performed on the external bus as
if there were no hit. The data in the cache is not pushed, and the cache block is not
invalidated.

» Store to a page marked write-through (WIMG = 1xxx) and a cache hit occurs to a modified
cache block.

Gekko ignores the modified bit in the cache tag. The cache block is updated during
the write-through operation but the block remains in the modified state (M).

Note that when WIM bits are changed in the page tables or BAT registers, it is critical that the cache
contents reflect the new WIM bit settings. For example, if a block or page that had allowed caching
becomes caching-inhibited, software should ensure that the appropriate cache blocks are flushed to
memory and invalidated.

3.3.4 Coherency Precautions in Multiprocessor Systems

Gekko’s three-state coherency protocol permits no data sharing between Gekko and other caches.
All burst reads initiated by Gekko are performed as read with intent to modify. Burst snoops are
interpreted as read with intent to modify or read with no intent to cache. This effectively places all
caches in the system into a three-state coherency scheme. Four-state caches may share data
amongst themselves but not with Gekko.

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-9

IBM Confidential

3.3.5 Gekko-Initiated Load/Store Operations

Load and store operations are assumed to be weakly ordered on Gekko. The load/store unit (LSU)
can perform load operations that occur later in the program ahead of store operations, even when the
data cache is disabled (see 3.3.5.2). However, strongly ordered load and store operations can be
enforced through the setting of the | bit (of the page WIMG bits) when address translation is enabled.
Note that when address translation is disabled (real addressing mode), the default WIMG bits cause
the | bit to be cleared (accesses are assumed to be cacheable), and thus the accesses are weakly
ordered. Refer to Section 5.2 on Page 5-17 for a description of the WIMG bits when address
translation is disabled.

Gekko does not provide support for direct-store segments. Operations attempting to access a
direct-store segment will invoke a DSI exception. For additional information about DSI exceptions,
refer to Section 4.5.3 on Page 4-17.

3.3.5.1 Performed Loads and Stores

The PowerPC architecture defines a performed load operation as one that has the addressed memory
location bound to the target register of the load instruction. The architecture defines a performed store
operation as one where the stored value is the value that any other processor will receive when
executing a load operation (that is of course, until it is changed again). With respect to Gekko,
caching-allowed (WIMG = x0xx) loads and caching-allowed, write-back (WIMG = 00xx) stores are
performed when they have arbitrated to address the cache block. Note that in the event of a cache
miss, these storage operations may place a memory request into the processor's memory queue, but
such operations are considered an extension to the state of the cache with respect to snooping bus
operations. Caching-inhibited (WIMG = x1xx) loads, caching-inhibited (WIMG = x1xx) stores, and
write-through (WIMG = 1xxx) stores are performed when they have been successfully presented to
the external 60x bus.

3.3.5.2 Sequential Consistency of Memory Accesses

The PowerPC architecture requires that all memory operations executed by a single processor be
sequentially consistent with respect to that processor. This means that all memory accesses appear to
be executed in program order with respect to exceptions and data dependencies.

Gekko achieves sequential consistency by operating a single pipeline to the cache/MMU. All memory
accesses are presented to the MMU in exact program order and therefore exceptions are determined
in order. Loads are allowed to bypass stores once exception checking has been performed for the
store, but data dependency checking is handled in the load/store unit so that a load will not bypass a
store with an address match. Note that although memory accesses that miss in the cache are forwarded
to the memory queue for future arbitration for the external bus, all potential synchronous exceptions
have been resolved before the cache. In addition, although subsequent memory accesses can address
the cache, full coherency checking between the cache and the memory queue is provided to avoid
dependency conflicts.

3.3.5.3 Atomic Memory References

The PowerPC architecture defines the Load Word and Reserve Indexer)(and the Store Word
Conditional Indexedgtwcx.) instructions to provide an atomic update function for a single, aligned
word of memory. These instructions can be used to develop a rich set of multiprocessor
synchronization primitives.

Page 3-10 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

NOTE: Atomic memory references constructed udingrx/stwcx. instructions depend on the
presence of a coherent memory system for correct operation. These instructions should
not be expected to provide atomic access to noncoherent memory. For detailed
information on these instructions, refer to Chapter 2, "Programming Model" and
Chapter 12, "Instruction Set™ in this book.

Thelwarx instruction performs a load word from memory operation and creates a reservation for
the 32-byte section of memory that contains the accessed word. The reservation granularity is 32
bytes. Thelwarx instruction makes a nonspecific reservation with respect to the executing
processor and a specific reservation with respect to other masters. This means that any subsequent
stwcx. executed by the same processor, regardless of address, will cancel the reservation. Also, any
bus write or invalidate operation from another processor to an address that matches the reservation
address will cancel the reservation.

The stwcx. instruction does not check the reservation for a matching address.stWo.
instruction is only required to determine whether a reservation exists.stiex. instruction
performs a store word operation only if the reservation exists. If the reservation has been cancelled
for any reason, then ttewcx.instruction fails and clears the CRO[EQ] bit in the condition register.
The architectural intent is to follow thigvarx/stwcx. instruction pair with a conditional branch
which checks to see whether gtev/cx. instruction failed.

If the page table entry is marked caching-allowed (WIMG = x0xx), anlivanx access misses in

the cache, then Gekko performs a cache block fill. If the page is marked caching-inhibited (WIMG
=x1xx) or the cache is locked, and the access misses, thémdheinstruction appears on the bus

as a single-beat load. All bus operations that are a direct result of eith@aeninstruction or an

stwcx. instruction are placed on the bus with a special encoding. Note that this does not force all
Iwarx instructions to generate bus transactions, but rather provides a means for identifying when
anlwarx instruction does generate a bus transaction. If an implementation requires thaitrall
instructions generate bus transactions, then the associated pages should be marked as
caching-inhibited.

Gekko’s data cache treats atwcx. operations as write-through independent of the WIMG
settings. However, if thetwcx. operation hits in Gekko’s L2 cache, then the operation completes
with the reservation intact in the L2 cache. See Chapter 9, "L2 Cache, Locked D-Cache, DMA and
Write Gather Pipe" for more information. Otherwise, ste/cx. operation continues to the bus
interface unit for completion. When the write-through operation completes successfully, either in
the L2 cache or on the 60x bus, then the data cache entry is updated (assuming it hits), and
CRO[EQ] is modified to reflect the success of the operation. If the reservation is not intact, the
stwcx. completes in the bus interface unit without performing a bus transaction, and without
modifying either of the caches.

3.4 Cache Control

Gekko’s L1 caches are controlled by programming specific bits in the HIDO special-purpose
register and by issuing dedicated cache control instructions. Section 3.4.1 describes the HIDO
cache control bits, and Section 3.4.2 on Page 3-13 describes the cache control instructions.

3.4.1 Cache Control Parameters in HIDO

The HIDO special-purpose register contains several bits that invalidate, disable, and lock the
instruction and data caches. The following sections describe these facilities.

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-11

IBM Confidential

3.4.1.1 Data Cache Flash Invalidation

The data cache is automatically invalidated when Gekko is powered up and during a hard reset.
However, a soft reset does not automatically invalidate the data cache. Software must use the HIDO
data cache flash invalidate bit (HIDO[DCFI]) if data cache invalidation is desired after a soft reset.
Once HIDO[DCFI] is set through amtspr operation, Gekko automatically clears this bit in the next
clock cycle (provided that the data cache is enabled in the HIDO register).

Note that some PowerPC microprocessors accomplish data cache flash invalidation by setting and
clearing HIDO[DCFI] with two consecutiventspr instructions (that is, the bit is not automatically
cleared by the microprocessor). Software that has this sequence of operations does not need to be
changed to run on Gekko.

3.4.1.2 Data Cache Enabling/Disabling

The data cache may be enabled or disabled by using the data cache enable bit, HIDO[DCE].
HIDO[DCE] is cleared on power-up, disabling the data cache.

When the data cache is in the disabled state (HIDO[DCE] = 0), the cache tag state bits are ignored,
and all accesses are propagated to the L2 cache or 60x bus as single-beat transactions. Note that the
CI (cache inhibit) signal always reflects the state of the caching-inhibited memory/cache access
attribute (the I bit) independent of the state of HIDO[DCE]. Also note that disabling the data cache
does not affect the translation logic; translation for data accesses is controlled by MSR[DR].

The setting of the DCE bit must be preceded kgyacinstruction to prevent the cache from being
enabled or disabled in the middle of a data access. In addition, the cache must be globally flushed
before it is disabled to prevent coherency problems when it is re-enabled.

Snooping is not performed when the data cache is disabled.

Thedcbz instruction will cause an alignment exception when the data cache is disabled. The touch
load (dcbt and dcbtst) instructions are no-ops when the data cache is disabled. Other cache
operations (caused by tlebf, dcbst, anddcbi instructions) are not affected by disabling the cache.
This can potentially cause coherency errors. For exampleh&nstruction that hits a modified cache
block in the disabled cache will cause a copyback to memory of potentially stale data.

3.4.1.3 Data Cache Locking

The contents of the data cache can be locked by setting the data cache lock bit, HIDO[DLOCK]. A
data access that hits in a locked data cache is serviced by the cache. However, all accesses that miss
in the locked cache are propagated to the L2 cache or 60x bus as single-beat transactions. Note that
the ClI signal always reflects the state of the caching-inhibited memory/cache access attribute (the |
bit) independent of the state of HIDO[DLOCK].

Gekko treats snoop hits to a locked data cache the same as snoop hits to an unlocked data cache.
However, any cache block invalidated by a snoop hit remains invalid until the cache is unlocked.

The setting of the DLOCK bit must be preceded kgyacinstruction to prevent the data cache from
being locked during a data access.

3.4.1.4 Instruction Cache Flash Invalidation

The instruction cache is automatically invalidated when Gekko is powered up and during a hard reset.
However, a soft reset does not automatically invalidate the instruction cache. Software must use the
HIDO instruction cache flash invalidate bit (HIDO[ICFI]) if instruction cache invalidation is desired
after a soft reset. Once HIDO[ICFI] is set throughratspr operation, Gekko automatically clears

this bit in the next clock cycle (provided that the instruction cache is enabled in the HIDO register).

Page 3-12 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

NOTE: Some PowerPC microprocessors accomplish instruction cache flash invalidation by
setting and clearing HIDO[ICFI] with two consecutiviespr instructions (that is, the
bit is not automatically cleared by the microprocessor). Software that has this sequence
of operations does not need to be changed to run on Gekko.

3.4.1.5 Instruction Cache Enabling/Disabling

The instruction cache may be enabled or disabled through the use of the instruction cache enable
bit, HIDO[ICE]. HIDO[ICE] is cleared on power-up, disabling the instruction cache.

When the instruction cache is in the disabled state (HID[ICE] = 0), the cache tag state bits are
ignored, and all instruction fetches are propagated to the L2 cache or 60x bus as single-beat
transactions. Note that th€l signal always reflects the state of the caching-inhibited
memory/cache access attribute (the | bit) independent of the state of HIDO[ICE]. Also note that
disabling the instruction cache does not affect the translation logic; translation for instruction
accesses is controlled by MSRJIR].

The setting of the ICE bit must be preceded bysymcinstruction to prevent the cache from being
enabled or disabled in the middle of an instruction fetch. In addition, the cache must be globally
flushed before it is disabled to prevent coherency problems when it is re-enabledcbrhe
instruction is not affected by disabling the instruction cache.

3.4.1.6 Instruction Cache Locking

The contents of the instruction cache can be locked by setting the instruction cache lock bit,
HIDO[ILOCK]. An instruction fetch that hits in a locked instruction cache is serviced by the cache.
However, all accesses that miss in the locked cache are propagated to the L2 cache or 60x bus as
single-beat transactions. Note that Besignal always reflects the state of the caching-inhibited
memory/cache access attribute (the | bit) independent of the state of HIDO[ILOCK].

The setting of the ILOCK bit must be preceded byisync instruction to prevent the instruction
cache from being locked during an instruction fetch.

3.4.2 Cache Control Instructions

The PowerPC architecture defines instructions for controlling both the instruction and data caches
(when they exist). The cache control instructiothsht, dcbtst, dcbz, dcbst, dcbf, dcbi, andichi,

are intended for the management of the local L1 and L2 caches. Gekko interprets the cache control
instructions as if they pertain only to its own L1 or L2 caches. These instructions are not intended
for managing other caches in the system (except to the extent necessary to maintain coherency).

Gekko does not snoop cache control instruction broadcasts, excelpblowhen M = 1. Thedcbz
instruction is the only cache control instruction that causes a broadcast on the 60x bus (when M =
1) to maintain coherency. All other data cache control instructidabi(dcbf, dcbst anddcbz)

are not broadcast, unless broadcast is enabled through the HIDO[ABE] configuration bit. Note that
dcbi, dcbf, dcbstanddcbz do broadcast to Gekko’s L2 cache, regardless of HIDO[ABE].ithie
instruction is never broadcast.

Gekko implements a new instructionicbz_|, to allocate lines in the locked cache when

HID2[LCE] = 1. See Chapter 9, "L2 Cache, Locked D-Cache, DMA and Write Gather Pipe" for
detail.

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-13

IBM Confidential

3.4.2.1 Data Cache Block Touch (dcbt) and
Data Cache Block Touch for Store (dcbtst)

The Data Cache Block Toucllg¢bt) and Data Cache Block Touch for Stomcbtst) instructions

provide potential system performance improvement through the use of software-initiated prefetch
hints. Gekko treats these instructions identically (that idcltst instruction behaves exactly the

same as acbt instruction on Gekko). Note that PowerPC implementations are not required to take
any action based on the execution of these instructions, but they may choose to prefetch the cache
block corresponding to the effective address into their cache.

Gekko loads the data into the cache when the address hits in the TLB or the BAT, is permitted load
access from the addressed page, is not directed to a direct-store segment, and is directed at a cacheable
page. Otherwise, Gekko treats these instructions as no-ops. The data brought into the cache as a result
of this instruction is validated in the same manner that a load instruction would be (that is, it is marked

as exclusive). The memory reference afcbt (or dcbtst) instruction causes the reference bit to be

set. Note also that the successful execution ofiitis (or dcbtst) instruction affects the state of the

TLB and cache LRU bits as defined by the PLRU algorithm.

3.4.2.2 Data Cache Block Zero (dcbz)

The effective address is computed, translated, and checked for protection violations as defined in the
PowerPC architecture. Thikebz instruction is treated as a store to the addressed byte with respect to
address translation and protection.

If the block containing the byte addressed by the EA is in the data cache, all bytes are cleared, and
the tag is marked as modified (M). If the block containing the byte addressed by the EA is not in the
data cache and the corresponding page is caching-allowed, the block is established in the data cache
without fetching the block from main memory, and all bytes of the block are cleared, and the tag is
marked as modified (M).

If the contents of the cache block are from a page marked memory coherence required (M = 1), an
address-only bus transaction is run prior to clearing the cache bloclkdclzenstruction is the only

cache control instruction that causes a broadcast on the 60x bus (when M = 1) to maintain coherency.
The other cache control instructions are not broadcast unless broadcasting is specifically enabled
through the HIDO[ABE] configuration bit. Thécbz instruction executes regardless of whether the
cache is locked, but if the cache is disabled, an alignment exception is generated. If the page
containing the byte addressed by the EA is caching-inhibited or write-through, then the system
alignment exception handler is invoked. BAT and TLB protection violations generate DSI exceptions.

3.4.2.3 Data Cache Block Store (dcbst)

The effective address is computed, translated, and checked for protection violations as defined in the
PowerPC architecture. This instruction is treated as a load with respect to address translation and
memory protection.

If the address hits in the cache and the cache block is in the exclusive (E) state, no action is taken. If
the address hits in the cache and the cache block is in the modified (M) state, the modified block is
written back to memory and the cache block is placed in the exclusive (E) state.

The execution of @acbstinstruction does not broadcast on the 60x bus unless broadcast is enabled
through the HIDO[ABE] bit. The function of this instruction is independent of the WIMG bit settings

of the block containing the effective address. Tubst instruction executes regardless of whether

the cache is disabled or locked; however, a BAT or TLB protection violation generates a DSI
exception.

Page 3-14 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

3.4.2.4 Data Cache Block Flush (dcbf)

The effective address is computed, translated, and checked for protection violations as defined in
the PowerPC architecture. This instruction is treated as a load with respect to address translation
and memory protection.

If the address hits in the cache, and the block is in the modified (M) state, the modified block is
written back to memory and the cache block is placed in the invalid (I) state. If the address hits in
the cache, and the cache block is in the exclusive (E) state, the cache block is placed in the invalid
() state. If the address misses in the cache, no action is taken.

The execution oficbf does not broadcast on the 60x bus unless broadcast is enabled through the
HIDO[ABE] bit. The function of this instruction is independent of the WIMG bit settings of the
block containing the effective address. Tthebf instruction executes regardless of whether the
cache is disabled or locked; however, a BAT or TLB protection violation generates a DSI
exception.

3.4.2.5 Data Cache Block Invalidate (dcbi)

The effective address is computed, translated, and checked for protection violations as defined in
the PowerPC architecture. This instruction is treated as a store with respect to address translation
and memory protection.

If the address hits in the cache, the cache block is placed in the invalid (I) state, regardless of
whether the data is modified. Because this instruction may effectively destroy modified data, it is
privileged (that isdcbi is available to programs at the supervisor privilege level, MSR[PR] = 0).
The execution ofichi does not broadcast on the 60x bus unless broadcast is enabled through the
HIDO[ABE] bit. The function of this instruction is independent of the WIMG bit settings of the
block containing the effective address. Téhebi instruction executes regardless of whether the
cache is disabled or locked; however, a BAT or TLB protection violation generates a DSI
exception.

3.4.2.6 Instruction Cache Block Invalidate (icbi)

For theicbi instruction, the effective address is not computed or translated, so it cannot generate a
protection violation or exception. This instruction performs a virtual lookup into the instruction
cache (index only). All ways of the selected instruction cache set are invalidated.

The icbi instruction is not broadcast on the 60x bus. T¢tla instruction invalidates the cache
blocks independent of whether the cache is disabled or locked.

3.5 Cache Operations
This section describes Gekko cache operations.

3.5.1 Cache Block Replacement/Castout Operations

Both the instruction and data cache use a pseudo least-recently-used (PLRU) replacement
algorithm when a new block needs to be placed in the cache. When the data to be replaced is in the
modified (M) state, that data is written into a castout buffer while the missed data is being accessed
on the bus. When the load completes, Gekko then pushes the replaced cache block from the castout
buffer to the L2 cache (if L2 is enabled) or to main memory (if L2 is disabled).

The replacement logic first checks to see if there are any invalid blocks in the set and chooses the
lowest-order, invalid block (L[0—7]) as the replacement target. If all eight blocks in the set are valid,
the PLRU algorithm is used to determine which block should be replaced. The PLRU algorithm is
shown in Figure 3-5 on Page 3-16.

Each cache is organized as eight blocks per set by 128 sets. There is a valid bit for each block in

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-15

IBM Confidential

the cache, L[0-7]. When all eight blocks in the set are valid, the PLRU algorithm is used to select the
replacement target. There are seven PLRU bits, B[0—6] for each set in the cache. For every hit in the
cache, the PLRU bits are updated using the rules specified in Table 3-2 on Page 3-17.

