
 IBM Gekko RISC Microprocessor
User’s Manual

Version 1.2

May 25, 2000

IBM Confidential

Trademarks

The following are trademarks of International Business Machines Corporation in the United States, or
other countries, or both:
IBM IBM Logo PowerPC
AIX PowerPC 750 Gekko

Other company, product, and service names may be trademarks or service marks of others.

Document History Date Description
Preliminary Edition 3/29/00 Initial release of new format
2nd Preliminary Edition 4/18/00 Minor changes, most are

transparent to user (removal of
conditional text, etc.)

3rd Preliminary Edition 5/25/00 Minor change in section 4.5.6

This unpublished document is the preliminary edition of IBM Gekko RISC Microprocessor
User’s Manual.

This document contains information on a new product under development by IBM. IBM reserves the
right to change or discontinue this product without notice.

© 2000 International Business Machines Corporation .
All rights reserved.

IBM Gekko RISC Microprocessor User’s Manual IBM Confidential 5/25/00 Page iii

CONTENTS

Chapter 1 Gekko Overview
1.1—Gekko Microprocessor Overview - 1-1
1.2—Gekko Microprocessor Features - 1-4

1.2.1—Overview of Gekko Microprocessor Features - - - - - - - - - 1-4
1.2.2—Instruction Flow - 1-6

1.2.2.1—Instruction Queue and Dispatch Unit - - - - - - - - 1-7
1.2.2.2—Branch Processing Unit (BPU) - - - - - - - - - - - - 1-7
1.2.2.3—Completion Unit - 1-8
1.2.2.4—Independent Execution Units- - - - - - - - - - - - - - 1-9

1.2.3—Memory Management Units (MMUs)- - - - - - - - - - - - - - - 1-10
1.2.4—On-Chip Level 1 Instruction and Data Caches - - - - - - - - - 1-11
1.2.5—On-Chip Level 2 Cache Implementation - - - - - - - - - - - - - 1-12
1.2.6—System Interface/Bus Interface Unit (BIU) - - - - - - - - - - - 1-12
1.2.7—Signals - 1-14
1.2.8—Signal Configuration - 1-15
1.2.9—Clocking - 1-15

1.3—Gekko Microprocessor: Implementation - - - - - - - - - - - - - - - - - - 1-16
1.4—PowerPC Registers and Programming Model - - - - - - - - - - - - - - - 1-18
1.5—Instruction Set - 1-23

1.5.1—PowerPC Instruction Set- 1-23
1.5.2—Gekko Microprocessor Instruction Set - - - - - - - - - - - - - - 1-24

1.6—On-Chip Cache Implementation - 1-25
1.6.1—PowerPC Cache Model - 1-25
1.6.2— Gekko Microprocessor Cache Implementation - - - - - - - - 1-25

1.7—Exception Model - 1-25
1.7.1—PowerPC Exception Model - 1-25
1.7.2—Gekko Microprocessor Exception Implementation - - - - - - 1-27

1.8—Memory Management - 1-28
1.8.1—PowerPC Memory Management Model - - - - - - - - - - - - - 1-28
1.8.2— Gekko Microprocessor Memory Management

Implementation - 1-29
1.9—Instruction Timing - 1-29
1.10—Power Management - 1-31
1.11—Thermal Management - 1-32
1.12—Performance Monitor - 1-33

Chapter 2 Programming Model
2.1—Gekko Processor Register Set - 2-1

2.1.1—Register Set - 2-1
2.1.2—Gekko-Specific Registers - 2-8

2.1.2.1—Instruction Address Breakpoint
Register (IABR) - 2-8

2.1.2.2—Hardware Implementation-Dependent
Register 0- 2-8

2.1.2.3—Hardware Implementation-Dependent

CONTENTS (Continued)

Page iv Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Register 1- 2-12
2.1.2.4—Hardware Implementation-Dependent

Register 2- 2-13
2.1.2.5—Performance Monitor Registers - - - - - - - - - - - - 2-14
2.1.2.6—Instruction Cache Throttling Control

Register (ICTC) - 2-19
2.1.2.7—Thermal Management Registers

(THRM1–THRM3) - 2-19
2.1.2.8—Direct Memory Access (DMA) registers - - - - - - 2-22
2.1.2.9—Graphics Quantization Registers (GQRs) - - - - - 2-23
2.1.2.10—Write Pipe Address Register (WPAR)- - - - - - - 2-24
2.1.2.11—L2 Cache Control Register (L2CR)- - - - - - - - - 2-25

2.2—Operand Conventions - 2-27
2.2.1—Data Organization in Memory and Data Transfers - - - - - - 2-27
2.2.2—Alignment and Misaligned Accesses - - - - - - - - - - - - - - - 2-27
2.2.3—Floating-Point Operand and Execution

Models—UISA - 2-28
2.3—Instruction Set Summary - 2-32

2.3.1—Classes of Instructions - 2-33
2.3.1.1—Definition of Boundedly Undefined - - - - - - - - - 2-33
2.3.1.2—Defined Instruction Class - - - - - - - - - - - - - - - - 2-33
2.3.1.3—Illegal Instruction Class - - - - - - - - - - - - - - - - - 2-33
2.3.1.4—Reserved Instruction Class - - - - - - - - - - - - - - - 2-34
2.3.1.5—Gekko’s Implementation-

Specific Instructions - - - - - - - - - - - - - - - - - - - 2-34
2.3.2—Addressing Modes- 2-35

2.3.2.1—Memory Addressing - - - - - - - - - - - - - - - - - - - 2-35
2.3.2.2—Memory Operands- 2-35
2.3.2.3—Effective Address Calculation - - - - - - - - - - - - - 2-35
2.3.2.4—Synchronization - 2-36

2.3.3—Instruction Set Overview - 2-37
2.3.4—PowerPC UISA Instructions - 2-37

2.3.4.1—Integer Instructions - 2-37
2.3.4.2—Floating-Point Instructions - - - - - - - - - - - - - - - 2-41
2.3.4.3—Load and Store Instructions- - - - - - - - - - - - - - - 2-46
2.3.4.4—Branch and Flow Control Instructions- - - - - - - - 2-58
2.3.4.5—System Linkage Instruction—UISA - - - - - - - - - 2-60
2.3.4.6—Processor Control Instructions—UISA - - - - - - - 2-61
2.3.4.7—Memory Synchronization Instructions—UISA - - 2-64

2.3.5—PowerPC VEA Instructions- 2-65
2.3.5.1—Processor Control Instructions—VEA- - - - - - - - 2-65
2.3.5.2—Memory Synchronization Instructions—VEA - - 2-66
2.3.5.3—Memory Control Instructions—VEA - - - - - - - - 2-67
2.3.5.4—Optional External Control Instructions - - - - - - - 2-69

2.3.6—PowerPC OEA Instructions- 2-70
2.3.6.1—System Linkage Instructions—OEA - - - - - - - - - 2-70

CONTENTS (Continued)

IBM Gekko RISC Microprocessor User’s Manual IBM Confidential 5/25/00 Page v

2.3.6.2—Processor Control Instructions—OEA- - - - - - - - 2-71
2.3.6.3—Memory Control Instructions—OEA - - - - - - - - 2-71

2.3.7—Recommended Simplified Mnemonics - - - - - - - - - - - - - - 2-73
Chapter 3 Gekko Instruction and Data Cache Operation

3.1—Data Cache Organization - 3-3
3.2—Instruction Cache Organization - 3-4
3.3—Memory and Cache Coherency - 3-5

3.3.1—Memory/Cache Access Attributes (WIMG Bits)- - - - - - - - 3-6
3.3.2—MEI Protocol - 3-6

3.3.2.1—MEI Hardware Considerations- - - - - - - - - - - - - 3-8
3.3.3—Coherency Precautions in Single Processor Systems - - - - - 3-9
3.3.4—Coherency Precautions in Multiprocessor Systems - - - - - - 3-9
3.3.5—Gekko-Initiated Load/Store Operations- - - - - - - - - - - - - - 3-10

3.3.5.1—Performed Loads and Stores - - - - - - - - - - - - - - 3-10
3.3.5.2—Sequential Consistency of Memory Accesses- - - 3-10
3.3.5.3—Atomic Memory References - - - - - - - - - - - - - - 3-10

3.4—Cache Control - 3-11
3.4.1—Cache Control Parameters in HID0 - - - - - - - - - - - - - - - - 3-11

3.4.1.1—Data Cache Flash Invalidation - - - - - - - - - - - - - 3-12
3.4.1.2—Data Cache Enabling/Disabling - - - - - - - - - - - - 3-12
3.4.1.3—Data Cache Locking- 3-12
3.4.1.4—Instruction Cache Flash Invalidation- - - - - - - - - 3-12
3.4.1.5—Instruction Cache Enabling/Disabling- - - - - - - - 3-13
3.4.1.6—Instruction Cache Locking - - - - - - - - - - - - - - - 3-13

3.4.2—Cache Control Instructions - 3-13
3.4.2.1—Data Cache Block Touch (dcbt) and

Data Cache Block Touch for Store (dcbtst) - - - - 3-14
3.4.2.2—Data Cache Block Zero (dcbz)- - - - - - - - - - - - - 3-14
3.4.2.3—Data Cache Block Store (dcbst) - - - - - - - - - - - - 3-14
3.4.2.4—Data Cache Block Flush (dcbf) - - - - - - - - - - - - 3-15
3.4.2.5—Data Cache Block Invalidate (dcbi) - - - - - - - - - 3-15
3.4.2.6—Instruction Cache Block Invalidate (icbi)- - - - - - 3-15

3.5—Cache Operations - 3-15
3.5.1—Cache Block Replacement/Castout Operations- - - - - - - - - 3-15
3.5.2—Cache Flush Operations - 3-18
3.5.3—Data Cache-Block-Fill Operations - - - - - - - - - - - - - - - - - 3-18
3.5.4—Instruction Cache-Block-Fill Operations - - - - - - - - - - - - - 3-18
3.5.5—Data Cache-Block-Push Operation- - - - - - - - - - - - - - - - - 3-18

3.6—L1 Caches and 60x Bus Transactions - 3-18
3.6.1—Read Operations and the MEI Protocol - - - - - - - - - - - - - - 3-19
3.6.2—Bus Operations Caused by Cache Control Instructions - - - 3-19
3.6.3—Snooping - 3-21
3.6.4—Snoop Response to 60x Bus Transactions - - - - - - - - - - - - 3-22
3.6.5—Transfer Attributes - 3-24