LO invalid—» AlloL%ate
LO valid
(O— LLinvalid— Alkaclate

L1 valid

(O— L2 invalid— Allcﬁczate

L2 valid

O— L3 invalid— A"ci%ate

L3 valid

O— L4 invalid—-(Allocate

L4 valid

(lr)f L5 invalid— A"OL%ate

L5 valid

é}— L6 invalid— Alli%ate

L6 valid

O— L7 invalid— A"ct%ate

L7 valid

Bl 0
Replace Replace Replace Replace Replace Replace Replace Replace
LO Ll L2 L3 L4 L5 L6

Figure 3-5. PLRU Replacement Algorithm

Page 3-16 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Table 3-2. PLRU Bit Update Rules

If the Then the PLRU bits are Changed to: 1
Current
ACC?S':S s BO B1 B2 B3 B4 BS5 B6
LO 1 1 X 1 X X X
L1 1 1 X 0 X X X
L2 1 0 X X 1 X X
L3 1 0 X X 0 X X
L4 0 X 1 X X 1 X
L5 0 X 1 X X 0 X
L6 0 X 0 X X X 1
L7 0 X 0 X X X 0

Note: 1x = Does not change

If all eight blocks are valid, then a block is selected for replacement according to the PLRU bit
encodings shown in Table 3-3.

Table 3-3. PLRU Replacement Block Selection

Then the
Block
If the PLRU Bits Are: Selected for
Replacement
Is:
0 0 0 LO
B3
0 0 1 L1
0 Bl 1 0 L2
B4
0 1 1 L3
BO
1 0 0 L4
B5
1 0 1 L5
1 = 1 0 L6
B6
1 1 1 L7

During power-up or hard reset, all the valid bits of the blocks are cleared and the PLRU bits cleared
to point to block LO of each set. Note that this is also the state of the data or instruction cache after
setting their respective flash invalidate bit (HIDO[DCFI] or HIDO[ICFI]).

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-17

IBM Confidential

3.5.2 Cache Flush Operations

The instruction cache can be invalidated by executing a seriésboinstructions or by setting
HIDO[ICFI]. The data cache can be invalidated by executing a seri@stbinstructions or by setting
HIDO[DCFI].

Any modified entries in the data cache can be copied back to memory (flushed) by usdapthe
instruction or by executing a series of 12 uniquely addressed lodcbarinstructions to each of the

128 sets. The address space should not be shared with any other process to prevent snoop hit
invalidations during the flushing routine. Exceptions should be disabled during this time so that the
PLRU algorithm does not get disturbed.

The data cache flush assist bit, HIDO[DCFA], simplifies the software flushing process. When set,
HIDO[DCFA] forces the PLRU replacement algorithm to ignore the invalid entries and follow the
replacement sequence defined by the PLRU bits. This reduces the series of uniquely addressed load
or dcbz instructions to eight per set. HIDO[DCFA] should be set just prior to the beginning of the
cache flush routine and cleared after the series of instructions is complete.

3.5.3 Data Cache-Block-Fill Operations

Gekko’s data cache blocks are filled in four beats of 64 bits each, with the critical double word loaded
first. The data cache is not blocked to internal accesses while the load (caused by a cache miss)
completes. This functionality is sometimes referred to as ‘hits under misses, because the cache can
service a hit while a cache miss fill is waiting to complete. The critical-double-word read from
memory is simultaneously written to the data cache and forwarded to the requesting unit, thus
minimizing stalls due to cache fill latency.

A cache block is filled after a read miss or write miss (read-with-intent-to-modify) occurs in the
cache. The cache block that corresponds to the missed address is updated by a burst transfer of the
data from the L2 or system memory. Note that if a read miss occurs in a system with multiple bus
masters, and the data is modified in another cache, the modified data is first written to external
memory before the cache fill occurs.

3.5.4 Instruction Cache-Block-Fill Operations

Gekko's instruction cache blocks are loaded in four beats of 64 bits each, with the critical double word

loaded first. The instruction cache is not blocked to internal accesses while the fetch (caused by a
cache miss) completes. On a cache miss, the critical and following double words read from memory
are simultaneously written to the instruction cache and forwarded to the instruction queue, thus

minimizing stalls due to cache fill latency. There is no snooping of the instruction cache.

3.5.5 Data Cache-Block-Push Operation
When a cache block in Gekko is snooped and hit by another bus master and the data is modified, the
cache block must be written to memory and made available to the snooping device. The cache block
is said to be pushed out onto the 60x bus.

3.6 L1 Caches and 60x Bus Transactions

Gekko transfers data to and from the cache in single-beat transactions of two words, or in four-beat
transactions of eight words which fill a cache block. Single-beat bus transactions can transfer from
one to eight bytes to or from Gekko, and can be misaligned. Single-beat transactions can be caused
by cache write-through accesses, caching-inhibited accesses (WIMG = x1xx), accesses when the
cache is disabled (HIDO[DCE] bit is cleared), or accesses when the cache is locked (HIDO[DLOCK]
bit is cleared).

Burst transactions on Gekko always transfer eight words of data at a time, and are aligned to a
double-word boundary. Gekko transfer burBBET) output signal indicates to the system whether

Page 3-18 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

the current transaction is a single-beat transaction or four-beat burst transfer. Burst transactions
have an assumed address order. For cacheable read operations, instruction fetches, or cacheable,
non-write-through write operations that miss the cache, Gekko presents the double-word-aligned
address associated with the load/store instruction or instruction fetch that initiated the transaction.
As shown in Figure 3-6, the first quad word contains the address of the load/store or instruction
fetch that missed the cache. This minimizes latency by allowing the critical code or data to be
forwarded to the processor before the rest of the block is filled. For all other burst operations,
however, the entire block is transferred in order (oct-word-aligned). Critical-double-word-first
fetching on a cache miss applies to both the data and instruction cache.
Figure 3-6 Gekko Cache Addresses
Gekko Cache Address
Bits (27... 28)

00 01 10 11
A B C D

If the address requested is in double-word A, the address placed on the bus is that of double-word A, and
the four data beats are ordered in the following manner:

Beat
1 2 3

A B C D

If the address requested is in double-word C, the address placed on the bus will be that of double-word
C, and the four data beats are ordered in the following manner:

Beat
1 2 3

C D A B

3.6.1 Read Operations and the MEI Protocol

The MEI coherency protocol affects how Gekko data cache performs read operations on the 60x
bus. All reads (except for caching-inhibited reads) are encoded on the bus as
read-with-intent-to-modify (RWITM) to force flushing of the addressed cache block from other
caches in the system.

The MEI coherency protocol also affects how Gekko snoops read operations on the 60x bus. All
reads snooped from the 60x bus (except for caching-inhibited reads) are interpreted as RWITM to
cause flushing from Gekko’s cache. Single-beat reaBST negated) are interpreted by Gekko as
caching inhibited.

These actions for read operations allow Gekko to operate successfully (coherently) on the bus with
other bus masters that implement either the three-state MEI or a four-state MESI cache coherency
protocol.

3.6.2 Bus Operations Caused by Cache Control Instructions

The cache control, TLB management, and synchronization instructions supported by Gekko may
affect or be affected by the operation of the 60x bus. The operation of the instructions may also
indirectly cause bus transactions to be performed, or their completion may be linked to the bus.
Thedcbzinstruction is the only cache control instruction that causes an address-only broadcast on
the 60x bus. All other data cache control instructiodsbf, dcbf, dcbst, and dcbz) are not
broadcast unless specifically enabled through the HIDO[ABE] configuration bit. Noteldhat

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-19

IBM Confidential

dcbf, dcbst, anddcbzdo broadcast to Gekko’s L2 cache, regardless of HIDO[ABE]. HIDO[ABE] also
controls the broadcast of tegncandeieioinstructions.

Theicbi instruction is never broadcast. No broadcasts by other masters are snooped by Gekko (except
for dcbzkill block transactions). Thdcbz_linstruction is never broadcast. For detailed information

on the cache control instructions, refer to Chapter 2, "Programming Model" and Chapter 12,
"Instruction Set" in this book.

Table 3-4 provides an overview of the bus operations initiated by cache control instructions. Note that
the information in this table assumes that the WIM bits are set to 001; that is, the cache is operating

in write-back mode, caching is permitted and coherency is enforced.

Table 3-4. Bus Operations Caused by Cache Control Instructions (WIM = 001)

Instruction Current Next Cache State Bus Operation Comment
Cache State
sync Don't care No change sync Waits for memory queues
(if enabled in to complete bus activity
HIDO[ABE])
tibie — — None —
tibsync — — None Waits for the negation of
the TLBSYNC input signal
to complete
eieio Don't care No change eieio Address-only bus
(if enabled in operation
HIDO[ABE])
icbi Don't care I None —
dchi Don't care I Kill block Address-only bus
(if enabled in operation
HIDO[ABE])
dcbf I, E | Flush block Address-only bus
(if enabled in operation
HIDO[ABE])
dcbf M I Write with kill Block is pushed
dcbst I, E No change Clean block Address-only bus
(if enabled in operation
HIDO[ABE])
dcbst M E Write with Kkill Block is pushed
dcbz I M Write with kill —
dcbz E, M M Kill block Writes over modified data
dcbz_| M, E, | M None —
dcbt I E Read-with-intent-t | Fetched cache block is
o-modify stored in the cache
dcbt E, M No change None —
dcbtst I E Read-with-intent-t | Fetched cache block is
o-modify stored in the cache
dcbtst E.M No change None —

For additional details about the specific bus operations performed by Gekko, see Chapter 8, "Bus

Interface Operation™ in this manual.

Page 3-20

Version 1.2

IBM Confidential

IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

3.6.3 Snooping

Gekko maintains data cache coherency in hardware by coordinating activity between the data
cache, the bus interface logic, the L2 cache, and the memory system. Gekko has a copy-back cache
which relies on bus snooping to maintain cache coherency with other caches in the system. For
Gekko, the coherency size of the bus is the size of a cache block, 32 bytes. This means that any bus
transactions that cross an aligned 32-byte boundary must present a new address onto the bus at that
boundary for proper snoop operation by Gekko, or they must operate noncoherently with respect
to Gekko.

As bus operations are performed on the bus by other bus masters, Gekko’s bus snooping logic
monitors the addresses and transfer attributes that are referenced. Gekko snoops the bus
transactions during the cycle thE® is asserted for any of the following qualified snoop conditions:

» The global signalGBL) is asserted indicating that coherency enforcement is required.

» Areservation is currently active in Gekko as the result divarx instruction, and the
transfer type attributes (TT[0—4]) indicate a write or kill operation. These transactions are
snooped regardless of whetli&BL is asserted to support reservations in the MEI cache
protocol.

All transactions snooped by Gekko are checked for correct address bus parity. Every assertion of
TS detected by Gekko (whether snooped or not) must be followed by an accompanying assertion
of AACK.

The locked cache and bus snoop are incompatible. HID2[LCE] shall be kept at 0 for systems which
generate snoop transactions

Once a qualified snoop condition is detected on the bus, the snooped address associatedswith
compared against the data cache tags, memory queues, and/or other storage elements as
appropriate. The L1 data cache tags and L2 cache tags are snooped for standard data cache
coherency support. No snooping is done in the instruction cache for coherency.

The memory queues are snooped for pipeline collisions and memory coherency collisions. A
pipeline collision is detected when another bus master addresses any portion of a line that this 750’s
data cache is currently in the process of loading (L1 loading from L2, or L1/L2 loading from
memory). A memory coherency collision occurs when another bus master addresses any portion
of a line that Gekko has currently queued to write to memory from the data cache (castout or
copy-back), but has not yet been granted bus access to perform.

If a snooped transaction results in a cache hit or pipeline collision or memory queue collision,
Gekko assert®\ARTRY on the 60x bus. The current bus master, detecting the assertion of the
ARTRY signal, should abort the transaction and retry it at a later time, so that Gekko can first
perform a write operation back to memory from its cache or memory queues. Gekko may also retry
a bus transaction if it is unable to snoop the transaction on that cycle due to internal resource
conflicts. Additional snoop action may be forwarded to the cache as a result of a snoop hit in some
cases (a cache push of modified data, or a cache block invalidation). There is no immediate way
for another CPU bus agent to determine the cause of G4RKRY.

Implementation Note: Snooping of the memory queues for pipeline collisions, as described
above, is performed for burst read operations in progress only. In this case, the read address has
completed on the bus, however, the data tenure may be either in-progress or not yet started by the
processor. During this time Gekko will retry any other global access to that line by another bus
master until all data has been received in it's L1 cache. Pipeline collisions, however, do not apply
for burst write operations in progress. If Gekko has completed an address tenure for a burst write,
and is currently waiting for a data bus grant or is currently transferring data to memory, it will not
generate an address retry to another bus master that addresses the line. It is the responsibility of the

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-21

IBM Confidential

memory system to handle this collision (usually by keeping the data transactions to memory in order).
Note also that all burst writes by Gekko and 603e are performed as non-global, and hence do not
normally enable snooping, even for address collision purposes. (Snooping may still occur for

reservation cancelling purposes.)

3.6.4 Snoop Response to 60x Bus Transactions

There are several bus transaction types defined for the 60x bus. The transactions in Table 3-5
correspond to the transfer type signals TT[0—4], which are described in Section 7.2.4.1 on Page 7-6.

Gekko never retries a transaction in whiBBL is not asserted, even if the tags are busy or there is a
tag hit. Reservations are snooped regardless of the statl of

Table 3-5. Response to Snooped Bus Transactions

Snooped Transaction TT[0-4] Gekko Response

Clean block 00000 No action is taken.

Flush block 00100 No action is taken.

SYNC 01000 No action is taken.

Kill block 01100 The kill block operation is an address-only bus transaction initiated

when a dcbz or dcbi instruction is executed

« If the addressed cache block is in the exclusive (E) state, the cache
block is placed in the invalid (l) state.

« If the addressed cache block is in the modified (M) state, Gekko
asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the invalid (I) state.

« If the address misses in the cache, no action is taken.

Any reservation associated with the address is canceled.

EIEIO 10000 No action is taken.
External control word 10100 No action is taken.
write

TLB invalidate 11000 No action is taken.
External control word 11100 No action is taken.
read

lwarx reservation set 00001 No action is taken.
Reserved 00101 —

TLBSYNC 01001 No action is taken.
ICBI 01101 No action is taken.
Reserved 1XX01 —

Page 3-22 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Table 3-5. Response to Snooped Bus Transactions (Continued)

Snooped Transaction TT[0-4] Gekko Response

Write-with-flush 00010 A write-with-flush operation is a single-beat or burst transaction
initiated when a caching-inhibited or write-through store instruction is
executed.

« If the addressed cache block is in the exclusive (E) state, the cache
block is placed in the invalid (l) state.

« If the addressed cache block is in the modified (M) state, Gekko
asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the invalid (1) state.

« |f the address misses in the cache, no action is taken.

Any reservation associated with the address is canceled.

Write-with-kill 00110 A write-with-kill operation is a burst transaction initiated due to a

castout, caching-allowed push, or snoop copy -back.

« If the address hits in the cache, the cache block is placed in the
invalid (1) state (killing modified data that may have been in the
block).

 |f the address misses in the cache, no action is taken.

Any reservation associated with the address is canceled.

Read 01010 A read operation is used by most single-beat and burst load

transactions on the bus.

For single-beat, caching-inhibited read transaction:

« If the addressed cache block is in the exclusive (E) state, the cache
block remains in the exclusive (E) state.

« If the addressed cache block is in the modified (M) state, Gekko
asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the exclusive (E) state.

« |f the address misses in the cache, no action is taken.

For burst read transactions:

« If the addressed cache block is in the exclusive (E) state, the cache
block is placed in the invalid (l) state.

« If the addressed cache block is in the modified (M) state, Gekko
asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the invalid (1) state.

« If the address misses in the cache, no action is taken.

Read-with-intent-to-mo 01110 A RWITM operation is issued to acquire exclusive use of a memory

dify (RWITM) location for the purpose of modifying it.

« If the addressed cache block is in the exclusive (E) state, the cache
block is placed in the invalid (l) state.

« If the addressed cache block is in the modified (M) state, Gekko
asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the invalid (1) state.

« If the address misses in the cache, no action is taken.

Write-with-flush-atomic 10010 Write-with-flush-atomic operations occur after the processor issues

an stwex. instruction.

« If the addressed cache block is in the exclusive (E) state, the cache
block is placed in the invalid (l) state.

« If the addressed cache block is in the modified (M) state, Gekko
asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the invalid (1) state.

« If the address misses in the cache, no action is taken.

Any reservation is canceled, regardless of the address.

Reserved 10110 —

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-23

IBM Confidential

Table 3-5. Response to Snooped Bus Transactions (Continued)

Snooped Transaction TT[0-4] Gekko Response

Read-atomic 11010 Read atomic operations appear on the bus in response to lwarx
instructions and generate the same snooping responses as read
operations.

Read-with-intent-to-mo 11110 The RWITM atomic operations appear on the bus in response to

dify-atomic stwex. instructions and generate the same snooping responses as

RWITM operations.

Reserved 00011 —

Reserved 00111 —

Read-with-no-intent-to- | 01011 A RWNITC operation is issued to acquire exclusive use of a memory
cache (RWNITC) location with no intention of modifying the location.

« If the addressed cache block is in the exclusive (E) state, the cache
block remains in the exclusive (E) state.

« If the addressed cache block is in the modified (M) state, Gekko
asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the exclusive (E) state.

« If the address misses in the cache, no action is taken.

Reserved 01111 —
Reserved 1XX11 —

3.6.5 Transfer Attributes

In addition to the address and transfer type signals, Gekko supports the transfer attribute signals
TBST, TSIZ[0-2],WT, CI, andGBL. The TBST and TSIZ[0-2] signals indicate the data transfer size
for the bus transaction.

TheWT signal reflects the write-through status (the complement of the W bit) for the transaction as
determined by the MMU address translation during write operatMfisis asserted for burst writes

due todcbf (flush) anddcbst (clean) instructions, and for snoop pushé&l is negated foecowx
transactions. Since the write-through status is not meaningful for reads, Gekko uv¢s tignal
during read transactions to indicate that the transaction is an instruction Wéichégated), or not

an instruction fetchW/T asserted).

The CI signal reflects the caching-inhibited/allowed status (the complement of the | bit) of the
transaction as determined by the MMU address translation even if the L1 caches are disabled or
locked.Cl is always asserted feciwx'ecowxbus transactions independent of the address translation.

The GBL signal reflects the memory coherency requirements (the complement of the M bit) of the
transaction as determined by the MMU address translation. Castout and snoop copy-back operations
(TT[0-4] = 00110) are generally marked as nongloliaB[negated) and are not snooped (except

for reservation monitoring). Other masters, however, may perform DMA write operations with this
encoding but marked globaGBL asserted) and thus must be snooped. Table 3-6 summarizes the
address and transfer attribute information presented on the bus by Gekko for various master or
snoop-related transactions.