3.7—MEI State Transactions - 3-26

CONTENTS (Continued)

Page vi Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Chapter 4 Exceptions
4.1—PowerPC Gekko Microprocessor Exceptions - - - - - - - - - - - - - - - 4-2
4.2—Exception Recognition and Priorities - 4-4
4.3—Exception Processing - 4-7

4.3.1—Enabling and Disabling Exceptions - - - - - - - - - - - - - - - - 4-10
4.3.2—Steps for Exception Processing - - - - - - - - - - - - - - - - - - - 4-10
4.3.3—Setting MSR[RI] - 4-11
4.3.4—Returning from an Exception Handler - - - - - - - - - - - - - - 4-11

4.4—Process Switching - 4-11
4.5—Exception Definitions - 4-12

4.5.1—System Reset Exception (0x00100) - - - - - - - - - - - - - - - - 4-12
4.5.1.1—Soft Reset- 4-13
4.5.1.2—Hard Reset - 4-14

4.5.2—Machine Check Exception (0x00200) - - - - - - - - - - - - - - - 4-16
4.5.2.1—Machine Check Exception Enabled

(MSR[ME] = 1) - 4-17
4.5.2.2—Checkstop State (MSR[ME] = 0) - - - - - - - - - - - 4-17

4.5.3—DSI Exception (0x00300) - 4-17
4.5.4—ISI Exception (0x00400) - 4-18
4.5.5—External Interrupt Exception (0x00500) - - - - - - - - - - - - - 4-18
4.5.6—Alignment Exception (0x00600) - - - - - - - - - - - - - - - - - - 4-19
4.5.7—Program Exception (0x00700)- 4-19
4.5.8—Floating-Point Unavailable Exception (0x00800) - - - - - - - 4-19
4.5.9—Decrementer Exception (0x00900)- - - - - - - - - - - - - - - - - 4-20
4.5.10—System Call Exception (0x00C00) - - - - - - - - - - - - - - - - 4-20
4.5.11—Trace Exception (0x00D00) - 4-20
4.5.12—Floating-Point Assist Exception (0x00E00) - - - - - - - - - - 4-20
4.5.13—Performance Monitor Interrupt (0x00F00) - - - - - - - - - - - 4-20
4.5.14—Instruction Address Breakpoint Exception (0x01300) - - - 4-21
4.5.15—Thermal Management Interrupt Exception (0x01700) - - - 4-22

Chapter 5 Memory Management
5.1—MMU Overview - 5-1

5.1.1—Memory Addressing - 5-3
5.1.2—MMU Organization - 5-3
5.1.3—Address Translation Mechanisms- - - - - - - - - - - - - - - - - - 5-7
5.1.4—Memory Protection Facilities - 5-10
5.1.5—Page History Information - 5-11
5.1.6—General Flow of MMU Address Translation - - - - - - - - - - 5-11

5.1.6.1—Real Addressing Mode and Block
Address Translation Selection - - - - - - - - - - - - - 5-11

5.1.6.2—Page Address Translation Selection - - - - - - - - - 5-12
5.1.7—MMU Exceptions Summary - 5-14
5.1.8—MMU Instructions and Register Summary- - - - - - - - - - - - 5-16

5.2—Real Addressing Mode - 5-17
5.3—Block Address Translation - 5-18
5.4—Memory Segment Model - 5-18

CONTENTS (Continued)

IBM Gekko RISC Microprocessor User’s Manual IBM Confidential 5/25/00 Page vii

5.4.1—Page History Recording - 5-18
5.4.1.1—Referenced Bit - 5-19
5.4.1.2—Changed Bit - 5-20
5.4.1.3—Scenarios for Referenced and

Changed Bit Recording - - - - - - - - - - - - - - - - - 5-20
5.4.2—Page Memory Protection - 5-21
5.4.3—TLB Description - 5-21

5.4.3.1—TLB Organization - 5-22
5.4.3.2—TLB Invalidation- 5-24

5.4.4—Page Address Translation Summary - - - - - - - - - - - - - - - - 5-24
5.4.5—Page Table Search Operation - 5-26
5.4.6—Page Table Updates - 5-29
5.4.7—Segment Register Updates - 5-29

Chapter 6 Instruction Timing
6.1—Terminology and Conventions - 6-1
6.2—Instruction Timing Overview - 6-3
6.3—Timing Considerations - 6-6

6.3.1—General Instruction Flow - 6-7
6.3.2—Instruction Fetch Timing - 6-8

6.3.2.1—Cache Arbitration - 6-8
6.3.2.2—Cache Hit - 6-8
6.3.2.3—Cache Miss- 6-13
6.3.2.4—L2 Cache Access Timing Considerations- - - - - - 6-15
6.3.2.5—Instruction Dispatch and

Completion Considerations - - - - - - - - - - - - - - - 6-15
6.3.2.6—Rename Register Operation- - - - - - - - - - - - - - - 6-16
6.3.2.7—Instruction Serialization - - - - - - - - - - - - - - - - - 6-16

6.4—Execution Unit Timings - 6-17
6.4.1—Branch Processing Unit Execution Timing - - - - - - - - - - - 6-17

6.4.1.1—Branch Folding and Removal of
Fall-Through Branch Instructions- - - - - - - - - - - 6-17