Page 3-24 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Table 3-6. Address/Transfer Attribute Summary

Bus Transaction A[0-31] TT[0-4] TBST | TSIZ[0-2] | GBL | WT Cl
Instruction fetch operations:
Burst (caching-allowed) PA[0-28] || Ob000 01110 0 010 =M 1 1*
Single-beat read PA[0-28] || 0bO00O 01010 1 000 =M 1 =
(caching-inhibited or cache
disabled)
Data cache operations:
Cache block fill (due to load or PA[0-28] || 0bO00O A1110 0 010 =M 0 1*
store miss)
Castout CA[0-26] || 0b00000| 00110 0 010 1 1 1*
(normal replacement)
Push (cache block push due to PA[0-26] || ObO0000 | 00110 0 010 1 0 1*
dcbf /dcbst)
Snoop copyback CA[0-26] || ObOOOOO | 00110 0 010 1 0 1*
Data cache bypass operations:
Single-beat read PA[0-31] A1010 1 SSS -M 0 =l
(caching-inhibited or cache
disabled)
Single-beat write PA[0-31] 00010 1 SSS =M =W =
(caching-inhibited, write-through,
or cache disabled)
Special instructions:
dcbz (addr-only) PA[0-28] || Ob000 01100 0 010 0* 0 1*
dcbi (if HIDO[ABE] = 1, PA[0-26] || 0Ob00000 | 01100 0 010 =M 0 1*
addr-only)
dcbf (if HIDO[ABE] = 1, PA[0-26] || 0b00000 | 00100 0 010 =M 0 1*
addr-only)
dcbst (if HIDO[ABE] = 1, PA[0-26] || 0b00000 | 00000 0 010 =M 0 1*
addr-only)
sync (if HIDO[ABE] = 1, 0x0000_0000 01000 0 010 0 0 0
addr-only)
eieio (if HIDO[ABE] = 1, 0x0000_0000 10000 0 010 0 0 0
addr-only)
stwex. (always single-beat write) | PA[0—29] || Ob00 10010 1 100 -M - W =
eciwx PA[0-29] || Ob0O 11100 EAR[28-31] 1 0 0
ecowx PA[0-29] || Ob0O 10100 EAR[28-31] 1 1 0
Notes:

PA = Physical address, CA = Cache address.
W,I,M = WIM state from address translation; = = complement; O*or 1* = WIM state implied by transaction type in table
For instruction fetches, reflection of the M bit must be enabled through HIDO[IFEM].
A = Atomic; high if lwarx , low otherwise

S = Transfer size

Special instructions listed may not generate bus transactions depending on cache state.

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential

5/25/00

Page 3-25

IBM Confidential

3.7 MEI State Transactions

Table 3-7 shows MEI state transitions for various operations. Bus operations are described in
Table 3-4 on Page 3-20.

Table 3-7. MEI State Transitions

Cache Bus Current Next Bus
Operation Operation svne WIM Cache Cache Cache Actions Operation
P y State State P

Load Read No X0x | Same 1 Cast out of modified Write-with-kill

(T=0) block (as required)
2 Pass four-beat read Read

to memory queue

Load Read No X0x E.M Same Read data from cache —

(T=0)

Load (T = 0) Read No x1x | Same | Passsingle-beatreadto | Read
memory queue

Load (T = 0) Read No x1x E | CRTRY read —

Load (T = 0) Read No x1x M | CRTRY read (push Write-with-kill
sector to write queue)

Iwarx Read Acts like other reads but bus operation uses special encoding

Store Write No 00x | Same Cast out of modified Write-with-kill

(T=0) block (if necessary)
Pass RWITM to RWITM
memory queue

Store Write No 00x E.M M Write data to cache —

(T=0)

Store stwcx. Write No 10x | Same | Pass single-beat write Write-with-flus

(T=0) to memory queue h

Store stwcx. Write No 10x E Same | Write data to cache —

(T=0) : : ..
Pass single-beat write Write-with-flus
to memory queue h

Store stwcx. Write No 10x M Same | CRTRY write —

(T=0)
Push block to write Write-with-kill
queue

Store (T = 0) Write No x1x | Same | Pass single-beat write Write-with-flus

or stwcex. to memory queue h

(WIM = 10x)

Store (T = 0) Write No X1x E I CRTRY write —

or stwcx.

(WIM = 10x)

Page 3-26 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Table 3-7. MEI State Transitions (Continued)

Cache Bus Current Next Bus
Operation Operation svne WIM Cache Cache Cache Actions Operation
P y State State P
Store (T = 0) Write No X1x M | CRTRY write —
or stwcex. - - ——
(WIM = 10x) Push block to write Write-with-kill
queue
stwcx. Conditional | If the reserved bit is set, this operation is like other writes except the bus operation
write uses a special encoding.
dcbf Datacache | No XXX I,E Same CRTRY dcbf —
block flush
Pass flush Flush
Same | State change only —
dcbf Datacache | No XXX M | Push block to write Write-with-kill
block flush queue
dcbst Datacache | No XXX ILE Same CRTRY dcbst —
block store
Pass clean Clean
Same Same No action —
dcbst Datacache | No XXX M E Push block to write Write-with-Kkill
block store queue
dcbz Datacache | No X1x X X Alignment trap —
block set to
zero
dcbz Datacache | No 10x X X Alignment trap —
block set to
zero
dcbz Datacache | Yes 00x | Same CRTRY dcbz —
block set to
zero Cast out of modified Write-with-kill
block
Pass kill Kill
Same Clear block —
dcbz Datacache | No 00x E.M Clear block —
block set to
zero
dcbt Datacache | No X1x | Same Pass single-beatreadto | Read
block touch memory queue
dcbt Datacache | No x1x E | CRTRY read —
block touch
dcbt Datacache | No x1x M | CRTRY read —
block touch - - ——
Push block to write Write-with-Kkill
queue
Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-27

IBM Confidential

Table 3-7. MEI State Transitions (Continued)

Cache Bus Current Next Bus
Operation Operation svne WIM Cache Cache Cache Actions Operation
P Y State State P
dcbt Datacache | No X0x | Same Cast out of modified Write-with-Kkill
block touch block (as required)
Pass four-beat read to Read
memory queue
dcht Datacache | No x0x E.M Same No action —
block touch
Single-beat Reload No XXX | Same Forward data_in —
read dump 1
Four-beat read Reload No XXX | E Write data_in to cache —
(double-word-al | dump
igned)
Four-beat write | Reload No XXX | M Write data_in to cache —
(double-word-al | dump
igned)
E—I Snoop No XXX E | State change only —
write or Kill (committed)
M- Snoop No XXX M | State change only —
kill (committed)
Push Snoop No XXX M | Conditionally push Write-with-kill
M- flush
Push Snoop No XXX M E Conditionally push Write-with-kill
M- E clean
tibie TLB No XXX X X CRTRY TLBI —
invalidate
Pass TLBI —
No action —
sync Synchroni- | No XXX X X CRTRY sync —
zation
Pass sync —
No action —

NOTE: Single-beat writes are not snooped in the write queue.

Page 3-28 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Chapter 4 Exceptions

The OEA portion of the PowerPC architecture defines the mechanism by which PowerPC
processors implement exceptions (referred to as interrupts in the architecture specification).
Exception conditions may be defined at other levels of the architecture. For example, the UISA
defines conditions that may cause floating-point exceptions; the OEA defines the mechanism by
which the exception is taken.

The PowerPC exception mechanism allows the processor to change to supervisor state as a result
of unusual conditions arising in the execution of instructions and from external signals, bus errors,
or various internal conditions. When exceptions occur, information about the state of the processor
is saved to certain registers and the processor begins execution at an address (exception vector)
predetermined for each exception. Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, often a more specific
condition may be determined by examining a register associated with the exception—for example,
the DSISR and the floating-point status and control register (FPSCR). Also, software can explicitly
enable or disable some exception conditions.

The PowerPC architecture requires that exceptions be taken in program order; therefore, although
a particular implementation may recognize exception conditions out of order, they are handled
strictly in order with respect to the instruction stream. When an instruction-caused exception is
recognized, any unexecuted instructions that appear earlier in the instruction stream, including any
that have not yet entered the execute state, are required to complete before the exception is taken.
For example, if a single instruction encounters multiple exception conditions, those exceptions are
taken and handled sequentially. Likewise, exceptions that are asynchronous and precise are
recognized when they occur, but are not handled until all instructions currently in the execute stage
successfully complete execution and report their results.

To prevent loss of state information, exception handlers must save the information stored in the
machine status save/restore registers, SRR0O and SRR1, soon after the exception is taken to prevent
this information from being lost due to another exception being taken. Because exceptions can
occur while an exception handler routine is executing, multiple exceptions can become nested. It
is up to the exception handler to save the necessary state information if control is to return to the
excepting program.

In many cases, after the exception handler handles an exception, there is an attempt to execute the
instruction that caused the exception. Instruction execution continues until the next exception
condition is encountered. Recognizing and handling exception conditions sequentially guarantees
that the machine state is recoverable and processing can resume without losing instruction results.

In this book, the following terms are used to describe the stages of exception processing:

Recognition Exception recognition occurs when the condition that can cause an
exception is identified by the processor.
Taken An exception is said to be taken when control of instruction execution is

passed to the exception handler; that is, the context is saved and the
instruction at the appropriate vector offset is fetched and the exception
handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the appropriate
vector offset. Exception handling is begun in supervisor mode (referred to
as privileged state in the architecture specification).

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-1

IBM Confidential

NOTE: The PowerPC architecture documentation refers to exceptions as interrupts. In this book,
the term ‘interrupt’ is reserved to refer to asynchronous exceptions and sometimes to the
event that causes the exception. Also, the PowerPC architecture uses the word ‘exception’
to refer to IEEE-defined floating-point exception conditions that may cause a program
exception to be taken; see 4.5.7. The occurrence of these IEEE exceptions may not cause
an exception to be taken. IEEE-defined exceptions are referred to as IEEE floating-point
exceptions or floating-point exceptions.

4.1 PowerPC Gekko Microprocessor Exceptions

As specified by the PowerPC architecture, exceptions can be either precise or imprecise and either
synchronous or asynchronous. Asynchronous exceptions are caused by events external to the
processor’s execution; synchronous exceptions are caused by instructions.

The types of exceptions are shown in Table 4-1.

NOTE: All exceptions except for the system management interrupt, thermal management, and
performance monitor exception are defined, at least to some extent, by the PowerPC
architecture.

Table 4-1. PowerPC Gekko Microprocessor Exception Classifications

Synchronous/Asynchronous Pfecise/Imprecise Exception Types
Asynchronous, nonmaskable | Imprecise Machine check, system reset
Asynchronous, maskable Precise External interrupt, decrementer, performance monitor interrupt,

thermal management interrupt

Synchronous Precise Instruction-caused exceptions

These classifications are discussed in greater detail in Section 4.2, “Exception Recognition and
Priorities" on Page 4-4.

For a better understanding of how Gekko implements precise exceptions, see Chapter 6, “Exceptions”
of the PowerPC Microprocessor Family: The Programming Environmemignual. Exceptions
implemented in Gekko, and conditions that cause them, are listed in Table 4-2.

Page 4-2 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Table 4-2. Exceptions and Conditions

Exception Type

Vector Offset

Causing Conditions

breakpoint

(hex)
Reserved 00000 —
System reset 00100 Assertion of either HRESET or SRESET or at power-on reset
Machine check 00200 Assertion of TEA during a data bus transaction, assertion of MCP, an address,
data or L2 double bit error, DMA queue overflow, DMA look-up misses locked
cache, or dcbz_| cache hit. MSR[ME] must be set.
BN 00300 As specified in the PowerPC architecture. For TLB misses on load, store, or
cache operations, a DSI exception occurs if a page fault occurs.
ISI 00400 As defined by the PowerPC architecture
External interrupt 00500 MSR[EE] = 1 and INT is asserted
Alignment 00600 * A floating-point load/store, stmw, stwcx. , Imw, lwarx , eciwx , or ecowx
instruction operand is not word-aligned.
* A multiple/string load/store operation is attempted in little-endian mode
* Anoperand of a dcbz or dcbz_| instruction is on a page that is
write-through or cache-inhibited for a virtual mode access.
< An attempt to execute a dcbz or dcbz_| instruction occurs when the cache
is disabled.
Program 00700 As defined by the PowerPC architecture
Floating-point 00800 As defined by the PowerPC architecture
unavailable
Decrementer 00900 As defined by the PowerPC architecture, when the most-significant bit of the
DEC register changes from 0 to 1 and MSR[EE] = 1
Reserved 00A00-00BFF |—
System call 00C00 Execution of the System Call (sc) instruction
Trace 00D00 MSR[SE] =1 or a branch instruction is completing and MSR[BE] =1. Gekko
differs from the OEA by not taking this exception on an isync .
Reserved 00EOO0 Gekko does not generate an exception to this vector. Other PowerPC
processors may use this vector for floating-point assist exceptions.
Reserved O0OE10-00EFF | —
Performance monitor | 00F00 The limit specified in PMCn is met and MMCRO[ENINT] = 1 (Gekko-specific)
Instruction address 01300 IABR[0-29] matches EA[0-29] of the next instruction to complete, IABR[TE]

matches MSR[IR], and IABR[BE] = 1 (Gekko-specific)

Reserved

01400-016FF

Chapter 4. Exceptions

IBM Confidential 5/25/00 Page 4-3

IBM Confidential

Table 4-2. Exceptions and Conditions (Continued)

Exception Type Vector Offset Causing Conditions
(hex)
Thermal 01700 Thermal management is enabled, junction temperature exceeds the threshold
management specified in THRM1 or THRM2, and MSR[EE] = 1 (Gekko-specific)
interrupt
Reserved 01800-02FFF |—

4.2 Exception Recognition and Priorities
Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other
exceptions—system reset and machine check exceptions (although the machine check
exception condition can be disabled so the condition causes the processor to go directly
into the checkstop state). These exceptions cannot be delayed and do not wait for
completion of any precise exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

3. Imprecise exceptions (imprecise mode floating-point enabled exceptions) are caused
by instructions and they are delayed until higher priority exceptions are taken. Note
that Gekko does not implement an exception of this type.

4. Maskable asynchronous exceptions (external, decrementer, thermal management,
system management, performance monitor, and interrupt exceptions) are delayed until
higher priority exceptions are taken.

The following list of exception categories describes how Gekko handles exceptions up to the point of
signaling the appropriate interrupt to occur. Note that a recoverable state is reached if the completed
store queue is empty (drained, not ca..

y instruction that is next in program order and has been signaled to complete has completed. If
MSR[RI] = 0, Gekko is in a nonrecoverable state. Also, instruction completion is defined as updating
all architectural registers associated with that instruction, and then removing that instruction from the
completion buffer.

» Exceptions caused by asynchronous events (interrupts). These exceptions are further
distinguished by whether they are maskable and recoverable.

— Asynchronous, nonmaskable, nonrecoverable

System reset for assertionldRESET—Has highest priority and is taken immediately
regardless of other pending exceptions or recoverability. (Includes power-on reset)

— Asynchronous, maskable, nonrecoverable

Machine check exception—Has priority over any other pending exception except system
reset for assertion ®{RESET. Taken immediately regardless of recoverability.

— Asynchronous, nonmaskable, recoverable

Page 4-4 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

System reset f(BRESET—Has priority over any other pending exception except
system reset faAHRESET (or power-on reset), or machine check. Taken immediately
when a recoverable state is reached.

— Asynchronous, maskable, recoverable

System management, performance monitor, thermal management, external, and
decrementer interrupts—Before handling this type of exception, the next instruction in
program order must complete. If that instruction causes another type of exception, that
exception is taken and the asynchronous, maskable recoverable exception remains
pending, until the instruction completes. Further instruction completion is halted. The
asynchronous, maskable recoverable exception is taken when a recoverable state is
reached.

* Instruction-related exceptions. These exceptions are further organized into the point in
instruction processing in which they generate an exception.

— Instruction fetch

ISI exceptions—Once this type of exception is detected, dispatching stops and the
current instruction stream is allowed to drain out of the machine. If completing any of
the instructions in this stream causes an exception, that exception is taken and the
instruction fetch exception is discarded (but may be encountered again when instruction
processing resumes). Otherwise, once all pending instructions have executed and a
recoverable state is reached, the ISI exception is taken.

— Instruction dispatch/execution

Program, DSI, alignment, floating-point unavailable, system call, and instruction
address breakpoint—This type of exception is determined during dispatch or execution
of an instruction. The exception remains pending until all instructions before the
exception-causing instruction in program order complete. The exception is then taken
without completing the exception-causing instruction. If completing these previous
instructions causes an exception, that exception takes priority over the pending
instruction dispatch/execution exception, which is then discarded (but may be
encountered again when instruction processing resumes).

— Post-instruction execution

Trace—Trace exceptions are generated following execution and completion of an
instruction while trace mode is enabled. If executing the instruction produces
conditions for another type of exception, that exception is taken and the post-instruction
exception is forgotten for that instruction.

NOTE: These exception classifications correspond to how exceptions are prioritized, as
described in Table 4-3.

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-5

IBM Confidential

Table 4-3. PowerPC Gekko Exception Priorities

Priority Exception Cause
Asynchronous Exceptions (Interrupts)
0 System reset Power on reset, assertion of HRESET and TRST (hard reset)
1 Machine check Any enabled machine check condition (L1 address or data parity error, L2 data
double bit error, assertion of TEA or MCP)
2 System reset Assertion of SRESET (soft reset)
3 External interrupt Assertion of INT
4 Performance monitor | Any programmer-specified performance monitor condition
5 Decrementer Decrementer passes through zero
6 Thermal management | Any programmer-specified thermal management condition
Instruction Fetch Exceptions
0 ISI Any ISI exception condition
Instruction Dispatch/Execution Exceptions
0 Instruction address Any instruction address breakpoint exception condition
breakpoint
1 Program Occurrence of an illegal instruction, privileged instruction, or trap exception
condition. Note that floating-point enabled program exceptions have lower priority.
2 System call System Call (sc) instruction
3 Floating-point Any floating-point unavailable exception condition
unavailable
4 Program A floating-point enabled exception condition (lowest-priority program exception)
5 DSl DSI exception due to eciwx , ecowx with EAR[E] = 0 (DSISR[11]). Lower priority
DSI exception conditions are shown below.
6 Alignment Any alignment exception condition, prioritized as follows:
1 Floating-point access not word-aligned
2 Imw, stmw, lwarx , stwcx. not word-aligned
3 eciwx or ecowx not word-aligned
4 Multiple or string access with MSR[LE] set
5 dcbz or dcbz_| to write-through or cache-inhibited page or cache is disabled
7 DSI BAT page protection violation
8 DSl Any access except cache operations to a segment where SR[T] = 1 (DSISR[5]) or
an access crosses from a T = 0 segment to one where T = 1 (DSISR[5])
9 DSl TLB page protection violation
10 DSl DABR address match
Post-Instruction Execution Exceptions
Page 4-6 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Table 4-3. PowerPC Gekko Exception Priorities (Continued)

Priority Exception Cause

11 Trace MSR[SE] = 1 (or MSR[BE] = 1 for branches)

System reset and machine check exceptions may occur at any time and are not delayed even if an
exception is being handled. As a result, state information for an interrupted exception may be lost;
therefore, these exceptions are typically nonrecoverable. An exception may not be taken
immediately when it is recognized.

4.3 Exception Processing

When an exception is taken, the processor uses SRRO and SRR1 to save the contents of the MSR
for the current context and to identify where instruction execution should resume after the
exception is handled.

When an exception occurs, the address saved in SRRO helps determine where instruction
processing should resume when the exception handler returns control to the interrupted process.
Depending on the exception, this may be the address in SRRO or at the next address in the program
flow. All instructions in the program flow preceding this one will have completed execution and no
subsequent instruction will have begun execution. This may be the address of the instruction that
caused the exception or the next one (as in the case of a system call, trace, or trap exception). The
SRRO register is shown in Figure 4-1.

SRRO (Holds EA for Instruction in Interrupted Program Flow)

Figure 4-1. Machine Status Save/Restore Register 0 (SRRO)

SRR1 is used to save machine status (selected MSR bits and possibly other status bits as well) on
exceptions and to restore those values whemfiamstruction is executed. SRR1 is shown in
Figure 4-2.

Exception-Specific Information and MSR Bit Values

Figure 4-2. Machine Status Save/Restore Register 1 (SRR1)

For most exceptions, bits 2—4 and 10-12 of SRR1 are loaded with exception-specific information
and MSR[5-9, 16-31] are placed into the corresponding bit positions of SRR1.

Gekko's MSR is shown in Figure 4-3.
D Reserved

0o 0 0 0 00 OO O O O O O|POW O]|ILE|EE|PR|FP|ME|FEO|SE|BE|FELl O [IP|IR|DR| O |PM|RI|LE

0 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Figure 4-3. Machine State Register (MSR)

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-7

IBM Confidential

The MSR bits are defined in Table 4-4.

Table 4-4. MSR Bit Settings

Bit(s) |Name Description
0 — Reserved. Full function.
1-4 — Reserved. Partial function.!
5-9 — Reserved. Full function.?
10-12 |— Reserved. Partial function.!
13 POW | Power management enable

0 Power management disabled (normal operation mode).

1 Power management enabled (reduced power mode).

Power management functions are implementation-dependent. See Chapter 10, "Power and Thermal

Management" in this manual

14 — Reserved. Implementation-specific

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to select
the endian mode for the context established by the exception.

16 EE External interrupt enable
0 The processor delays recognition of external interrupts and decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18 FP Floating-point available

0 The processor prevents dispatch of floating-point instructions, including floating-point loads,
stores, and moves.

1 The processor can execute floating-point instructions and can take floating-point enabled
program exceptions.

19 ME Machine check enable

0 Machine check exceptions are disabled.

1 Machine check exceptions are enabled.

20 FEO IEEE floating-point exception mode 0 (see Table 4-5).
21 SE Single-step trace enable

0 The processor executes instructions normally.

1 The processor generates a single-step trace exception upon the successful execution of every
instruction except rfi, isync , and sc. Successful execution means that the instruction caused
no other exception.

22 BE Branch trace enable

0 The processor executes branch instructions normally.

1 The processor generates a branch type trace exception when a branch instruction executes
successfully.

23 FE1 IEEE floating-point exception mode 1 (see Table 4-5).
24 — Reserved. This bit corresponds to the AL bit of the POWER architecture.

Page 4-8

Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Table 4-4. MSR Bit Settings (Continued)

Bit(s)

Name

Description

25

IP

Exception prefix. The setting of this bit specifies whether an exception vector offset is prepended
with Fs or 0s. In the following description, nnnnn is the offset of the exception.

0 Exceptions are vectored to the physical address 0x000n_nnnn.

1 Exceptions are vectored to the physical address OxFFFn_nnnn.

26

Instruction address translation

0 Instruction address translation is disabled.

1 Instruction address translation is enabled.

For more information see Chapter 5, "Memory Management" in this manual.

27

DR

Data address translation

0 Data address translation is disabled.

1 Data address translation is enabled.

For more information see Chapter 5, "Memory Management" in this manual.

28

Reserved. Full function®

29

PM

Performance monitor marked mode

0 Process is not a marked process.

1 Process is a marked process.

Gekko—specific; defined as reserved by the PowerPC architecture. For more information about the
performance monitor, see Section 4.5.13, “Performance Monitor Interrupt (OxO0OF00)" on Page 4-20.

30

RI

Indicates whether system reset or machine check exception is recoverable.

0 Exception is not recoverable.

1 Exception is recoverable.

The RI bit indicates whether from the perspective of the processor, it is safe to continue (that is,
processor state data such as that saved to SRRO is valid), but it does not guarantee that the
interrupted process is recoverable.

31

LE

Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

Note: Full function reserved bits are saved in SRR1 when an exception occurs; partial function reserved bits
are not saved.

The IEEE floating-point exception mode bits (FEO and FE1) together define whether floating-point
exceptions are handled precisely, imprecisely, or whether they are taken at all. As shown in
Table 4-5, if either FEO or FE1 are set, Gekko treats exceptions as precise. MSR bits are guaranteed
to be written to SRR1 when the first instruction of the exception handler is encountered. For further
details, see Chapter 6, “Exceptions” of thewerPC Microprocessor Family: The Programming

Environmentsnanual.

Table 4-5. IEEE Floating-Point Exception Mode Bits

FEO | FE1 Mode
0 0 |Floating-point exceptions disabled
0 1 |Imprecise nonrecoverable. For this setting, Gekko operates in floating-point precise mode.
1 0 |Imprecise recoverable. For this setting, Gekko operates in floating-point precise mode.

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-9

IBM Confidential

Table 4-5. IEEE Floating-Point Exception Mode Bits (Continued)

FEO | FE1 Mode

1 1 |Floating-point precise mode

4.3.1 Enabling and Disabling Exceptions

When a condition exists that may cause an exception to be generated, it must be determined whether
the exception is enabled for that condition.

» |EEE floating-point enabled exceptions (a type of program exception) are ignored when both
MSR[FEO] and MSR[FE1] are cleared. If either bit is set, all IEEE enabled floating-point
exceptions are taken and cause a program exception.

* Asynchronous, maskable exceptions (such as the external and decrementer interrupts) are
enabled by setting MSR[EE]. When MSR[EE] = 0, recognition of these exception conditions
is delayed. MSR[EE] is cleared automatically when an exception is taken to delay recognition
of conditions causing those exceptions.

» A machine check exception can occur only if the machine check enable bit, MSR[ME], is set.
If MSR[ME] is cleared, the processor goes directly into checkstop state when a machine
check exception condition occurs. Individual machine check exceptions can be enabled and
disabled through bits in the HIDO register, which is described in Table 4-9.

» System reset exceptions cannot be masked.

4.3.2 Steps for Exception Processing

After it is determined that the exception can be taken (by confirming that any instruction-caused
exceptions occurring earlier in the instruction stream have been handled, and by confirming that the
exception is enabled for the exception condition), the processor does the following:

1. SRROisloaded with an instruction address that depends on the type of exception. See
the individual exception description for details about how this register is used for
specific exceptions.

2. SRR1[1-4, 10-15] are loaded with information specific to the exception type.

3. SRR1[5-9, 16-31] are loaded with a copy of the corresponding MSR bits. Depending
on the implementation, reserved bits may not be copied.

4. The MSR is set as described in Table 4-4. The new values take effect as the first
instruction of the exception-handler routine is fetched.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address translation is disabled for both instruction fetches and data accesses beginning
with the first instruction of the exception-handler routine.

5. Instruction fetch and execution resumes, using the new MSR value, at a location
specific to the exception type. The location is determined by adding the exception's
vector (see Table 4-2 on Page 4-3) to the base address determined by MSRJIP]. If IP
IS cleared, exceptions are vectored to the physical addressOx00M If IP is set,
exceptions are vectored to the physical address OxF#fan For a machine check
exception that occurs when MSR[ME] = 0 (machine check exceptions are disabled),
the checkstop state is entered (the machine stops executing instructions). See .”

Page 4-10 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

4.3.3 Setting MSRJ[RI]
An operating system may handle MSR[RI] as follows:

* Inthe machine check and system reset exceptions—If MSR[RI] is cleared, the exception is
not recoverable. If it is set, the exception is recoverable with respect to the processor.

* In each exception handler—When enough state information has been saved that a machine
check or system reset exception can reconstruct the previous state, set MSR[RI].

* In each exception handler—Clear MSR[RI], set SRRO and SRR1 appropriately, and then
executefi.

* Note that the RI bit being set indicates that, with respect to the processor, enough processor
state data remains valid for the processor to continue, but it does not guarantee that the
interrupted process can resume.

4.3.4 Returning from an Exception Handler

The Return from Interruptr{i) instruction performs context synchronization by allowing
previously-issued instructions to complete before returning to the interrupted process. In general,
execution of thefi instruction ensures the following:

» All previous instructions have completed to a point where they can no longer cause an
exception. If a previous instruction causes a direct-store interface error exception, the
results must be determined before this instruction is executed.

* Previous instructions complete execution in the context (privilege, protection, and address
translation) under which they were issued.

» Therfi instruction copies SRR1 bits back into the MSR.

» Instructions fetched after this instruction execute in the context established by this
instruction.

» Program execution resumes at the instruction indicated by SRRO

For a complete description of context synchronization, refer to Chapter 6, “Exceptions” of the
PowerPC Microprocessor Family: The Programming Environmerdaual

4.4 Process Switching
The following instructions are useful for restoring proper context during process switching:

* Thesyncinstruction orders the effects of instruction execution. All instructions previously
initiated appear to have completed beforesyrecinstruction completes, and no
subsequent instructions appear to be initiated untsyheinstruction completes. For an
example showing use eync see Chapter 2, “PowerPC Register Set” oRbeerPC
Microprocessor Family: The Programming Environmemignual

* Theisyncinstruction waits for all previous instructions to complete and then discards any
fetched instructions, causing subsequent instructions to be fetched (or refetched) from
memory and to execute in the context (privilege, translation, and protection) established by
the previous instructions.

» Thestwcx. instruction clears any outstanding reservations, ensuring thaaen
instruction in an old process is not paired withsbmcx. instruction in a new one.

The operating system should set MSR[RI] as described in 4.3.3.”

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-11

IBM Confidential

4.5 Exception Definitions

Table 4-6 shows all the types of exceptions that can occur with Gekko and MSR settings when the
processor goes into supervisor mode due to an exception. Depending on the exception, certain of
these bits are stored in SRR1 when an exception is taken.

Table 4-6. MSR Setting Due to Exception

MSR Bit?!
Exception Type

POW | ILE | EE | PR |FP |ME |FEO | SE |BE |FE1 | IP |IR |DR |PM |RI | LE
System reset 0 — 10 0 0| — 0 0 0 O |]—J]O0}]O 0| O0]ILE
Machine check 0 — 1|0 ojojf| o 0 oo Oo|—]0f|O 0 | O]ILE
DSl 0 — 0 0 0| — 0 0 0 0 —|10]| O 0| O0]ILE
ISI 0 — 0 0 0| — 0 0 0 0 —|10]| O 0 | 0]ILE
External interrupt 0 — 10 0 0| — 0 0 0 O|—]0}]O 0| 0]ILE
Alignment 0 —|lo0]J]0O0]J]O0O]—1]0O0 0ofo 0O |—|O0] 0| OfO]|IE
Program 0 — 10 0 0| — 0 0 0 O |]—J]O0}]O 0| O0]ILE
Floating-point unavailable 0 — 10 ojJof—1] O o O 0O |—]0] O 0| O0]ILE
Decrementer interrupt 0 — 10 0 0| — 0 0 0 O |]—J]0}]O 0 | O]ILE
System call 0 — 0 0 0| — 0 0 0 0 —|10]| O 0 | 0]ILE
Trace exception 0 — 10 0 0| — 0 0 0 O |]—J]O0}]O 0 | O0]ILE
Performance monitor 0 — 10 oJjof—1] O oo O |—]0fO 0 | O]ILE
Thermal management 0 — 10 0 0| — 0 0 0 0O|—]0]|O 0| O0]ILE

Note:
1. OBitiscleared.
ILEBIt is copied from the MSRJILE].
— Bit is not altered
Reserved bits are read as if written as 0.

The setting of the exception prefix bit (IP) determines how exceptions are vectored. If the bit is
cleared, exceptions are vectored to the physical address Bx000n(wherennnnnis the vector
offset); if IP is set, exceptions are vectored to physical address OxFifian Table 4-2 on Page 4-3
shows the exception vector offset of the first instruction of the exception handler routine for each
exception type.

4.5.1 System Reset Exception (0x00100)

Gekko implements the system reset exception as defined in the PowerPC architecture (OEA). The
system reset exception is a nonmaskable, asynchronous exception signaled to the processor through
the assertion of system-defined signals. In Gekko, the exception is signaled by the assertion of either
the soft resetYRESET) or hard reseHRESET) inputs, described more fully in Chapter 7, "Signal
Descriptions" in this manual

Gekko implements HIDO[NHR], which helps software distinguish a hard reset from a soft reset.
Because this bit is cleared by a hard reset, but not by a soft reset, software can set this bit after a hard
reset and tell whether a subsequentresetis a hard or soft reset by examining whether this bit is still set.

Page 4-12 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

The first bus operation following the negationKRESET or the assertion of SRESET will be a
single-beat instruction fetch (caching will be inhibited) to x00100.

Table 4-7 lists register settings when a system reset exception is taken.

Table 4-7. System Reset Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits

1-4 Cleared

5-9 Loaded with equivalent MSR bits

10-15 Cleared

16-31 Loaded with equivalent MSR bits

Note that if the processor state is corrupted to the extent that execution cannot resume reliably,
MSRI[RI] (SRR1[30]) is cleared.

MSR POW 0 FP 0 BE 0 DR O
ILE — ME — FE1 O PM O
EE 0 FEO O IP — RI 0
PR O SE O IR 0 LE Set to value of ILE

4.5.1.1 Soft Reset

If SRESET is asserted, the processor is first put in a recoverable state. To do this, Gekko allows any
instruction at the point of completion to either complete or take an exception, blocks completion
of any following instructions, and allows the completion queue to drain. The state before the
exception occurred is then saved as specified in the PowerPC architecture and instruction fetching
begins at the system reset interrupt vector offset, 0x00100. The vector address on a soft reset
depends on the setting of MSR][IP] (either 0x0000_0100 or OxFFFO_0100). Soft resets are third in
priority, after hard reset and machine check. This exception is recoverable provided attaining a
recoverable state does not generate a machine check.

SRESET is an effectively edge-sensitive signal that can be asserted and deasserted asynchronously,
provided the minimum pulse width specified in the hardware specifications is met. Asserting
SRESET causes Gekko to take a system reset exception. This exception modifies the MSR, SRRO,
and SRR1, as described in tRewerPC Microprocessor Family: The Programming Environments
manual. Unlike hard reset, soft reset does not directly affect the states of output signals. Attempts
to use SRESET during a hard reset sequence or while the JTAG logic is non-idle cause
unpredictable results (see Section 7.2.9.5.2, “Soft R&SESE—Input” on Page 7-17 for more
information on soft reset).

SRESET can be asserted durtHRESET assertion (see Figure 4-4). In all three cases shown in
Figure 4-4, theSRESET assertion and deassertion have no effect on the operation or state of the
machine.SRESET asserted coincident to, or after the assertioMRESET will also have no
effect on the operation or state of the machine.

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-13

IBM Confidential

HRESET —— ___. OK
SRESET /
HRESET /. OK
SRESET /
HRESET /. OK

SRESET —
Figure 4-4. SRESET Asserted During HRESET

4.5.1.2 Hard Reset

A hard reset is initiated by assertiflRESET. Hard reset is used primarily for power-on reset (POR)

(in which casefRST must also be asserted), but it can also be used to restart a running processor. The
HRESET signal must be asserted during power up and must remain asserted for a period that allows
the PLL to achieve lock and the internal logic to be reset. This period is specified in the hardware
specifications. Gekko tri-states all 10 drivers within five clocksHRESET assertion. Gekko’s
internal state after the hard reset interval is defined in Table 4HRESET is asserted for less than

this amount of time, the results are not predictabl&IRESET is asserted during normal operation,

all operations cease, and the machine state is lost (see Section 7.2.9.5.1, “Hard Reset
(HRESET)—Input" on Page 7-17 for more information on a hard reset).

The hard reset exception is a nonrecoverable, nonmaskable asynchronous exceptiddRES&T

is asserted or at power-on reset (POR), Gekko immediately branches to OxFFFO_0100 without
attempting to reach a recoverable state. A hard reset has the highest priority of any exception. It is
always nonrecoverable. Table 4-8 shows the state of the machine just before it fetches the first
instruction of the system reset handler after a hard reset. In Table 4-8, the term “Unknown” means
that the content may have been disordered. These facilities must be properly initialized before use.
The FPRs, BATs, and TLBs may have been disordered. To initialize the BATS, first set them all to
zero, then to the correct values before any address translation occurs.

Table 4-8. Settings Caused by Hard Reset

Register Setting Register Setting

GPRs Unknown PVR see the PowerPCGekko
Microprocessor Data Sheet

FPRs Unknown HIDO 00000000

FPSCR 00000000 HID1 00000000

CR All 0s HID2 00000000

SRs Unknown GQRnN 00000000

MSR 00000040 (only IP set) WPAR 00000000

XER 00000000 IABR All Os (break point disabled)

Page 4-14 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

Table 4-8. Settings Caused by Hard Reset (Continued)

IBM Confidential

Register Setting Register Setting

TBU 00000000 DSISR 00000000

TBL 00000000 DAR 00000000

LR 00000000 DEC FFFFFFFF

CTR 00000000 DMAU 00000000

SDR1 00000000 DMAL 00000000

SRRO 00000000 TLBs Unknown

SRR1 00000000 Reservation Unknown (reservation flag
Address -cleared)

SPRGs 00000000 BATs Unknown

Tag directory,

All entries are marked invalid,

Cache, Icache,

All blocks are unchanged from

Icache, and all LRU bits are set to 0, and and Dcache before HRESET.

Dcache caches are disabled.

DABR Breakpoint is disabled.
Address is unknown.

L2CR 00000000

MMCRn 00000000

THRMn 00000000

UMMCRnN 00000000

UPMCn 00000000

USIA 00000000

XER 00000000

PMCn Unknown

ICTC 00000000

The following is also true after a hard reset operation:
» External checkstops are enabled.

» The on-chip test interface has given control of the I/Os to the rest of the chip for functional
use.

» Since the reset exception has data and instruction translation disabled (MSR[DR] and
MSRJ[IR] both cleared), the chip operates in direct address translation mode (referred to as
the real addressing mode in the architecture specification).

« Time from HRESET deassertion until Gekko asserts theTstbus parked on Gekko) or
BG is 8 to 12 bus clocks (SYSCLK).

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-15

IBM Confidential

4.5.2 Machine Check Exception (0x00200)

Gekko implements the machine check exception as defined in the PowerPC architecture (OEA). It
conditionally initiates a machine check exception after an address or data parity error occurred on the
bus or in either the L1 or L2 cache, after receiving a qualified transfer error acknowi€Ege (
indication on Gekko bus, after DMA look-up missed the locked cache, aftelva [hit in the normal

cache, or after the machine check interrdCP) signal had been asserted. As defined in the OEA,
the exception is not taken if MSR[ME] is cleared, in which case the processor enters checkstop state.

Certain machine check conditions can be enabled and disabled using HIDO bits, as described in
Table 4-9.

Table 4-9. HIDO Machine Check Enable Bits

Bit | Name Function

0 EMCP |Enable MCP. The primary purpose of this bit is to mask out further machine check exceptions caused
by assertion of MCP, similar to how MSR[EE] can mask external interrupts.

0 Masks MCP. Asserting MCP does not generate a machine check exception or a checkstop.

1 Asserting MCP causes a checkstop if MSR[ME] = 0 or a machine check exception if MSR[ME] = 1.

1 DBP Enable/disable 60x bus address and data parity generation.

0 If address or data parity is not used by the system and the respective parity checking is disabled
(HIDO[EBA] or HIDO[EBD] = 0), input receivers for those signals are disabled, do not require pull-up
resistors, and therefore should be left unconnected. If all parity generation is disabled, all parity
checking should also be disabled and parity signals need not be connected.

1 Parity generation is enabled.

2 EBA Enable/disable 60x bus address parity checking.

0 Prevents address parity checking.

1 Allows a address parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if
MSR[ME] = 1.

EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

3 EBD Enable 60x bus data parity checking

0 Parity checking is disabled.

1 Allows a data parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if
MSR[ME] = 1.

EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

15 |[NHR | Not hard reset (software use only)
0 A hard reset occurred if software had previously set this bit
1 A hard reset has not occurred.