6.4.1.2—Branch Instructions and Completion- - - - - - - - - 6-18
6.4.1.3—Branch Prediction and Resolution - - - - - - - - - - 6-19

6.4.2—Integer Unit Execution Timing - - - - - - - - - - - - - - - - - - - 6-23
6.4.3—Floating-Point Unit Execution Timing - - - - - - - - - - - - - - 6-23
6.4.4—Effect of Floating-Point Exceptions on Performance- - - - - 6-23
6.4.5—Load/Store Unit Execution Timing- - - - - - - - - - - - - - - - - 6-23
6.4.6—Effect of Operand Placement on Performance - - - - - - - - - 6-24
6.4.7—Integer Store Gathering - 6-25
6.4.8—System Register Unit Execution Timing - - - - - - - - - - - - - 6-25

6.5—Memory Performance Considerations - 6-25
6.5.1—Caching and Memory Coherency- - - - - - - - - - - - - - - - - - 6-25
6.5.2—Effect of TLB Miss - 6-26

6.6—Instruction Scheduling Guidelines - 6-27
6.6.1—Branch, Dispatch, and Completion Unit

Resource Requirements - 6-27

CONTENTS (Continued)

Page viii Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

6.6.1.1—Branch Resolution Resource Requirements - - - - 6-27
6.6.1.2—Dispatch Unit Resource Requirements - - - - - - - 6-28
6.6.1.3—Completion Unit Resource Requirements - - - - - 6-28

6.7—Instruction Latency Summary - 6-29
Chapter 7 Signal Descriptions

7.1—Signal Configuration - 7-2
7.2—Signal Descriptions - 7-2

7.2.1—Address Bus Arbitration Signals - - - - - - - - - - - - - - - - - - 7-3
7.2.1.1—Bus Request (BR)—Output- - - - - - - - - - - - - - - 7-3
7.2.1.2—Bus Grant (BG)—Input - - - - - - - - - - - - - - - - - 7-3

7.2.2—Address Transfer Start Signals - - - - - - - - - - - - - - - - - - - 7-4
7.2.2.1—Transfer Start (TS)- 7-4

7.2.3—Address Transfer Signals - 7-5
7.2.3.1—Address Bus (A[0–31])- - - - - - - - - - - - - - - - - - 7-5
7.2.3.2—Address Bus Parity (AP[0–3])

(N/A on Gekko) - 7-5
7.2.4—Address Transfer Attribute Signals- - - - - - - - - - - - - - - - - 7-6

7.2.4.1—Transfer Type (TT[0–4]) - - - - - - - - - - - - - - - - 7-6
7.2.4.2—Transfer Size (TSIZ[0–2])—Output - - - - - - - - - 7-8
7.2.4.3—Transfer Burst (TBST) - - - - - - - - - - - - - - - - - - 7-9
7.2.4.4—Cache Inhibit (CI)—Output- - - - - - - - - - - - - - - 7-10
7.2.4.5—Write-Through (WT)—Output - - - - - - - - - - - - 7-10
7.2.4.6—Global (GBL) - 7-10

7.2.5—Address Transfer Termination Signals - - - - - - - - - - - - - - 7-11
7.2.5.1—Address Acknowledge (AACK)—Input - - - - - - 7-11
7.2.5.2—Address Retry (ARTRY) - - - - - - - - - - - - - - - - 7-11

7.2.6—Data Bus Arbitration Signals- 7-12
7.2.6.1—Data Bus Grant (DBG)—Input - - - - - - - - - - - - 7-12

7.2.7—Data Transfer Signals- 7-13
7.2.7.1—Data Bus (DH[0–31], DL[0–31]) - - - - - - - - - - - 7-13
7.2.7.2—Data Bus Parity (DP[0–8]) (N/A on Gekko)- - - - 7-13

7.2.8—Data Transfer Termination Signals- - - - - - - - - - - - - - - - - 7-14
7.2.8.1—Transfer Acknowledge (TA)—Input - - - - - - - - - 7-14
7.2.8.2—Data Retry (DRTRY)—Input (N/A on Gekko) - - 7-15
7.2.8.3—Transfer Error Acknowledge (TEA)—Input - - - 7-15

7.2.9—System Status Signals - 7-16
7.2.9.1—Interrupt (INT)— Input - - - - - - - - - - - - - - - - - 7-16
7.2.9.2—Machine Check Interrupt (MCP)—Input - - - - - - 7-16
7.2.9.3—Checkstop Input (CKSTP_IN)—Input - - - - - - - 7-16
7.2.9.4—Checkstop Output (CKSTP_OUT)—Output - - - 7-17
7.2.9.5—Reset Signals - 7-17
7.2.9.6—Processor Status Signals - - - - - - - - - - - - - - - - - 7-18

7.2.10—IEEE 1149.1a-1993 Interface Description - - - - - - - - - - - 7-18

CONTENTS (Continued)

IBM Gekko RISC Microprocessor User’s Manual IBM Confidential 5/25/00 Page ix

7.2.11—Clock Signals - 7-19
7.2.11.1—System Clock (SYSCLK)—Input - - - - - - - - - - 7-19
7.2.11.2—Clock Out (CLK_OUT)—Output

(N/A on Gekko) - 7-19
7.2.11.3—PLL Configuration (PLL_CFG[0–3])—Input - - 7-19

7.2.12—Power and Ground Signals - 7-20
Chapter 8 Bus Interface Operation

8.1—Bus Interface Overview - 8-2
8.1.1—Operation of the Instruction and Data L1 Caches - - - - - - - 8-3
8.1.2—Operation of the Bus Interface- 8-5
8.1.3—Direct-Store Accesses - 8-5

8.2—Memory Access Protocol - 8-6
8.2.1—Arbitration Signals - 8-8
8.2.2—Address Pipelining and Split-Bus Transactions - - - - - - - - 8-8

8.3—Address Bus Tenure - 8-9
8.3.1—Address Bus Arbitration- 8-9
8.3.2—Address Transfer- 8-11

8.3.2.1—Address Bus Parity (N/A on Gekko) - - - - - - - - - 8-12
8.3.2.2—Address Transfer Attribute Signals- - - - - - - - - - 8-12
8.3.2.3—Burst Ordering During Data Transfers - - - - - - - 8-14
8.3.2.4—Effect of Alignment in Data Transfers - - - - - - - 8-15
8.3.2.5—Alignment of External Control Instructions - - - - 8-16

8.3.3—Address Transfer Termination- 8-16
8.4—Data Bus Tenure - 8-18

8.4.1—Data Bus Arbitration - 8-18
8.4.2—Data Transfer - 8-19
8.4.3—Data Transfer Termination - 8-20

8.4.3.1—Normal Single-Beat Termination - - - - - - - - - - - 8-21
8.4.3.2—Data Transfer Termination Due to a Bus Error - - 8-24

8.4.4—Memory Coherency—MEI Protocol- - - - - - - - - - - - - - - - 8-24
8.5—Timing Examples - 8-25
8.6—No-DRTRY Bus Configuration - 8-31
8.7—32-bit Data Bus Mode - 8-32
8.8—Interrupt, Checkstop, and Reset Signals - - - - - - - - - - - - - - - - - - - 8-36

8.8.1—External Interrupts- 8-36
8.8.2—Checkstops- 8-36
8.8.3—Reset Inputs - 8-37
8.8.4—System Quiesce Control Signals - - - - - - - - - - - - - - - - - - 8-37

8.9—Processor State Signals - 8-38
8.9.1—Support for thelwarx/stwcx. Instruction Pair - - - - - - - - - 8-38
8.9.2—TLBISYNC Input - 8-38

8.10—IEEE 1149.1a-1993 Compliant Interface - - - - - - - - - - - - - - - - - 8-38
8.10.1—JTAG/COP Interface - 8-38

CONTENTS (Continued)

Page x Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Chapter 9 L2 Cache, Locked D-Cache, DMA and
Write Gather Pipe

9.1—L2 Cache - 9-1
9.1.1—L2 Cache Operation- 9-1
9.1.2—L2 Cache Control Register (L2CR) - - - - - - - - - - - - - - - - 9-3
9.1.3—L2 Cache Initialization- 9-3
9.1.4—L2 Cache Global Invalidation - 9-4
9.1.5—L2 Cache Test Features and Methods - - - - - - - - - - - - - - - 9-4

9.1.5.1—L2CR Support for L2 Cache Testing- - - - - - - - - 9-4
9.1.5.2—L2 Cache Testing - 9-5

9.1.6—L2 Cache Timing - 9-5
9.2—Locked L1 Data Cache - 9-5

9.2.1—Locked Cache Configuration- 9-6
9.2.2—Locked Cache Operation - 9-6

9.2.2.1—DCBZ - 9-6
9.2.2.2—DCBZ_L - 9-6
9.2.2.3—DCBI- 9-7
9.2.2.4—DCBF - 9-7
9.2.2.5—DCBST - 9-7
9.2.2.6—DCBT and DCBTST - - - - - - - - - - - - - - - - - - - 9-7
9.2.2.7—Load and Store - 9-7

9.3—Direct Memory Access (DMA) - 9-8
9.3.1—DMA Operation - 9-8
9.3.2—Exception Conditions- 9-9

9.3.2.1—DMA Queue Overflow- - - - - - - - - - - - - - - - - - 9-9
9.3.2.2—DMA Look-up Hits Normal Cache- - - - - - - - - - 9-9
9.3.2.3—DMA Look-up Miss- 9-9

9.3.3—DMA Timing - 9-9
9.4—Write Gather Pipe - 9-10

9.4.1—WPAR- 9-10
9.4.2—Write Gather Pipe Operation - 9-10
9.4.3—Write Gather Pipe Timing- 9-10

Chapter 10 Power and Thermal Management
10.1—Dynamic Power Management - 10-1
10.2—Programmable Power Modes - 10-1

10.2.1—Power Management Modes - 10-2
10.2.1.1—Full-Power Mode- 10-2
10.2.1.2—Doze Mode- 10-2
10.2.1.3—Nap Mode - 10-3
10.2.1.4—Sleep Mode- 10-4

10.2.2—Power Management Software Considerations- - - - - - - - - 10-5

CONTENTS (Continued)