A TEA indication on the bus can result from any load or store operation initiated by the processor. In
general,TEA is expected to be used by a memory controller to indicate that a memory parity error or
an uncorrectable memory ECC error has occurred. Note that the resulting machine check exception
is imprecise and unordered with respect to the instruction that originated the bus operation.

If MSR[ME] and the appropriate HIDO bits are set, the exception is recognized and handled;
otherwise, the processor generates an internal checkstop condition. When the exception is
recognized, all incomplete stores are discarded. The bus protocol operates normally.

A machine check exception may result from referencing a nonexistent physical address, either
directly (with MSR[DR] = 0) or through an invalid translation. Ifdcbz instruction introduces a

block into the cache associated with a nonexistent physical address, a machine check exception can
be delayed until an attempt is made to store that block to main memory. Not all PowerPC processors
provide the same level of error checking. Checkstop sources are implementation-dependent.

Page 4-16 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Machine check exceptions are enabled when MSR[ME] = 1, this is described in the next section..
If MSR[ME] = 0 and a machine check occurs, the processor enters the checkstop state.

Checkstop state is described in Section 4.5.2.2, “Checkstop State (MSR[ME] = 0)" on Page 4-17.

4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)

Machine check exceptions are enabled when MSR[ME] = 1. When a machine check exception is
taken, registers are updated as shown in Table 4-10.

Table 4-10. Machine Check Exception—Register Settings

Register Setting Description

SRRO On a best-effort basis Gekko can set this to an EA of some instruction that was executing or about to be
executing when the machine check condition occurred.

SRR1 0-9 Cleared

10 Set when a DMA or locked cache error happens.

11 Set when an L2 data cache double bit error is detected, otherwise zero
12 Set when MCP signal is asserted, otherwise zero

13 Set when TEA signal is asserted, otherwise zero

14 Set when a data bus parity error is detected, otherwise zero

15 Set when an address bus parity error is detected, otherwise zero
16-31 MSR[16-31]

POW 0 FP 0 BE 0 DR 0
ILE — ME O FE1 O PM O
EE O FEO O IP — RI 0
PR O SE O IR 0 LE Set to value of ILE

To handle another machine check exception, the exception handler should set MSR[ME] as soon
as it is practical after a machine check exception is taken. Otherwise, subsequent machine check
exceptions cause the processor to enter the checkstop state.

The machine check exception is usually unrecoverable in the sense that execution cannot resume
in the context that existed before the exception. If the condition that caused the machine check does
not otherwise prevent continued execution, MSR[ME] is set to allow the processor to continue
execution at the machine check exception vector address. Typically, earlier processes cannot
resume; however, operating systems can use the machine check exception handler to try to identify
and log the cause of the machine check condition.

When a machine check exception is taken, instruction fetching resumes at offset 0x00200 from the
physical base address indicated by MSR][IP].

4.5.2.2 Checkstop State (MSR[ME] = 0)
If MSR[ME] = 0 and a machine check occurs, the processor enters the checkstop state. In addition,
the assertion dCKSTP_IN to Gekko causes checkstop.

When a processor is in checkstop state, instruction processing is suspended and generally cannot
resume without the processor being reset. The contents of all latches are frozen within two cycles
upon entering checkstop state.

4.5.3 DSI Exception (0x00300)

A DSI exception occurs when no higher priority exception exists and an error condition related to
a data memory access occurs. The DSI exception is implemented as it is defined in the PowerPC

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-17

IBM Confidential

architecture (OEA). In case of a TLB miss for a load, store, or cache operation, a DSI exception is
taken if the resulting hardware table search causes a page fault.

On Gekko, a DSI exception is taken when a load or store is attempted to a direct-store segment
(SR[T] =1). In Gekko, a floating-point load or store to a direct-store segment causes a DSI exception
rather than an alignment exception, as specified by the PowerPC architecture.

Gekko also implements the data address breakpoint facility, which is defined as optional in the
PowerPC architecture and is supported by the optional data address breakpoint register (DABR).
Although the architecture does not strictly prescribe how this facility must be implemented, Gekko
follows the recommendations provided by the architecture and described in the Chapter 2,
"Programming Model" in this manual and Chapter 6, “Exceptions” inRbeerPC Microprocessor
Family: The Programming Environmentsanual.

4.5.4 1SI Exception (0x00400)

An ISI exception occurs when no higher priority exception exists and an attempt to fetch the next
instruction fails. This exception is implemented as it is defined by the PowerPC architecture (OEA),
and is taken for the following conditions:

» The effective address cannot be translated.

» The fetch access is to a no-execute segment (SR[N] = 1).
* The fetch access is to guarded storage and MSR[IR] = 1.
» The fetch access is to a segment for which SR[T] is set.

* The fetch access violates memory protection.

When an ISl exception is taken, instruction fetching resumes at offset 0x00400 from the physical base
address indicated by MSRJIP].

4.5.5 External Interrupt Exception (0x00500)

An external interrupt is signaled to the processor by the assertion of the external interrupt signal
(INT). The INT signal is expected to remain asserted until Gekko takes the external interrupt
exception. IfINT is negated early, recognition of the interrupt request is not guaranteed. After Gekko
begins execution of the external interrupt handler, the system can safely neda€.téhen Gekko
detects assertion ®NT, it stops dispatching and waits for all pending instructions to complete. This
allows any instructions in progress that need to take an exception to do so before the external interrupt
is taken. After all instructions have vacated the completion buffer, Gekko takes the external interrupt
exception as defined in the PowerPC architecture (OEA).

An external interrupt may be delayed by other higher priority exceptions or if MSR[EE] is cleared
when the exception occurs. Register settings for this exception are described in Chapter 6,
“Exceptions” in thePowerPC Microprocessor Family: The Programming Environmerdsual

When an external interrupt exception is taken, instruction fetching resumes at offset 0x00500 from
the physical base address indicated by MSR[IP].

Page 4-18 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

4.5.6 Alignment Exception (0x00600)

Gekko implements the alignment exception as defined by the PowerPC architecture (OEA). An
alignment exception is initiated when any of the following occurs:

* The operand of a floating-point load or store is not word-aligned.

* The operand dimw, stmw, lwarx, or stwcx. is not word-aligned.

* The operand oficbz ordcbz_lis in a page which is write-through or cache-inhibited.
* An attempt is made to executebz or dcbz_|when the data cache is disabled.

» An eciwx or ecowxis not word-aligned.

» A multiple or string access is attempted with MSR[LE] set.

NOTE: In Gekko, the paired-single quantization load or store will generate an alignment
exception when the corresponding GQRn[LD_TYPE] or GQRn[ST_TYPE] are 0 and
will not generate an alignment exception when the corresponding GQRn[LD_TYPE]
or GQRN[ST_TYPE] are 4,5, 6 or 7. Also, a floating-point load or store to a direct-store
segment causes a DSI exception rather than an alignment exception, as specified by the
PowerPC architecture. For more information, see Section 4.5.3, “DSI Exception
(0x00300)" on Page 4-17.

4.5.7 Program Exception (0x00700)

Gekko implements the program exception as it is defined by the PowerPC architecture (OEA). A
program exception occurs when no higher priority exception exists and one or more of the
exception conditions defined in the OEA occur.

Gekko invokes the system illegal instruction program exception when it detects any instruction
from the illegal instruction class. Gekko fully decodes the SPR field of the instruction. If an
undefined SPR is specified, a program exception is taken.

The UISA definesntspr andmfspr with the record bit (Rc) set as causing a program exception or
giving a boundedly-undefined result. In Gekko, the appropriate condition register (CR) should be
treated as undefined. Likewise, the PowerPC architecture states that the Floating Compared
Unorderedfcmpu) or Floating Compared Orderefitinpo) instruction with the record bit set can
either cause a program exception or provide a boundedly-undefined result. In Gekko, an the BF
field in an instruction encoding for these cases is considered undefined.

Gekko does not support either of the two floating-point imprecise modes supported by the
PowerPC architecture. Unless exceptions are disabled (MSR[FEO] = MSR[FE1] = 0), all
floating-point exceptions are treated as precise.

When a program exception is taken, instruction fetching resumes at offset 0x00700 from the
physical base address indicated by MSRJ[IP]. Chapter 6, “Exceptions” inPtheerPC
Microprocessor Family: The Programming Environmentanual describes register settings for
this exception.

4.5.8 Floating-Point Unavailable Exception (0x00800)

The floating-point unavailable exception is implemented as defined in the PowerPC architecture.
A floating-point unavailable exception occurs when no higher priority exception exists, an attempt
is made to execute a floating-point instruction (including floating-point load, store, or move
instructions), and the floating-point available bit in the MSR is disabled, (MSR[FP] = 0). Register
settings for this exception are described in Chapter 6, “Exceptions” in RbwerPC
Microprocessor Family: The Programming Environmemignual

When a floating-point unavailable exception is taken, instruction fetching resumes at offset
0x00800 from the physical base address indicated by MSR]IP].

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-19

IBM Confidential

4.5.9 Decrementer Exception (0x00900)

The decrementer exception is implemented in Gekko as it is defined by the PowerPC architecture.
The decrementer exception occurs when no higher priority exception exists, a decrementer exception
condition occurs (for example, the decrementer register has completed decrementing), and MSR[EE]
= 1. In Gekko, the decrementer register is decremented at one fourth the bus clock rate. Register
settings for this exception are described in Chapter 6, “Exceptions” iRdinerPC Microprocessor
Family: The Programming Environmentsganual

When a decrementer exception is taken, instruction fetching resumes at offset 0x00900 from the
physical base address indicated by MSR[IP].

4.5.10 System Call Exception (0x00CO00)

A system call exception occurs when a System Galliqistruction is executed. In Gekko, the system

call exception is implemented as it is defined in the PowerPC architecture. Register settings for this
exception are described in Chapter 6, “Exceptions” in BogverPC Microprocessor Family: The
Programming Environmentsanual

When a system call exception is taken, instruction fetching resumes at offset 0Ox00C00 from the
physical base address indicated by MSR]IP].

4.5.11 Trace Exception (0x00D0O0)

The trace exception is taken if MSR[SE] = 1 or if MSR[BE 1 and the currently completing
instruction is a branch. Each instruction considered during trace mode completes before a trace
exception is taken.

Implementation Note—Gekko processor diverges from the PowerPC architecture in that it does not
take trace exceptions on tisync instruction.

When a trace exception is taken, instruction fetching resumes as offset 0x0O0DOO from the base
address indicated by MSR][IP].

4.5.12 Floating-Point Assist Exception (0OXO0EO0O0)

The optional floating-point assist exception defined by the PowerPC architecture is not implemented
in Gekko.

4.5.13 Performance Monitor Interrupt (0xO0F0O0)
Gekko microprocessor provides a performance monitor facility to monitor and count predefined
events such as processor clocks, misses in either the instruction cache or the data cache, instructions
dispatched to a particular execution unit, mispredicted branches, and other occurrences. The count of
such events can be used to trigger the performance monitor exception. The performance monitor
facility is not defined by the PowerPC architecture.
The performance monitor can be used for the following:
* To increase system performance with efficient software, especially in a multiprocessing
system. Memory hierarchy behavior must be monitored and studied to develop algorithms that
schedule tasks (and perhaps partition them) and that structure and distribute data optimally.

* To help system developers bring up and debug their systems.
The performance monitor uses the following SPRs:
* The performance monitor counter registers (PMC1-PMC4) are used to record the number of

times a certain event has occurred. UPMC1-UPMC4 provide user-level read access to these
registers.

* The monitor mode control registers (MMCRO-MMCR1) are used to enable various
performance monitor interrupt functions. UMMCRO-UMMCR1 provide user-level read
access to these registers.

Page 4-20 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

* The sampled instruction address register (SIA) contains the effective address of an
instruction executing at or around the time that the processor signals the performance
monitor interrupt condition. The USIA register provides user-level read access to the SIA.

Table 4-11 lists register settings when a performance monitor interrupt exception is taken.

Table 4-11. Performance Monitor Interrupt Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1-4 Cleared
5-9 Loaded with equivalent MSR bits
10-15 Cleared
16-31 Loaded with equivalent MSR bits

MSR POW 0 FP O BE O DR O
ILE — ME — FE1 O PM O
EE O FEO O IP — RI 0
PR O SE O IR 0 LE Set to value of ILE

As with other PowerPC exceptions, the performance monitor interrupt follows the normal
PowerPC exception model with a defined exception vector offset (OxOOF00). The priority of the
performance monitor interrupt lies between the external interrupt and the decrementer interrupt
(see Table 4-3). The contents of the SIA are described in 2.1.2.4, “Hardware
Implementation-Dependent Register 2.” The performance monitor is described in Chapter 11,
"Performance Monitor" in this manual.

4.5.14 Instruction Address Breakpoint Exception (0x01300)
An instruction address breakpoint interrupt occurs when the following conditions are met:
» The instruction breakpoint address IABR[0—29] matches EA[0—29] of the next instruction

to complete in program order. The instruction that triggers the instruction address
breakpoint exception is not executed before the exception handler is invoked.

* The translation enable bit (IABR[TE]) matches MSRJ[IR].

» The breakpoint enable bit (IABR[BE]) is set. The address match is also reported to the
JTAG/COP block, which may subsequently generate a soft or hard reset. The instruction
tagged with the match does not complete before the breakpoint exception is taken.

Table 4-12 lists register settings when an instruction address breakpoint exception is taken.

Table 4-12. Instruction Address Breakpoint Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1-4 Cleared
5-9 Loaded with equivalent MSR bits
10-15 Cleared
16-31 Loaded with equivalent MSR bits

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-21

IBM Confidential

Table 4-12. Instruction Address Breakpoint Exception—Register Settings (Contin-

MSR POW 0 FP O BE O DR O
ILE — ME — FE1 O PM O
EE O FEO O IP — RI 0
PR O SE O IR 0 LE Set to value of ILE

Gekko requires that amtspr to the IABR be followed by a context-synchronizing instruction. Gekko
cannot generate a breakpoint response for that context-synchronizing instruction if the breakpoint is
enabled by thantspr(IABR) immediately preceding it. Gekko also cannot block a breakpoint
response on the context-synchronizing instruction if the breakpoint was disabled by the
mtspr(IABR) instruction immediately preceding it. The format of the IABR register is shown in
2.1.2.1”

When an instruction address breakpoint exception is taken, instruction fetching resumes as offset
0x01300 from the base address indicated by MSR[IP].

4.5.15 Thermal Management Interrupt Exception (0x01700)

A thermal management interrupt is generated when the junction temperature crosses a threshold
programmed in either THRM1 or THRM2. The exception is enabled by the TIE bit of either THRM1
or THRM2, and can be masked by setting MSR[EE].

Table 4-13 lists register settings when a thermal management interrupt exception is taken.

Table 4-13. Thermal Management Interrupt Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1-4 Cleared
5-9 Loaded with equivalent MSR bits
10-15 Cleared
16-31 Loaded with equivalent MSR bits

MSR POW 0 FP O BE O DR O
ILE — ME — FE1 O PM O
EE O FEO O IP — RI 0
PR O SE O IR 0 LE Set to value of ILE

The thermal management interrupt is similar to the system management and external interrupts.
Gekko requires the next instruction in program order to complete or take an exception, blocks
completion of any following instructions, and allows the completed store queue to drain. Any
exceptions encountered in this process are taken first and the thermal management interrupt exception
is delayed until a recoverable halt is achieved, at which point Gekko saves the machine state, as shown
in Table 4-13. When a thermal management interrupt exception is taken, instruction fetching resumes
as offset 0x01700 from the base address indicated by MSR[IP].

Chapter 10, "Power and Thermal Management" in this manual gives the details about thermal
management.

Page 4-22 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Chapter 5 Memory Management

This chapter describes Gekko microprocessor’s implementation of the memory management unit
(MMU) specifications provided by the operating environment architecture (OEA) for PowerPC
processors. The primary function of the MMU in a PowerPC processor is the translation of logical
(effective) addresses to physical addresses (referred to as real addresses in the architecture
specification) for memory accesses and /O accesses (/O accesses are assumed to be
memory-mapped). In addition, the MMU provides access protection on a segment, block, or page
basis. This chapter describes the specific hardware used to implement the MMU model of the OEA
in Gekko. Refer to Chapter 7, “Memory Management,” in BmverPC Microprocessor Family:

The Programming Environmemsanual for a complete description of the conceptual model. Note

that Gekko does not implement the optional direct-store facility and it is not likely to be supported

in future devices.

Two general types of memory accesses generated by PowerPC processors require address
translation—instruction accesses and data accesses generated by load and store instructions.
Generally, the address translation mechanism is defined in terms of the segment descriptors and
page tables PowerPC processors use to locate the effective-to-physical address mapping for
memory accesses. The segment information translates the effective address to an interim virtual
address, and the page table information translates the interim virtual address to a physical address.

The segment descriptors, used to generate the interim virtual addresses, are stored as on-chip
segment registers on 32-bit implementations (such as Gekko). In addition, two translation
lookaside buffers (TLBs) are implemented on Gekko to keep recently-used page address
translations on-chip. Although the PowerPC OEA describes one MMU (conceptually), Gekko
hardware maintains separate TLBs and table search resources for instruction and data accesses that
can be performed independently (and simultaneously). Therefore, Gekko is described as having
two MMUSs, one for instruction accesses (IMMU) and one for data accesses (DMMU).

The block address translation (BAT) mechanism is a software-controlled array that stores the
available block address translations on-chip. BAT array entries are implemented as pairs of BAT
registers that are accessible as supervisor special-purpose registers (SPRs). There are separate
instruction and data BAT mechanisms, and in Gekko, they reside in the instruction and data MMUs,
respectively.

The MMUSs, together with the exception processing mechanism, provide the necessary support for
the operating system to implement a paged virtual memory environment and for enforcing
protection of designated memory areas.

Exception processing is described in Chapter 4, "Exceptions” specifically, Section 4.3 on Page 4-7
describes the MSR, which controls some of the critical functionality of the MMUs.

5.1 MMU Overview

Gekko implements the memory management specification of the PowerPC OEA for 32-bit
implementations. Thus, it provides 4 Gbytes of effective address space accessible to supervisor and
user programs, with a 4-Kbyte page size and 256-Mbyte segment size. In addition, the MMUs of
32-bit PowerPC processors use an interim virtual address (52 bits) and hashed page tables in the
generation of 32-bit physical addresses. PowerPC processors also have a BAT mechanism for
mapping large blocks of memory. Block sizes range from 128 Kbyte to 256 Mbyte and are
software-programmable.

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-1

IBM Confidential

Basic features of Gekko MMU implementation defined by the OEA are as follows:

Support for real addressing mode—Effective-to-physical address translation can be disabled
separately for data and instruction accesses.

Block address translation—Each of the BAT array entries (four IBAT entries and four DBAT
entries) provides a mechanism for translating blocks as large as 256 Mbytes from the 32-bit
effective address space into the physical memory space. This can be used for translating large
address ranges whose mappings do not change frequently.

Segmented address translation—The 32-bit effective address is extended to a 52-bit
virtual address by substituting 24 bits of upper address bits from the segment register,
for the 4 upper bits of the EA, which are used as an index into the segment register file.
This 52-bit virtual address space is divided into 4-Kbyte pages, each of which can be
mapped to a physical page.

Gekko also provides the following features that are not required by the PowerPC architecture:

Separate translation lookaside buffers (TLBs)—The 128-entry, two-way set-associative
ITLBs and DTLBs keep recently-used page address translations on-chip.

Table search operations performed in hardware—The 52-bit virtual address is formed and the
MMU attempts to fetch the PTE, which contains the physical address, from the appropriate
TLB on-chip. If the translation is not found in a TLB (that is, a TLB miss occurs), the
hardware performs a table search operation (using a hashing function) to search for the PTE.
TLB invalidation—Gekko implements the optional TLB Invalidate Entilyi¢) and

TLB Synchronizeilbsync) instructions, which can be used to invalidate TLB entries.
For more information on thigbie andtlbsync instructions, see 5.4.3.2.”

Table 5-1 summarizes Gekko MMU features, including those defined by the PowerPC architecture
(OEA) for 32-bit processors and those specific to Gekko.

Table 5-1. MMU Feature Summary

Feature Category Armg?;ﬁ;?ggggged/ Feature
Address ranges Architecturally defined 232 pytes of effective address
252 pytes of virtual address
232 pytes of physical address
Page size Architecturally defined 4 Kbytes
Segment size Architecturally defined 256 Mbytes
Block address Architecturally defined Range of 128 Kbyte—256 Mbyte sizes
translation
Implemented with IBAT and DBAT registers in BAT array
Memory protection Architecturally defined Segments selectable as no-execute
Pages selectable as user/supervisor and read-only or guarded
Blocks selectable as user/supervisor and read-only or guarded
Page history Architecturally defined Referenced and changed bits defined and maintained

Page 5-2

Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Table 5-1. MMU Feature Summary (Continued)

Architecturally Defined/

Gekko-Specific Feature

Feature Category

Page address Architecturally defined Translations stored as PTEs in hashed page tables in memory
translation

Page table size determined by mask in SDR1 register

TLBs Architecturally defined Instructions for maintaining TLBs (tlbie and tlbsync
instructions in Gekko)

Gekko-specific 128-entry, two-way set associative ITLB
128-entry, two-way set associative DTLB
LRU replacement algorithm

Segment descriptors | Architecturally defined Stored as segment registers on-chip (two identical copies
maintained)

Page table search Gekko-specific Gekko performs the table search operation in hardware.

support

5.1.1 Memory Addressing

A program references memory using the effective (logical) address computed by the processor
when it executes a load, store, branch, or cache instruction, and when it fetches the next instruction.
The effective address is translated to a physical address according to the procedures described in
Chapter 7, “Memory Management” in tiowerPC Microprocessor Family: The Programming
Environmentsnanual, augmented with information in this chapter. The memory subsystem uses
the physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3 on Page 2-35.

5.1.2 MMU Organization

Figure 5-1 shows the conceptual organization of a PowerPC MMU in a 32-bit implementation;
note that it does not describe the specific hardware used to implement the memory management
function for a particular processor. Processors may optionally implement on-chip TLBs, hardware
support for the automatic search of the page tables for PTEs, and other hardware features (invisible
to the system software) not shown.

Gekko maintains two on-chip TLBs with the following characteristics:

» 128 entries, two-way set associative (64 x 2), LRU replacement

» Data TLB supports the DMMU; instruction TLB supports the IMMU

* Hardware TLB update

» Hardware update of referenced (R) and changed (C) bits in the translation table

In the event of a TLB miss, the hardware attempts to load the TLB based on the results of a
translation table search operation.

Figure 5-2 and Figure 5-3 show the conceptual organization of Gekko’s instruction and data
MMUSs, respectively. The instruction addresses shown in Figure 5-2 are generated by the processor
for sequential instruction fetches and addresses that correspond to a change of program flow. Data
addresses shown in Figure 5-3 are generated by load, store, and cache instructions.

As shown in the figures, after an address is generated, the high-order bits of the effective address,
EA[0-19] (or a smaller set of address bits, EAf)-in the cases of blocks), are translated into
physical address bits PA[0—19]. The low-order address bits, A[20-31], are untranslated and are

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-3

IBM Confidential

therefore identical for both effective and physical addresses. After translating the address, the MMUs
pass the resulting 32-bit physical address to the memory subsystem. The MMUSs record whether the
translation is for an instruction or data access, whether the processor is in user or supervisor mode
and, for data accesses, whether the access is a load or a store operation.

The MMUs use this information to appropriately direct the address translation and to enforce the
protection hierarchy programmed by the operating system. Section 4.3 on Page 4-7 describes the
MSR, which controls some of the critical functionality of the MMUSs.

The figures show how address bits A[20—26] index into the on-chip instruction and data caches to
select a cache set. The remaining physical address bits are then compared with the tag fields
(comprised of bits PA[0-19]) of the two selected cache blocks to determine if a cache hit has
occurred. In the case of a cache miss on Gekko, the instruction or data access is then forwarded to the

L2 tags to check for an L2 cache hit. In case of a miss the access is forwarded to the bus interface unit
which initiates an external memory access.

Page 5-4 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Data Instruction
Accesses Accesses
EA[0-19] EA[0-19]
A[20-31]
MMU
(32-Bit) CX ‘
EA[4-19] EA[15-19)]
EA[0-3] v
EAJO 14]' 77777 BATOU |
Y IBATOL
0| Segment Registers .
S e D IBAT3U |
. IBAT3L
15 EA[15-19]
Upper 24-Bits
of Virtual Address
L - EA[0-14]
' On-Chip ! ____DBATOU]
: TLBs : DBATOL
. (Optional) .
T PR |
l .. DBAT3U |
' Page Table :
| Search Logic |
, (Optional) PA[0-14]
PA[15-19]
SDR1 SPR 25
B A[20-31]
r-—n .
_ _, Optional PA[0-31]
Figure 5-1. MMU Conceptual Block Diagram
Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-5

IBM Confidential

Instruction
Unit A[20-31]
BPU
EA[0-19] IMMU
EAJ0-3] y
EA[0-19] IBAT Array
0 SegmentRegisters | | [| IBATOU |
. IBATOL
Select> . EA[0-14] | :
) I L IBAT3U |
IBAT3L
EA[4-19]
ITLB
| I\ | Cache
0 s T
O Tag T
Select
A[20-26]
127| PA[0-19]
63 I
Page Table) 7 Ll
Search Logic X
PA[0-19 0
[0-19] Compare
SDR1 SPR25
+ i
| Cache
Hit/Miss

'

PA[0-31]

Figure 5-2. PowerPC Gekko Microprocessor IMMU Block Diagram

Page 5-6 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Load/Store A[20-31]
Unit
EA[0-19] DMMU
EA[0-3] v
EA[0-19] DBAT Array
0| Segment Registers - bBATOU |
. DBATOL
23| : EA0-14] :
15 ____DbBAT3U]
DBAT3L
EA[4-19]
DTLB R
D Cache
I \ 7 :
0 I|I ‘\‘
0 Tag |
Select
A[20-26]
127| PA[0-19]
63 I
Page Table Y 7 y
Search Logic X
PA[0-19] 0
Compare
SDR1 SPR 25
+ i

D Cache

Hit/Miss
PA[0-31]

Figure 5-3. Gekko Microprocessor DMMU Block Diagram

5.1.3 Address Translation Mechanisms
PowerPC processors support the following three types of address translation:
Page address translation—translates the page frame address for a 4-Kbyte page size

Block address translation—translates the block number for blocks that range in size from
128 Kbytes to 256 Mbytes.

Real addressing mode address translation—when address translation is disabled, the
physical address is identical to the effective address.

Chapter 5. Memory Management

IBM Confidential

5/25/00

Page 5-7

IBM Confidential

Figure 5-4 shows the three address translation mechanisms provided by the MMUs. The segment
descriptors shown in the figure control the page address translation mechanism. When an access uses
page address translation, the appropriate segment descriptor is required. In 32-bit implementations,
the appropriate segment descriptor is selected from the 16 on-chip segment registers by the four
highest-order effective address bits.

A control bit in the corresponding segment descriptor then determines if the access is to memory
(memory-mapped) or to the direct-store interface space. Note that the direct-store interface was
present in the architecture only for compatibility with existing I/O devices that used this interface.
However, it is being removed from the architecture, and Gekko does not support it. When an access
is determined to be to the direct-store interface space, Gekko takes a DSI exception if it is a data
access (see Section 4.5.3 on Page 4-17), and takes an ISI exception if it is an instruction access (see
Section 4.5.4 on Page 4-18).

For memory accesses translated by a segment descriptor, the interim virtual address is generated
using the information in the segment descriptor. Page address translation corresponds to the
conversion of this virtual address into the 32-bit physical address used by the memory subsystem. In
most cases, the physical address for the page resides in an on-chip TLB and is available for quick
access. However, if the page address translation misses in the on-chip TLB, the MMU causes a search
of the page tables in memory (using the virtual address information and a hashing function) to locate
the required physical address.

Because blocks are larger than pages, there are fewer upper-order effective address bits to be
translated into physical address bits (more low-order address bits (at least 17) are untranslated to form
the offset into a block) for block address translation. Also, instead of segment descriptors and a TLB,
block address translations use the on-chip BAT registers as a BAT array. If an effective address
matches the corresponding field of a BAT register, the information in the BAT register is used to
generate the physical address; in this case, the results of the page translation (occurring in parallel)
are ignored.

Page 5-8 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

0 31
- | Address Translation Dis-
Effective Address |
(MSR[IR] =0, or MSR[DR] = 0)
/ Y
Segment Descriptor Match with BAT
Located Registers
(=1 (=0
Block Address
Page Add_ress Translation
Translation (See Section 5.3 on Page 5-18)
0 51
Virtual Address |
Direct-Store Interface
Translation
A
; Real Addressing Mode
Look Upin . .
Page Tafblle Effective Address = Physical Address
(DSI/ISI Exception) (See Section 5.2 on Page 5-17)
0 Y 31 0 Y 31 0 31
| Physical Address | | Physical Address | | Physical Address

Figure 5-4. Address Translation Types

When the processor generates an access, and the corresponding address translation enable bit in
MSR is cleared, the resulting physical address is identical to the effective address and all other
translation mechanisms are ignored. Instruction address translation and data address translation are
enabled by setting MSR[IR] and MSR[DR], respectively.

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-9

IBM Confidential

5.1.4 Memory Protection Facilities

In addition to the translation of effective addresses to physical addresses, the MMUs provide access
protection of supervisor areas from user access and can designate areas of memory as read-only as
well as no-execute or guarded. Table 5-2 shows the protection options supported by the MMUs for
pages.

Table 5-2. Access Protection Options for Pages

User Read Supervisor Read .
User Supervisor

I-Fetch Data Write I-Fetch Data Write

Option

Supervisor-only — — —

Supervisor-only-no-execute — — — —

Supervisor-write-only —

Supervisor-write-only-no-execute — — —

Both (user/supervisor)

Both (user-/supervisor) no-execute — —

Both (user-/supervisor) read-only — —

Both (user/supervisor) — — — —
read-only-no-execute

Access pemitted
— Protection violation

The no-execute option provided in the segment register lets the operating system program determine
whether instructions can be fetched from an area of memory. The remaining options are enforced
based on a combination of information in the segment descriptor and the page table entry. Thus, the
supervisor-only option allows only read and write operations generated while the processor is
operating in supervisor mode (MSR[PR] = 0) to access the page. User accesses that map into a
supervisor-only page cause an exception.

Finally, a facility in the VEA and OEA allows pages or blocks to be designated as guarded, preventing
out-of-order accesses that may cause undesired side effects. For example, areas of the memory map
used to control 1/0 devices can be marked as guarded so accesses do not occur unless they are
explicitly required by the program.

For more information on memory protection, see “Memory Protection Facilities,” in Chapter 7,
“Memory Management,” in th€owerPC Microprocessor Family: The Programming Environments
manual.

Page 5-10 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

5.1.5 Page History Information

The MMUs of PowerPC processors also define referenced (R) and changed (C) bits in the page
address translation mechanism that can be used as history information relevant to the page. The
operating system can use these bits to determine which areas of memory to write back to disk when
new pages must be allocated in main memory. While these bits are initially programmed by the
operating system into the page table, the architecture specifies that they can be maintained either
by the processor hardware (automatically) or by some software-assist mechanism.

Implementation Note—When loading the TLB, Gekko checks the state of the changed and
referenced bits for the matched PTE. If the referenced bit is not set and the table search operation
is initially caused by a load operation or by an instruction fetch, Gekko automatically sets the
referenced bit in the translation table. Similarly, if the table search operation is caused by a store
operation and either the referenced bit or the changed bit is not set, the hardware automatically sets
both bits in the translation table. In addition, when the address translation of a store operation hits
in the DTLB, Gekko checks the state of the changed bit. If the bit is not already set, the hardware
automatically updates the DTLB and the translation table in memory to set the changed bit. For
more information, see Section 5.4.1 on Page 5-18.

5.1.6 General Flow of MMU Address Translation

The following sections describe the general flow used by PowerPC processors to translate effective
addresses to virtual and then physical addresses.

5.1.6.1 Real Addressing Mode and Block Address Translation Selection

When an instruction or data access is generated and the corresponding instruction or data
translation is disabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing mode is used (physical
address equals effective address) and the access continues to the memory subsystem as described
in Section 5.2 on Page 5-17.

Figure 5-5 shows the flow the MMUs use in determining whether to select real addressing mode,
block address translation, or the segment descriptor to select page address translation.

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-11

I-Access

Instruction /O\/Instruction Data\/o\

Translation Enabled

Translation Disabled
(MSR[IR] = 0)

Perform Real

IBM Confidential

Effective Address
Generated

D-Access

Addressing Mode
Translation

Compare Address with
Instruction or Data BAT Array

Translation Enabled

(MSR[IR] = 1) \f/ (MSR[DR] = 1)

Data

Translation Disabled

(MSR[DR] = 0)

Perform Real
Addressing Mode
Translation

(As Appropriate)
BAT Array /L\ BAT Array (See The Programming
Miss Hit Environments Manual)
Perform Address
Translation with Segment Access
DeSCprtOf Access Permitted
(See Figure 5-6 on Protected ﬁ
Page 5-13
g) / Translate Address

(Access Faulted)

Continue Access
to Memory
Subsystem

Figure 5-5. General Flow of Address Translation (Real Addressing Mode and Block)

NOTE: |If the BAT array search results in a hit, the access is qualified with the appropriate
protection bits. If the access violates the protection mechanism, an exception (either ISI

or DSI) is generated.

5.1.6.2 Page Address Translation Selection

If address translation is enabled and the effective address information does not match a BAT array
entry, the segment descriptor must be located. When the segment descriptor is located, the T bitin the
segment descriptor selects whether the translation is to a page or to a direct-store segment as shown
in Figure 5-6 on Page 5-13.

For 32-bit implementations, the segment descriptor for an access is contained in one of 16 on-chip
segment registers; effective address bits EA[0-3] select one of the 16 segment registers.

Note that Gekko does not implement the direct-store interface, and accesses to these segments cause
a DSl or ISI exception. In addition, Figure 5-6 also shows the way in which the no-execute protection

is enforced; if the N bit in the segment descriptor is set and the access is an instruction fetch, the
access is faulted as described in Chapter 7, “Memory Management,” RotherPC Microprocessor

Family: The Programming Environmentzanual. Note that the figure shows the flow for these cases

as described by the PowerPC OEA, and so the TLB references are shown as optional. Because Gekko

Page 5-12 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

implements TLBs, these branches are valid and are described in more detail throughout this

chapter.

Address Translation
with

Use EA[0-3] to
Select One of 16 On-Chip
Segment Registers

Check T-Bitin
Segment Descriptor

Page Address /g\segment Address

Direct-Store
Translation (T=1)*

(DSI/ISI Exception)

|-Fetch with N-Bit Set in
Segment Descriptor
(No-Execute)

Otherwise

Generate 52-Bit Virtual Address
from Segment Descriptor

' Compare Virtual Address with
. TLB Entries !

~~ T8 (See Figure 5-8 on Page 5-25)

Hit~ <~

~

~

Perform Page Table
Search Operation

(See Figure 5-9 on Page 5-27)

~

~
~
~

~

/O\Access

Access

Protected

)

(Permitted

Translate Address

PTE Not

PTE Found

(Access Faulted)

Found

rTo - “‘ - oo Continue Access to
Access Faulted | Load TLB Entry | (Memory Subsystem>

- — — - Optional to the PowerPC architecture. Implemented in Gekko.

*In the case of
instruction accesses,
causes IS| exception

Figure 5-6. General Flow of Page and Direct-Store Interface Address Translation

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-13

IBM Confidential

If SR[T] = 0, page address translation is selected. The information in the segment descriptor is then
used to generate the 52-bit virtual address. The virtual address is then used to identify the page
address translation information (stored as page table entries (PTEs) in a page table in memory). For
increased performance, Gekko has two on-chip TLBs to cache recently-used translations on-chip.

If an access hits in the appropriate TLB, page translation succeeds and the physical address bits are
forwarded to the memory subsystem. If the required translation is not resident, the MMU performs a
search of the page table. If the required PTE is found, a TLB entry is allocated and the page translation
is attempted again. This time, the TLB is guaranteed to hit. When the translation is located, the access
is qualified with the appropriate protection bits. If the access causes a protection violation, either an
ISI or DSI exception is generated.

If the PTE is not found by the table search operation, a page fault condition exists, and an ISI or DSI
exception occurs so software can handle the page fault.

5.1.7 MMU Exceptions Summary

To complete any memory access, the effective address must be translated to a physical address. As
specified by the architecture, an MMU exception condition occurs if this translation fails for one of
the following reasons:

» Page fault—there is no valid entry in the page table for the page specified by the effective
address (and segment descriptor) and there is no valid BAT translation.

* Anaddress translation is found but the access is not allowed by the memory protection
mechanism.

The translation exception conditions defined by the OEA for 32-bit implementations cause either the
ISI or the DSI exception to be taken as shown in Table 5-3.1

Table 5-3. Translation Exception Conditions

Condition Description Exception
Page fault (no PTE found) No matching PTE found in page tables (and | access: ISI exception
no matching BAT array entry) SRR1[1] =1
D access: DSI exception
DSISR[1] =1
Block protection violation Conditions described for block in “Block | access: ISI exception
Memory Protection” in Chapter 7, “Memory SRR1[4]=1
Management,” in the PowerPC -
Microprocessor Family: The Programming D access: DSI exception
Environments manual.” DSISR[4] =1
Page protection violation Conditions described for page in “Page | access: ISI exception
Memory Protection” in Chapter 7, “Memory SRR1[4]=1
Management,” in the PowerPC -
Microprocessor Family: The Programming D access: DSI exception
Environments manual. DSISR[4] =1
No-execute protection violation | Attempt to fetch instruction when SR[N] = 1 ISI exception
SRR1[3]=1
Instruction fetch from Attempt to fetch instruction when SR[T] = 1 ISI exception
direct-store segment SRR1[3] =1

Page 5-14 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Table 5-3. Translation Exception Conditions (Continued)

Condition Description Exception
Data access to direct-store Attempt to perform load or store (including FP | DSI exception
segment (including load or store) when SR[T] =1 DSISR[5] =1

floating-point accesses)

Instruction fetch from guarded Attempt to fetch instruction when MSR[IR] =1 | ISI exception
memory and either matching xBAT[G] = 1, or no SRR1[3] =1
matching BAT entry and PTE[G] =1

The state saved by the processor for each of these exceptions contains information that identifies
the address of the failing instruction. Refer to Chapter 4, "Exceptions" in this manual for a more
detailed description of exception processing.

In addition to the translation exceptions, there are other MMU-related conditions (some of them
defined as implementation-specific, and therefore not required by the architecture) that can cause
an exception to occur.