IBM Gekko RISC Microprocessor User’s Manual IBM Confidential 5/25/00 Page xi

10.3—Thermal Assist Unit - 10-5
10.3.1—Thermal Assist Unit Overview- - - - - - - - - - - - - - - - - - - 10-6
10.3.2—Thermal Assist Unit Operation - - - - - - - - - - - - - - - - - - 10-7

10.3.2.1—TAU Single Threshold Mode- - - - - - - - - - - - - 10-8
10.3.2.2—TAU Dual-Threshold Mode- - - - - - - - - - - - - - 10-9
10.3.2.3—Gekko Junction Temperature Determination - - 10-9
10.3.2.4—Power Saving Modes and TAU Operation - - - - 10-9

10.4—Instruction Cache Throttling - 10-10
Chapter 11 Performance Monitor

11.1—Performance Monitor Interrupt - 11-1
11.2—Special-Purpose Registers Used by Performance Monitor - - - - - - 11-2

11.2.1—Performance Monitor Registers - - - - - - - - - - - - - - - - - - 11-3
11.2.1.1—Monitor Mode Control Register 0 (MMCR0) - - 11-3
11.2.1.2—User Monitor Mode Control

Register 0 (UMMCR0) - - - - - - - - - - - - - - - - - 11-4
11.2.1.3—Monitor Mode Control

Register 1 (MMCR1) - - - - - - - - - - - - - - - - - - 11-4
11.2.1.4—User Monitor Mode Control Register 1

(UMMCR1) - 11-5
11.2.1.5—Performance Monitor Counter

Registers (PMC1–PMC4) - - - - - - - - - - - - - - - 11-5
11.2.1.6—User Performance Monitor Counter

Registers (UPMC1–UPMC4)- - - - - - - - - - - - - 11-9
11.2.1.7—Sampled Instruction Address Register (SIA) - - 11-9
11.2.1.8—User Sampled Instruction Address Register (USIA) 11-10

11.3—Event Counting - 11-10
11.4—Event Selection - 11-11
11.5—Notes - 11-12

Chapter 12 Instruction Set
12.1—Instruction Formats - 12-1

12.1.1—Split-Field Notation - 12-1
12.1.2—Instruction Fields- 12-2
12.1.3—Notation and Conventions- 12-4
12.1.4—Computation Modes- 12-7

12.2—PowerPC Instruction Set - 12-7
Appendix A – Gekko Instruction Set

A.1—Instructions Sorted by Opcode - A-1
A.2—Instructions Grouped by Functional Categories- - - - - - - - - - - - - - A-9

Index

1

Page xii Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

ILLUSTRATIONS

Chapter 1—Gekko Overview

Figure 1-1. Gekko Microprocessor Block Diagram - 1-3
Figure 1-2. Cache Organization - 1-11
Figure 1-3. System Interface - 1-13
Figure 1-4. Gekko Microprocessor Signal Groups - 1-15
Figure 1-5. Gekko Microprocessor Programming Model—Registers - - - - - - - - - 1-19
Figure 1-6. Pipeline Diagram - 1-30

Chapter 2—Programming Model

Figure 2-1. Programming Model—Gekko Microprocessor Registers - - - - - - - - - 2-2
Figure 2-2. Instruction Address Breakpoint Register - 2-8
Figure 2-3. Hardware Implementation-Dependent Register 0 (HID0) - - - - - - - - - 2-9
Figure 2-4. Hardware Implementation-Dependent Register 1 (HID1) - - - - - - - - - 2-12
Figure 2-5. Hardware Implementation-Dependent Register 2 (HID2) - - - - - - - - - 2-13
Figure 2-6. Monitor Mode Control Register 0 (MMCR0) - - - - - - - - - - - - - - - - - 2-14
Figure 2-7. Monitor Mode Control Register 1 (MMCR1) - - - - - - - - - - - - - - - - - 2-16
Figure 2-8. Performance Monitor Counter Registers (PMC1–PMC4) - - - - - - - - - 2-17
Figure 2-9. Sampled Instruction Address Registers (SIA) - - - - - - - - - - - - - - - - - 2-18
Figure 2-10. Instruction Cache Throttling Control Register (ICTC) - - - - - - - - - - 2-19
Figure 2-11. Thermal Management Registers 1–2 (THRM1–THRM2) - - - - - - - - 2-20
Figure 2-12. Thermal Management Register 3 (THRM3) - - - - - - - - - - - - - - - - - 2-21
Figure 2-13. Direct Memory Access Upper (DMAU) register - - - - - - - - - - - - - - 2-22
Figure 2-14. Direct Memory Access Lower (DMAL) register - - - - - - - - - - - - - - 2-23
Figure 2-15. Graphics Quantization Register - 2-24
Figure 2-16. Write Pipe Address Register (WPAR) - 2-25
Figure 2-17. L2 Cache Control Register (L2CR) - 2-25
Figure 2-18. Floating-Point Register containing a paired single operand - - - - - - - 2-29

Chapter 3—Gekko Instruction and Data Cache Operation

Figure 3-1. Cache Integration - 3-2
Figure 3-2. Data Cache Organization - 3-3
Figure 3-3. Instruction Cache Organization - 3-5
Figure 3-4. MEI Cache Coherency Protocol—State Diagram (WIM = 001) - - - - - 3-8
Figure 3-5. PLRU Replacement Algorithm - 3-16
Figure 3-6 Gekko Cache Addresses - 3-19