These exception conditions map to processor exceptions as shown in Table 5-4 on Page 5-15. The
only MMU exception conditions that occur when MSR[PRO are those that cause an alignment
exception for data accesses. For more detailed information about the conditions that cause an
alignment exception (in particular for string/multiple instructions), see Section 4.5.6 on Page 4-19.
NOTE: Some exception conditions depend upon whether the memory area is set up as
write-though (W = 1) or cache-inhibited (I = 1).
These bits are described fully in “Memory/Cache Access Attributes,” in Chapter 5,
“Cache Model and Memory Coherency,” of tRewerPC Microprocessor Family: The
Programming Environmentsanual
Also refer to Chapter 4, "Exceptions” in this manual and to Chapter 6, “Exceptions,”
in thePowerPC Microprocessor Family: The Programming Environmemagual for a
complete description of the SRR1 and DSISR bit settings for these exceptions.

Table 5-4. Other MMU Exception Conditions for the Gekko Processor

Condition Description Exception

dcbz ordcbz_| withW=1orl=1 | dcbz ordcbz_| instruction to write-through or | Alignment exception (not
cache-inhibited segment or block required by architecture for
this condition)

Iwarx or stwex. with W =1 Reservation instruction to write-through DSl exception
segment or block DSISR[5] =1

Iwarx , stwex. , eciwx , or ecowx Reservation instruction or external control DSl exception

instruction to direct-store segment | instruction when SR[T] =1 DSISR[5] =1

Floating-point load or store to FP memory access when SR[T] =1 See data access to

direct-store segment direct-store segment in

Table 5-4 on Page 5-15.

Load or store that results in a Does not occur in 750 Does not apply
direct-store error

eciwx or ecowx attempted when eciwx or ecowx attempted with EAR[E] =0 DSl exception
external control facility disabled DSISR[11] =1

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-15

IBM Confidential

Table 5-4. Other MMU Exception Conditions for the Gekko Processor

Condition Description Exception
Imw, stmw, Iswi, Iswx , stswi , or Imw, stmw, Iswi, Iswx , stswi , or stswx Alignment exception
stswx instruction attempted in instruction attempted while MSR[LE] = 1
little-endian mode
Operand misalignment Translation enabled and a floating-point Alignment exception (some
load/store, stmw, stwcx. , Imw, lwarx , eciwx, | of these cases are
or ecowx instruction operand is not implementation-specific)

word-aligned

5.1.8 MMU Instructions and Register Summary

The MMU instructions and registers allow the operating system to set up the block address translation

areas and the page tables in memory.

NOTE: Because the implementation of TLBs is optional, the instructions that refer to these
structures are also optional. However, as these structures serve as caches of the page table,
the architecture specifies a software protocol for maintaining coherency between these
caches and the tables in memory whenever the tables in memory are modified. When the
tables in memory are changed, the operating system purges these caches of the
corresponding entries, allowing the translation caching mechanism to refetch from the
tables when the corresponding entries are required.

Also note that Gekko implements all TLB-related instructions exti@pt, which is
treated as an illegal instruction.

Because the MMU specification for PowerPC processors is so flexible, it is recommended that the
software that uses these instructions and registers be encapsulated into subroutines to minimize the
impact of migrating across the family of implementations.

Table 5-5 summarizes Gekko’s instructions that specifically control the MMU. For more detailed
information about the instructions, refer to Chapter 2, "Programming Model" in this manual and
Chapter 8, “Instruction Set,” in théPowerPC Microprocessor Family: The Programming
Environmentsnanual

Table 5-5. Gekko Microprocessor Instruction Summary—Control MMUs

Instruction Description
mtsr SR,rS Move to Segment Register
SR[SR#] « rS
mtsrinr S,rB Move to Segment Register Indirect

SR[rB[0-3]] < S

mfsr r D,SR Move from Segment Register
rD « SR[SR#]
mfsrin r D,rB Move from Segment Register Indirect

rD « SR[rB[0-3]]

Page 5-16 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Table 5-5. Gekko Microprocessor Instruction Summary—Control MMUs

Instruction Description

tibie rB* TLB Invalidate Entry

For effective address specified by rB, TLB[V] <0

The tlbie instruction invalidates all TLB entries indexed by the EA, and operates on both the
instruction and data TLBs simultaneously invalidating four TLB entries. The index corresponds to
bits 14-19 of the EA.

Software must ensure that instruction fetches or memory references to the virtual pages specified
by the tlbie instruction have been completed prior to executing the tlbie instruction.

tlbsync* TLB Synchronize

Synchronizes the execution of all other tlbie instructions in the system. In Gekko, when the
TLBISYNC signal is negated, instruction execution may continue or resume after the completion
of atlbsync instruction. When the TLBISYNC signal is asserted, instruction execution stops after
the completion of a tlbsync instruction.

*These instructions are defined by the PowerPC architecture, but are optional.

Table 5-6 summarizes the registers that the operating system uses to program Gekko’s MMUSs.
These registers are accessible to supervisor-level software only.

These registers are described in Chapter 2, "Programming Model" in this manual.

Table 5-6. Gekko Microprocessor MMU Registers

Register Description
Segment registers The sixteen 32-bit segment registers are present only in 32-bit implementations of
(SR0O-SR15) the PowerPC architecture. The fields in the segment register are interpreted

differently depending on the value of bit 0. The segment registers are accessed by
the mtsr, mtsrin , mfsr, and mfsrin instructions.

BAT registers There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBATOU-IBAT3U, (IBATOU—-IBAT3U paired with IBATOL-IBAT3L) and four pairs of data BAT registers
IBATOL-IBAT3L, (DBATOU-DBAT3U paired with DBATOL-DBAT3L). The BAT registers are defined as
DBATOU-DBAT3U, and 32-bit registers in 32-bit implementations. These are special-purpose registers that
DBATOL-DBAT3L) are accessed by the mtspr and mfspr instructions.

SDR1 The SDR1 register specifies the variables used in accessing the page tables in

memory. SDR1 is defined as a 32-bit register for 32-bit implementations. This
special-purpose register is accessed by the mtspr and mfspr instructions.

5.2 Real Addressing Mode

If address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular access, the
effective address is treated as the physical address and is passed directly to the memory subsystem
as described in Chapter 7, “Memory Management,” inRbeverPC Microprocessor Family: The
Programming Environmentsanual.

Note that the default WIMG bits (Ob0011) cause data accesses to be considered cacheable (I = 0)
and thus load and store accesses are weakly ordered. This is the case even if the data cache is
disabled in the HIDO register (as it is out of hard reset). If I/O devices require load and store
accesses to occur in strict program order (strongly ordered), translation must be enabled so that the
corresponding | bit can be set. Note also, that the G bit must be set to ensure that the accesses are
strongly ordered. For instruction accesses, the default memory access mode bits (WIMG) are also

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-17

IBM Confidential

0b0011. That is, instruction accesses are considered cacheable (I = 0), and the memory is guarded.
Again, instruction accesses are considered cacheable even if the instruction cache is disabled in the
HIDO register (as it is out of hard reset). The W and M bits have no effect on the instruction cache.

For information on the synchronization requirements for changes to MSR[IR] and MSR[DR], refer
to Section 2.3.2.4 on Page 2-36 in this manual and the section “Synchronization Requirements for
Special Registers and for Lookaside Buffers” in Chapter 2 oRtwwerPC Microprocessor Family:

The Programming Environmentsanual

5.3 Block Address Translation

The block address translation (BAT) mechanism in the OEA provides a way to map ranges of
effective addresses larger than a single page into contiguous areas of physical memory. Such areas
can be used for data that is not subject to normal virtual memory handling (paging), such as a
memory-mapped display buffer or an extremely large array of numerical data.

Block address translation in Gekko is described in Chapter 7, “Memory Management,” in the
PowerPC Microprocessor Family: The Programming Environmentsganual for 32-bit
implementations.

Implementation Note—Gekko’s BAT registers are not initialized by the hardware after the power-up

or reset sequence. Consequently, all valid bits in both instruction and data BATs must be cleared
before setting any BAT for the first time. This is true regardless of whether address translation is
enabled. Also, software must avoid overlapping blocks while updating a BAT or dteas. if
translation is disabled, multiple BAT hits are treated as programming errors and can corrupt

the BAT registers and produce unpredictable results. Always re-zero during the reset ISR.

After zeroing all BATs, set them (in order) to the desired valuesHRESET disorders the BATSs.
SRESET does not.

5.4 Memory Segment Model

Gekko adheres to the memory segment model as defined in Chapter 7, “Memory Management,” in
the PowerPC Microprocessor Family: The Programming Environmentanual for 32-bit
implementations. Memory in the PowerPC OEA is divided into 256-Mbyte segments. This
segmented memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte
pages in physical memory (page address translation), while providing the programming flexibility
afforded by a large virtual address space (52 bits).

The segment/page address translation mechanism may be superseded by the block address translation
(BAT) mechanism described Section 5.3. If not, the translation proceeds in the following two steps:

1. from effective address to the virtual address (which never exists as a specific entity but can be
considered to be the concatenation of the virtual page number and the byte offset within a
page), and

2. from virtual address to physical address.

This section highlights those areas of the memory segment model defined by the OEA that are specific
to Gekko.

5.4.1 Page History Recording

Referenced (R) and changed (C) bits in each PTE keep history information about the page. They are
maintained by a combination of Gekko’s table search hardware and the system software. The
operating system uses this information to determine which areas of memory to write back to disk
when new pages must be allocated in main memory. Referenced and changed recording is performed

Page 5-18 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

only for accesses made with page address translation and not for translations made with the BAT
mechanism or for accesses that correspond to direct-store (T = 1) segments. Furthermore, R and C
bits are maintained only for accesses made while address translation is enabled (MSR[IR] = 1 or
MSR[DR] = 1).

In Gekko, the referenced and changed bits are updated as follows:
» For TLB hits, the C bit is updated according to Table 5-7.

» For TLB misses, when a table search operation is in progress to locate a PTE. The
R and C bits are updated (set, if required) to reflect the status of the page based on
this access.

Table 5-7. Table Search Operations to Update History Bits—TLB Hit Case

Rand C bits Processor Action
in TLB Entry
00 Combination doesn'’t occur
01 Combination doesn’t occur
10 Read: No special action
Write: Gekko initiates a table search operation to update C.
11 No special action for read or write

The table shows that the status of the C bitin the TLB entry (in the case of a TLB hit) is what causes
the processor to update the C bitin the PTE (the R bitis assumed to be set in the page tables if there
is a TLB hit). Therefore, when software clears the R and C bits in the page tables in memory, it
must invalidate the TLB entries associated with the pages whose referenced and changed bits were
cleared.

Thedcbt anddcbtstinstructions can execute if there is a TLB/BAT hit or if the processor is in real
addressing mode. In case of a TLB or BAT miss, these instructions are treated as no-ops; they do
not initiate a table search operation and they do not set either the R or C bits.

As defined by the PowerPC architecture, the referenced and changed bits are updated as if address
translation were disabled (real addressing mode). If these update accesses hit in the data cache, they
are not seen on the external bus. If they miss in the data cache, they are performed as typical cache

line fill accesses on bus (assuming the data cache is enabled).

5.4.1.1 Referenced Bit

The referenced (R) bit of a page is located in the PTE in the page table. Every time a page is
referenced (with a read or write access) and the R bit is zero, Gekko sets the R bit in the page table.
The OEA specifies that the referenced bit may be set immediately, or the setting may be delayed
until the memory access is determined to be successful. Because the reference to a page is what
causes a PTE to be loaded into the TLB, the referenced bit in all TLB entries is effectively always
set. The processor never automatically clears the referenced bit.

The referenced bit is only a hint to the operating system about the activity of a page. At times, the
referenced bit may be set although the access was not logically required by the program or even if
the access was prevented by memory protection. Examples of this in PowerPC systems include the
following:

» Fetching of instructions not subsequently executed
* A memory reference caused by a speculatively executed instruction that is mispredicted

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-19

IBM Confidential

» Accesses generated bylawx or stswxinstruction with a zero length

» Accesses generated bystwcx.instruction when no store is performed because a reservation
does not exist

» Accesses that cause exceptions and are not completed

5.4.1.2 Changed Bit

The changed bit of a page is located both in the PTE in the page table and in the copy of the PTE
loaded into the TLB (if a TLB is implemented, as in Gekko). Whenever a data store instruction is
executed successfully, if the TLB search (for page address translation) results in a hit, the changed bit
in the matching TLB entry is checked. If it is already set, it is not updated. If the TLB changed bit is

0, Gekko initiates the table search operation to set the C bit in the corresponding PTE in the page
table. Gekko then reloads the TLB (with the C bit set).

The changed bit (in both the TLB and the PTE in the page tables) is set only when a store operation
is allowed by the page memory protection mechanism and the store is guaranteed to be in the
execution path (unless an exception, other than those caused sy ttie or trap instructions,
occurs). Furthermore, the following conditions may cause the C bit to be set:

* The execution of astwcx.instruction is allowed by the memory protection mechanism but a
store operation is not performed.

* The execution of astswxinstruction is allowed by the memory protection mechanism but a
store operation is not performed because the specified length is zero.

» The store operation is not performed because an exception occurs before the store is
performed.

Again, note that although the execution of thebt anddcbtst instructions may cause the R bit to be
set, they never cause the C bit to be set.

5.4.1.3 Scenarios for Referenced and Changed Bit Recording

This section provides a summary of the model (defined by the OEA) that is used by PowerPC
processors for maintaining the referenced and changed bits. In some scenarios, the bits are guaranteed
to be set by the processor, in some scenarios, the architecture allows that the bits may be set (not
absolutely required), and in some scenarios, the bits are guaranteed to not be set. Note that when
Gekko updates the R and C bits in memory, the accesses are performed as if MSR[DR]=0and G =

0 (that is, as nonguarded cacheable operations in which coherency is required).

Table 5-8 defines a prioritized list of the R and C bit settings for all scenarios. The entries in the table
are prioritized from top to bottom, such that a matching scenario occurring closer to the top of the
table takes precedence over a matching scenario closer to the bottom of the table. For example, if an
stwcx. instruction causes a protection violation and there is no reservation, the C bit is not altered, as
shown for the protection violation case. Note that in the table, load operations include those generated
by load instructions, by theciwx instruction, and by the cache management instructions that are
treated as a load with respect to address translation. Similarly, store operations include those
operations generated by store instructions, byett@vxinstruction, and by the cache management

Page 5-20 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

instructions that are treated as a store with respect to address translation.

Table 5-8. Model for Guaranteed R and C Bit Settings

Causes Setting of R Bit {Causes Setting of C Bit
Priority Scenario
OEA Gekko OEA Gekko

1 No-execute protection violation No No No No
2 Page protection violation Maybe Yes No No
3 Out-of-order instruction fetch or load operation Maybe No No No
4 Out-of-order store operation. Would be required Maybel No No No

by the sequential execution model in the absence

of system-caused or imprecise exceptions, or of

floating-point assist exception for instructions that

would cause no other kind of precise exception.
5 All other out-of-order store operations Maybe1 No Maybe1 No
6 Zero-length load (Iswx) Maybe No No No
7 Zero-length store (stswx) Maybe?! No Maybe?! No
8 Store conditional (stwcx.) that does not store Maybel Yes Maybel Yes
9 In-order instruction fetch Yes Yes No No
10 Load instruction or eciwx Yes Yes No No
11 Store instruction, ecowx, dcbz_| or dcbz Yes Yes Yes Yes

instruction
12 icbi, dcbt, or dcbtst instruction Maybe No No No
13 dcbst or dcbf instruction Maybe Yes No No
14 dcbi instruction Maybe?® Yes Maybel Yes

Notes:

1if Cis set, R is guaranteed to be set also.

For more information, see “Page History Recording” in Chapter 7, “Memory Management,” of the

PowerPC Microprocessor Family: The Programming Environmerdaual.
5.4.2 Page Memory Protection

Gekko implements page memory protection as it is defined in Chapter 7, “Memory Management,”
in the PowerPC Microprocessor Family: The Programming Environmerdaual.

5.4.3 TLB Description

Gekko implements separate 128-entry data and instruction TLBs to maximize performance. This
section describes the hardware resources provided in Gekko to facilitate page address translation.
Note that the hardware implementation of the MMU is not specified by the architecture, and while
this description applies to Gekko, it does not necessarily apply to other PowerPC processors.

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-21

IBM Confidential

5.4.3.1 TLB Organization

Because Gekko has two MMUs (IMMU and DMMU) that operate in parallel, some of the MMU
resources are shared, and some are actually duplicated (shadowed) in each MMU to maximize
performance. For example, although the architecture defines a single set of segment registers for the
MMU, Gekko maintains two identical sets of segment registers, one for the IMMU and one for the
DMMU; when an instruction that updates the segment register executes, Gekko automatically
updates both sets.

Each TLB contains 128 entries organized as a two-way set-associative array with 64 sets as shown in
Figure 5-7 for the DTLB (the ITLB organization is the same). When an address is being translated, a
set of two TLB entries is indexed in parallel with the access to a segment register. If the address in
one of the two TLB entries is valid and matches the 40-bit virtual page number, that TLB entry
contains the translation. If no match is found, a TLB miss occurs.

EA[0-31] Segment Registers
0 78 31
0T
EA[0-3] | - . VSID
15| T VSID
EA[4-13]
DTLB
(vl |
ofVv]
Line 1
» Compare
Line 0
» Compare

63 Linel/Line O Hit

RPN

MUX

> PA[0-19]

Figure 5-7. Segment Register and DTLB Organization

Page 5-22 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Unless the access is the result of an out-of-order access, a hardware table search operation begins
if there is a TLB miss. If the access is out of order, the table search operation is postponed until the
access is required, at which point the access is no longer out of order. When the matching PTE is
found in memory, it is loaded into the TLB entry selected by the least-recently-used (LRU)
replacement algorithm, and the translation process begins again, this time with a TLB hit.

To uniquely identify a TLB entry as the required PTE, the TLB entry also contains four more bits
of the page index, EA[10-13] (in addition to the API bits in of the PTE).

Software cannot access the TLB arrays directly, except to invalidate an entry wittbithe
instruction. Each set of TLB entries has one associated LRU bit. The LRU bit for a set is updated
any time either entry is used, even if the access is speculative. Invalid entries are always the first to
be replaced.

Although both MMUs can be accessed simultaneously (both sets of segment registers and TLBs
can be accessed in the same clock), only one exception condition can be reported at a time. ITLB
miss exception conditions are reported when there are no more instructions to be dispatched or
retired (the pipeline is empty), and DTLB miss conditions are reported when the load or store
instruction is ready to be retired. Refer to Chapter 6, "Instruction Timing" in this manual for more
detailed information about the internal pipelines and the reporting of exceptions.

When an instruction or data access occurs, the effective address is routed to the appropriate MMU.
EAO-EAS select one of the 16 segment registers and the remaining effective address bits and the
VSID field from the segment register is passed to the TLB. EA[14—19] then select two entries in
the TLB; the valid bits are checked and the 40-bit virtual page number (24-bit VSID and
EA4-EA19]) must match the VSID, EAPI, and API fields of the TLB entries. If one of the entries
hits, the PP bits are checked for a protection violation. If these bits don’t cause an exception, the C
bit is checked and a table search operation is initiated if C must be updated. If C does not require
updating, the RPN value is passed to the memory subsystem and the WIMG bits are then used as
attributes for the access.

Although address translation is disabled on a reset condition, the valid bits of TLB entries are not
automatically cleared. Thus, TLB entries must be explicitly cleared by the system software (with
thetlbie instruction) before the valid entries are loaded and address translation is enabled. Also,
note that the segment registers do not have a valid bit, and so they should also be initialized before
translation is enabled.

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-23

IBM Confidential

5.4.3.2 TLB Invalidation

Gekko implements the option#lbie andtlbsync instructions, which are used to invalidate TLB
entries. The execution of thébie instruction always invalidates four entries—both the ITLB and
DTLB entries indexed by EA[14-19].

The architecture allowtbie to optionally enable a TLB invalidate signaling mechanism in hardware

so that other processors also invalidate their resident copies of the matching PTE. Gekko does not
signal the TLB invalidation to other processors nor does it perform any action when a TLB
invalidation is performed by another processor.

Thetlbsync instruction causes instruction execution to stop if TiBISYNC signal is asserted. If
TLBISYNC is negated, instruction execution may continue or resume after the completion of a
tibsync instruction. Section 8.9.2 on Page 8-38 describes the TLB synchronization mechanism in
further detail.

Thetlbia instruction is not implemented on Gekko and when its opcode is encountered, an illegal
instruction program exception is generated. To invalidate all entries of both TLBg|big4
instructions must be executed, incrementing the value in EA14—-EA19 by one each time.

(See Chapter 8, "Instruction Set" in the tRewerPC Microprocessor Family: The Programming
Environmentsnanual for detailed information about this instruction.)

Software must ensure that instruction fetches or memory references to the virtual pages specified by
thetlbie have been completed prior to executingtthie instruction.

Other than the possible TLB miss on the next instruction prefetchidigeinstruction does not affect

the instruction fetch operation—that is, the prefetch buffer is not purged and does not cause these
instructions to be refetched.

5.4.4 Page Address Translation Summary

Figure 5-8 on Page 5-25 provides the detailed flow for the page address translation mechanism.

The figure includes the checking of the N bit in the segment descriptor and then expands on the ‘TLB
Hit’ branch of Figure 5-6 on Page 5-13.
The detailed flow for the ‘TLB Miss’ branch of Figure 5-6 is described in Section 5.4.5 on Page 5-26.
NOTE: As in the case of block address translation, if an attempt is made to exdchisoa
dcbz_linstruction to a page marked either write-through or caching-inhibited (W =1 or
| = 1), an alignment exception is generated. The checking of memory protection violation
conditions is described in Chapter 7, “Memory Management” ifPtveerPC
Microprocessor Family: The Programming Environmemignual.

Page 5-24 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Effective Address
Generated

C

Otherwise

>
>

Page Address
Translation

)

(See Figure 5-6 on Page 5-13)

Instruction Fetch with N-Bit
Set in Segment Descriptor
(No-Execute)

Generate 52-Bit Virtual Address
from Segment Descriptor

Compare Virtual Address
with TLB Entries

TLB Hit Case

dcbz Instruction
withWorl=1

(Alignment Exception)

Store Access with
PTE[C]=0

Otherwise

C

Access Permitted

Otherwise

Check Page Memory
Protection Violation Conditions

(See The Programming
Environments Manual)

T

Access Prohibited

(See The
Programming
Environments

Manual)

Page Memory
Protection Violation

Page Table
Search Operation

PA[0-31] RPN||A[20-31]

&=

(See Figure 5-9 on Page 5-27)

Continue Access to Memory Sub-
system with WIMG-Bits from PTE

Figure 5-8. Page Address Translation Flow—TLB Hit

Chapter 5. Memory Management IBM Confidential

5/25/00

Page 5-25

IBM Confidential

5.4.5 Page Table Search Operation

If the translation is not found in the TLBs (a TLB miss), Gekko initiates a table search operation
which is described in this section. Formats for the PTE are given in “PTE Format for 32-Bit
Implementations,” in Chapter 7, “Memory Management” of BeverPC Microprocessor Family:

The Programming Environmemsanual

The following is a summary of the page table search process performed by Gekko:

1.

9.

The 32-bit physical address of the primary PTEG is generated as described in “Page Table
Addresses” in Chapter 7, “Memory Management” ofRbeverPC Microprocessor Family:
The Programming Environmemsanual.

The first PTE (PTEO) in the primary PTEG is read from memory. PTE reads occur with an
implied WIM memory/cache mode control bit setting of ObOO1. Therefore, they are
considered cacheable and read (burst) from memory and placed in the cache.

The PTE in the selected PTEG is tested for a match with the virtual page number (VPN) of
the access. The VPN is the VSID concatenated with the page index field of the virtual address.
For a match to occur, the following must be true:

— PTE[H] =0

— PTE[V]=1

— PTE[VSID] = VA[0-23]

— PTE[API] = VA[24-29]

If a match is not found, step 3 is repeated for each of the other seven PTEs in the primary
PTEG. Ifamatch is found, the table search process continues as described in step 8. If a match

is not found within the 8 PTEs of the primary PTEG, the address of the secondary PTEG is
generated.

Thefirst PTE (PTEO) in the secondary PTEG is read from memory. Again, because PTE reads
have a WIM bit combination of Ob001, an entire cache line is read into the on-chip cache.

The PTE in the selected secondary PTEG is tested for a match with the virtual page number
(VPN) of the access. For a match to occur, the following must be true:

— PTE[H] =1

— PTE[V]=1

— PTE[VSID] = VA[0-23]

— PTEJAPI] = VA[24-29]

If a match is not found, step 6 is repeated for each of the other seven PTEs in the secondary
PTEG. If it is never found, an exception is taken (step 9).

If a match is found, the PTE is written into the on-chip TLB and the R bit is updated in the
PTE in memory (if necessary). If there is no memory protection violation, the C bit is also
updated in memory (if the access is a write operation) and the table search is complete.

If a match is not found within the 8 PTEs of the secondary PTEG, the search fails, and
a page fault exception condition occurs (either an I1SI exception or a DSI exception).

Figure 5-9 and Figure 5-10 show how the conceptual model for the primary and secondary page table
search operations, described in thHwerPC Microprocessor Family: The Programming
Environmentsmanual, are realized in Gekko.Figure 5-9 shows the case d€ba or dcbz_|
instruction that is executed witW = 1 or | = 1, andthat the R bit may be updated in memory (if
required) before the operation is performed or the alignment exception occurs. The R bit may also be
updated if memory protection is violated.

Page 5-26 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Primary Page
Table Search

Generate PA Using Primary Hash Function
PA — Base PA of PTEG

» Fetch PTE from PTEG

PA — PA+8 Fetch PTE (64-Bits)
(Fetch Next PTE in PTEG) from PA

Otherwise PTE [VSID, API, H, V] =
Segment Descriptor [VSID], EA[API], 0, 1

Secondary Page Table
Search Hit
PTE[R] =0

(From Figure 5-10
ﬁ on Page 5-28)

Otherwise

Last PTE in PTEG PTE[R] =1

Perform Secondary

Page Table Search PTER] - 1
R_Flag « 1
Write PTE into
TLB

Otherwise dcbz Instruction

withWorl=1
Check Memory Protection R Flag=1 Otherwise

Violation Conditions - |

PTE[R] « 1 (Update
PTE[R] in Memory)

Access Permitted

Access Prohibited
Store Operation

therwi
Otherwise Litn PTE[C] = 0
Otherwise/f/ T Otherwise (Alignment Exception)
R_Flag = 1 | TepTEC) -~ 1 | R Flag=1
PTE[C] —1
PTE[R] ~1 : PTE[R] ~1
Update PTE[C] in Memor
(U_pdate PTER] (pA|SO Updc[itg PTE[R]) (Update PTE[R]in

in Memory) . . e Memory)

in Memory if R_Flag =1 Y

Memory Protection
Violation

Page Table Page Table
Search Complete Search Complete

Figure 5-9. Primary Page Table Search

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-27

IBM Confidential

Secondary Page
Table Search

Generate PA Using Primary Hash Function
PA — Base PA of PTEG

»| Fetch PTE from PTEG

PA — PA+8 Fetch PTE (64-Bits)
(Fetch Next PTE in PTEG) from PA

Otherwise PTE[VSID, API, H, V] =
Segment Descriptor [VSID], EA[API], 1, 1

Otherwise
) Secondary Page Table
Last PTE in PTEG Search Hit
Page Fault (See Figure 5-10
on Page 5-28)
Instruction Access Data Access
Set SRR1[1] =1 Set DSISR[1] =1

ISI Exception

Figure 5-10. Secondary Page Table Search Flow

DSI Exception

The LSU initiates out-of-order accesses without knowledge of whether it is legal to do so. Therefore,
the MMU does not perform hardware table search due to TLB misses until the request is required by
the program flow. In these out-of-order cases, the MMU does detect protection violations and whether
adcbzor dcbz_linstruction specifies a page marked as write-through or cache-inhibited. The MMU
also detects alignment exceptions caused bylthe or dcbz_linstruction and prevents the changed

bit in the PTE from being updated erroneously in these cases.

If an MMU register is being accessed by an instruction in the instruction stream, the IMMU stalls for
one translation cycle to perform that operation. The sequencer serializes instructions to ensure the
data correctness. For updating the IBATs and SRs, the sequencer classifies those operations as fetch
serializing. After such an instruction is dispatched, the instruction buffer is flushed and the fetch stalls
until the instruction completes. However, for reading from the IBATS, the operation is classified as
execution serializing. As long as the LSU ensures that all previous instructions can be executed,
subsequent instructions can be fetched and dispatched.

Page 5-28 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

5.4.6 Page Table Updates

When TLBs are implemented (as in Gekko) they are defined as noncoherent caches of the page
tables. TLB entries must be flushed explicitly with the TLB invalidate entry instructibre |
whenever the corresponding PTE is modified. As Gekko is intended primarily for uniprocessor
environments, it does not provide coherency of TLBs between multiple processors. If Gekko is
used in a multiprocessor environment where TLB coherency is required, all synchronization must
be implemented in software.

Processors may write referenced and changed bits with unsynchronized, atomic byte store
operations. Note that the V, R, and C bits each reside in a distinct byte of a PTE. Therefore, extreme
care must be taken to use byte writes when updating only one of these bits.

Explicitly altering certain MSR bits (using thatmsr instruction), or explicitly altering PTEs, or
certain system registers, may have the side effect of changing the effective or physical addresses
from which the current instruction stream is being fetched. This kind of side effect is defined as an
implicit branch. Implicit branches are not supported and an attempt to perform one causes
boundedly-undefined results. Therefore, PTEs must not be changed in a manner that causes an
implicit branch.

Chapter 2, “PowerPC Register Set” in tRewerPC Microprocessor Family: The Programming
Environmentananual, lists the possible implicit branch conditions that can occur when system
registers and MSR bits are changed.

5.4.7 Segment Register Updates

Synchronization requirements for using the move to segment register instructions are described in
“Synchronization Requirements for Special Registers and for Lookaside Buffers” in Chapter 2,
“PowerPC Register Set” in tHeowerPC Microprocessor Family: The Programming Environments
manual.

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-29

IBM Confidential

Page 5-30 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

Chapter 6 Instruction Timing

This chapter describes how the PowerPC Gekko microprocessor fetches, dispatches, and executes
instructions and how it reports the results of instruction execution. It gives detailed descriptions of
how Gekko's execution units work, and how those units interact with other parts of the processor,
such as the instruction fetching mechanism, register files, and caches. It gives examples of
instruction sequences, showing potential bottlenecks and how to minimize their effects. Finally, it
includes tables that identify the unit that executes each instruction implemented on Gekko, the
latency for each instruction, and other information that is useful for the assembly language
programmer.

6.1 Terminology and Conventions

This section provides an alphabetical glossary of terms used in this chapter. These definitions are
provided as a review of commonly used terms and as a way to point out specific ways these terms
are used in this chapter.

» Branch prediction—The process of guessing whether a branch will be taken. Such
predictions can be correct or incorrect; the term ‘predicted’ as it is used here does not imply
that the prediction is correct (successful). The PowerPC architecture defines a means for
static branch prediction as part of the instruction encoding.

» Branch resolution—The determination of whether a branch is taken or not taken. A branch
is said to be resolved when the processor can determine which instruction path to take. If
the branch is resolved as predicted, the instructions following the predicted branch that may
have been speculatively executed can complete (see completion). If the branch is not
resolved as predicted, instructions on the mispredicted path, and any results of speculative
execution, are purged from the pipeline and fetching continues from the nonpredicted path.

» Completion—Completion occurs when an instruction has finished executing, written back
any results, and is removed from the completion queue. When an instruction completes, it
is guaranteed that this instruction and all previous instructions can cause no exceptions.

* Fall-through (branch fall-through)—A not-taken branch. On Gekko, fall-through branch
instructions are removed from the instruction stream at dispatch. That is, these instructions
are allowed to fall through the instruction queue via the dispatch mechanism, without either
being passed to an execution unit and or given a position in the completion queue.

» Fetch—The process of bringing instructions from memory (such as a cache or system
memory) into the instruction queue.

* Folding (branch folding)—The replacement with target instructions of a branch instruction
and any instructions along the not-taken path when a branch is either taken or predicted as
taken.

* Finish—Finishing occurs in the last cycle of execution. In this cycle, the completion queue
entry is updated to indicate that the instruction has finished executing.

» Latency— The number of clock cycles necessary to execute an instruction and make ready
the results of that execution for a subsequent instruction.

» Pipeline—In the context of instruction timing, the term ‘pipeline’ refers to the
interconnection of the stages. The events necessary to process an instruction are broken into
several cycle-length tasks to allow work to be performed on several instructions

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-1

IBM Confidential

simultaneously—analogous to an assembly line. As an instruction is processed, it passes from
one stage to the next. When it does, the stage becomes available for the next instruction.
Although an individual instruction may take many cycles to complete (the number of
cycles is called instruction latency), pipelining makes it possible to overlap the
processing so that the throughput (number of instructions completed per cycle) is
greater than if pipelining were not implemented.

» Program order—The order of instructions in an executing program. More specifically, this
term is used to refer to the original order in which program instructions are fetched into the
instruction queue from the cache.

* Rename register—Temporary buffers used by instructions that have finished execution but
have not completed.

* Reservation station—A buffer between the dispatch and execute stages that allows
instructions to be dispatched even though the results of instructions on which the dispatched
instruction may depend are not available.

* Retirement—Removal of the completed instruction from the completion queue.

» Stage—The term ‘stage’ is used in two different senses, depending on whether the pipeline is
being discussed as a physical entity or a sequence of events. In the latter case, a stage is an
element in the pipeline during which certain actions are performed, such as decoding the
instruction, performing an arithmetic operation, or writing back the results. A stage is
typically described as taking a processor clock cycle to perform its operation; however, some
events (such as dispatch and write-back) happen instantaneously, and may be thought to occur
at the end of the stage.

An instruction can spend multiple cycles in one stage. An integer multiply, for
example, takes multiple cycles in the execute stage. When this occurs, subsequent
instructions may stall.

In some cases, an instruction may also occupy more than one stage simultaneously,
especially in the sense that a stage can be seen as a physical resource—for example,
when instructions are dispatched they are assigned a place in the completion queue at
the same time they are passed to the execute stage. They can be said to occupy both the
complete and execute stages in the same clock cycle.

» Stall—An occurrence when an instruction cannot proceed to the next stage.

» Superscalar—A superscalar processor is one that can issue multiple instructions concurrently
from a conventional linear instruction stream. In a superscalar implementation, multiple
instructions can be in the execute stage at the same time.

* Throughput—A measure of the number of instructions that are processed per cycle. For
example, a series of double-precision floating-point multiply instructions has a throughput of
one instruction per clock cycle.

» Write-back—Write-back (in the context of instruction handling) occurs when a result is
written into the architectural registers (typically the GPRs and FPRs). Results are written back
at completion time. Results in the write-back buffer cannot be flushed. If an exception occurs,
these buffers must write back before the exception is taken.

Page 6-2 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’'s Manual

IBM Confidential

6.2 Instruction Timing Overview

Gekko design minimizes average instruction execution latency, the number of clock cycles it takes
to fetch, decode, dispatch, and execute instructions and make the results available for a subsequent
instruction. Some instructions, such as loads and stores, access memory and require additional
clock cycles between the execute phase and the write-back phase. These latencies vary depending
on whether the access is to cacheable or noncacheable memory, whether it hits in the L1 or L2
cache, whether the cache access generates a write-back to memory, whether the access causes a
snoop hit from another device that generates additional activity, and other conditions that affect
memory accesses.

Gekko implements many features to improve throughput, such as pipelining, superscalar
instruction issue, branch folding, removal of fall-through branches, two-level speculative branch
handling, and multiple execution units that operate independently and in parallel.

As an instruction passes from stage to stage in a pipelined system, the following instruction can
follow through the stages as the former instruction vacates them, allowing several instructions to
be processed simultaneously. While it may take several cycles for an instruction to pass through all
the stages, when the pipeline has been filled, one instruction can complete its work on every clock
cycle.

The entire path that instructions take through the fetch, decode/dispatch, execute, complete, and
write-back stages is considered Gekko’s master pipeline, and two of the Gekko’s execution units
(the FPU and LSU) are also multiple-stage pipelines.

Gekko contains the following execution units that operate independently and in parallel:
* Branch processing unit (BPU)
* Integer unit 1 (IU1)—executes all integer instructions
* Integer unit 2 (IU2)—executes all integer instructions except multiplies and divides
* 64-bit floating-point unit (FPU)
» Load/store unit (LSU)
» System register unit (SRU)

Figure 6-1 represents a generic pipelined execution unit.

I Stage 1 I Stage 2 I Stage 3 I
I I I I
Clock0 | Instruction A [— [— |
| /4\ | |
I : I : I I
Clock 1 | Instruction B | Instruction A | — |
| T T |
Clock 2 | Instruction C | Instruction B | Instruction A |
I I I I
| 1% 1% |
Clock 3 | Instruction D | Instruction C | Instruction B |
I I I I

Figure 6-1. Pipelined Execution Unit

Gekko can retire two instructions on every clock cycle. In general, the Gekko processes
instructions in four stages—fetch, decode/dispatch, execute, and complete as shown in Figure 6-2.

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-3

IBM Confidential

Note that the example of a pipelined execution unit in Figure 6-1 is similar to the three-stage FPU
pipeline in Figure 6-2.

Maximum four-instruction fetch

Fetch per clock cycle

BPU
A

Maximum three-instruction dispatch
\—> Decode/Dispatch P

per clock cycle (includes one branch
instruction)

Y Execute Stage

Y

FPU1 Y
Y FPU2 v LSuU1
SRU FPU3 U1 U2 LSu2

Maximum two -instruction
completion per clock cycle

Complete (Write-back)

Figure 6-2. Superscalar/Pipeline Diagram

The instruction pipeline stages are described as follows:

The instruction fetch stage includes the clock cycles necessary to request instructions from the
memory system and the time the memory system takes to respond to the request. Instruction
fetch timing depends on many variables, such as whether the instruction is in the branch target
instruction cache, the on-chip instruction cache, or the L2 cache. Those factors increase when
it is necessary to fetch instructions from system memory, and include the processor-to-bus
clock ratio, the amount of bus traffic, and whether any cache coherency operations are
required.

Because there are so many variables, unless otherwise specified, the instruction timing
examples below assume optimal performance, that the instructions are available in the

instruction queue in the same clock cycle that they are requested. The fetch stage ends
when the instruction is dispatched.

The decode/dispatch stage consists of the time it takes to fully decode the instruction and

dispatch it from the instruction queue to the appropriate execution unit. Instruction dispatch
requires the following:

— Instructions can be dispatched only from the two lowest instruction queue entries, 1Q0 and
Q1.

— A maximum of two instructions can be dispatched per clock cycle (although an additional
branch instruction can be handled by the BPU).

— Only one instruction can be dispatched to each execution unit per clock cycle.
— There must be a v