Chapter 4—Exceptions

Figure 4-1. Machine Status Save/Restore Register 0 (SRR0) - - - - - - - - - - - - - - - 4-7
Figure 4-2. Machine Status Save/Restore Register 1 (SRR1) - - - - - - - - - - - - - - - 4-7
Figure 4-3. Machine State Register (MSR) - 4-7
Figure 4-4. SRESET Asserted During HRESET - 4-14

ILLUSTRATIONS (Continued)

IBM Gekko RISC Microprocessor User’s Manual IBM Confidential 5/25/00 Page xiii

Chapter 5—Memory Management

Figure 5-1. MMU Conceptual Block Diagram - 5-5
Figure 5-2. PowerPC Gekko Microprocessor IMMU Block Diagram - - - - - - - - 5-6
Figure 5-3. Gekko Microprocessor DMMU Block Diagram - - - - - - - - - - - - - - 5-7
Figure 5-4. Address Translation Types - 5-9
Figure 5-5. General Flow of Address Translation

(Real Addressing Mode and Block) - 5-12
Figure 5-6. General Flow of Page and Direct-Store Interface

Address Translation - 5-13
Figure 5-7. Segment Register and DTLB Organization - - - - - - - - - - - - - - - - - - 5-22
Figure 5-8. Page Address Translation Flow—TLB Hit - - - - - - - - - - - - - - - - - - 5-25
Figure 5-9. Primary Page Table Search - 5-27
Figure 5-10. Secondary Page Table Search Flow - 5-28

Chapter 6—Instruction Timing

Figure 6-1. Pipelined Execution Unit - 6-3
Figure 6-2. Superscalar/Pipeline Diagram - 6-4
Figure 6-3. PowerPC Gekko Microprocessor Pipeline Stages - - - - - - - - - - - - - - 6-6
Figure 6-4. Instruction Flow Diagram - 6-9
Figure 6-5. Instruction Timing—Cache Hit - 6-11
Figure 6-6. Instruction Timing—Cache Miss - 6-14
Figure 6-7. Branch Folding - 6-18
Figure 6-8. Removal of Fall-Through Branch Instruction - - - - - - - - - - - - - - - - 6-18
Figure 6-9. Branch Completion - 6-19
Figure 6-10. Branch Instruction Timing - 6-22

Chapter 7—Signal Descriptions

Figure 7-1. PowerPC Gekko Signal Groups - 7-2

Chapter 8—Bus Interface Operation

Figure 8-1. Bus Interface Address Buffers - 8-2
Figure 8-2. PowerPC Gekko Microprocessor Block Diagram - - - - - - - - - - - - - - 8-4
Figure 8-3. Timing Diagram Legend - 8-6
Figure 8-4. Overlapping Tenures on Gekko Bus for a Single-Beat Transfer - - - - 8-7
Figure 8-5. Address Bus Arbitration - 8-10
Figure 8-6. Address Bus Arbitration Showing Bus Parking - - - - - - - - - - - - - - - 8-11
Figure 8-7. Address Bus Transfer - 8-12
Figure 8-8. Snooped Address Cycle withARTRY - 8-18
Figure 8-9. Data Bus Arbitration - 8-19
Figure 8-10. Normal Single-Beat Read Termination - 8-21
Figure 8-11. Normal Single-Beat Write Termination - - - - - - - - - - - - - - - - - - - 8-21
Figure 8-12. Normal Burst Transaction - 8-22
Figure 8-13. Termination withDRTRY - 8-23
Figure 8-14. Read Burst withTA Wait States andDRTRY - - - - - - - - - - - - - - 8-23
Figure 8-15. MEI Cache Coherency Protocol—State Diagram (WIM = 001) - - - 8-25

1

ILLUSTRATIONS (Continued)

Page xiv Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Figure 8-16. Fastest Single-Beat Reads - 8-26
Figure 8-17. Fastest Single-Beat Writes - 8-27
Figure 8-18. Single-Beat Reads Showing Data-Delay Controls - - - - - - - - - - - - - 8-28
Figure 8-19. Single-Beat Writes Showing Data Delay Controls - - - - - - - - - - - - - 8-29
Figure 8-20. Burst Transfers with Data Delay Controls - - - - - - - - - - - - - - - - - - 8-30
Figure 8-21. Use of Transfer Error Acknowledge (TEA) - - - - - - - - - - - - - - - - - 8-31
Figure 8-22. 32-Bit Data Bus Transfer (Eight-Beat Burst) - - - - - - - - - - - - - - - - 8-33
Figure 8-23. 32-Bit Data Bus Transfer (Two-Beat Burst withDRTRY) - - - - - - - 8-33
Figure 8-24. IEEE 1149.1a-1993 Compliant Boundary Scan Interface - - - - - - - - 8-38

Chapter 10—Power and Thermal Management

Figure 10-1. Thermal Assist Unit Block Diagram - 10-6

Chapter 11— Performance Monitor

Figure 11-1. Monitor Mode Control Register 0 (MMCR0) - - - - - - - - - - - - - - - - 11-3
Figure 11-2. Monitor Mode Control Register 1 (MMCR1) - - - - - - - - - - - - - - - - 11-5
Figure 11-3. Performance Monitor Counter Registers (PMC1–PMC4) - - - - - - - - 11-5
Figure 11-4. Sampled instruction Address Registers (SIA) - - - - - - - - - - - - - - - - 11-10

Chapter 12—Instruction Set

Figure 12-1. Instruction Description - 12-8

1

IBM Gekko RISC Microprocessor User’s Manual IBM Confidential 5/25/00 Page xv

TABLES

Chapter 1—Gekko Overview

Table 1-1. Architecture-Defined Registers (Excluding SPRs) - - - - - - - - - - - - - 1-20
Table 1-2. Architecture-Defined SPRs Implemented - - - - - - - - - - - - - - - - - - - 1-21
Table 1-3. Implementation-Specific Registers - 1-22
Table 1-4. Gekko Microprocessor Exception Classifications - - - - - - - - - - - - - 1-27
Table 1-5. Exceptions and Conditions - 1-27

Chapter 2—Programming Model

Table 2-1. Additional MSR Bits - 2-4
Table 2-2. Additional SRR1 Bits - 2-6
Table 2-3. Instruction Address Breakpoint Register Bit Settings - - - - - - - - - - - - 2-8
Table 2-4. HID0 Bit Functions - 2-9
Table 2-5. HID1 Bit Functions - 2-13
Table 2-6. HID2 Bit Settings - 2-13
Table 2-7. MMCR0 Bit Settings - 2-15
Table 2-8. MMCR1 Bits - 2-17
Table 2-9. PMCn Bits - 2-17
Table 2-10. ICTC Bit Settings - 2-19
Table 2-11. THRM1–THRM2 Bit Settings - 2-20
Table 2-12. Valid THRM1/THRM2 Bit Settings - 2-21
Table 2-13. THRM3 Bit Settings - 2-22
Table 2-14. DMAU Bit Settings - 2-23
Table 2-15. DMAL Bit Settings - 2-23
Table 2-16. Graphics Quantization Register Bit Settings - - - - - - - - - - - - - - - - - 2-24
Table 2-17. Quantized Data Types - 2-24
Table 2-18. Write Pipe Address Register Bit Settings - - - - - - - - - - - - - - - - - - - 2-25
Table 2-19. L2CR Bit Settings - 2-25
Table 2-20. Memory Operands - 2-27
Table 2-21. Floating-Point Operand Data Type Behavior - - - - - - - - - - - - - - - - 2-30
Table 2-22. Floating-Point Result Data Type Behavior - - - - - - - - - - - - - - - - - 2-31
Table 2-23. Integer Arithmetic Instructions - 2-37
Table 2-24. Integer Compare Instructions - 2-39
Table 2-25. Integer Logical Instructions - 2-39
Table 2-26. Integer Rotate Instructions - 2-40
Table 2-27. Integer Shift Instructions - 2-41
Table 2-28. Floating-Point Arithmetic Instructions - 2-42
Table 2-29. Floating-Point Multiply-Add Instructions - - - - - - - - - - - - - - - - - - 2-43
Table 2-30. Floating-Point Rounding and Conversion Instructions - - - - - - - - - - 2-44
Table 2-31. Floating-Point Compare Instructions - 2-44
Table 2-32. Floating-Point Status and Control Register Instructions - - - - - - - - - 2-45
Table 2-33. Floating-Point Move Instructions - 2-46
Table 2-34. Integer Load Instructions - 2-48
Table 2-35. Integer Store Instructions - 2-49
Table 2-36. Integer Load and Store with Byte-Reverse Instructions - - - - - - - - - 2-50
Table 2-37. Integer Load and Store Multiple Instructions - - - - - - - - - - - - - - - - 2-51

1

TABLES (Continued)

Page xvi Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Table 2-38. Integer Load and Store String Instructions - - - - - - - - - - - - - - - - - - 2-51
Table 2-39. Floating-Point Load Instructions - 2-53
Table 2-40. Floating-Point Store Instructions - 2-54
Table 2-41. Store Floating-Point Single Behavior - 2-54
Table 2-42. Store Floating-Point Double Behavior - 2-55
Table 2-43. Paired Single Load and Store Instructions - - - - - - - - - - - - - - - - - - - 2-56
Table 2-44. Conversion of integer value 1 to single-precision floating point - - - - 2-57
Table 2-45. Conversion of Floating-point Value 1.00 E+2 to Integer - - - - - - - - - 2-58
Table 2-46. Branch Instructions - 2-59
Table 2-47. Condition Register Logical Instructions - 2-59
Table 2-48. Trap Instructions - 2-60
Table 2-49. System Linkage Instruction—UISA - 2-60
Table 2-50. Move to/from Condition Register Instructions - - - - - - - - - - - - - - - - 2-61
Table 2-51. Move to/from Special-Purpose Register Instructions (UISA) - - - - - - 2-61
Table 2-52. PowerPC Encodings - 2-61
Table 2-53. SPR Encodings for Gekko-Defined Registers (mfspr) - - - - - - - - - - 2-63
Table 2-54. Memory Synchronization Instructions—UISA - - - - - - - - - - - - - - - 2-65
Table 2-55. Move from Time Base Instruction - 2-66
Table 2-56. Memory Synchronization Instructions—VEA - - - - - - - - - - - - - - - - 2-67
Table 2-57. User-Level Cache Instructions - 2-68
Table 2-58. External Control Instructions - 2-70
Table 2-59. System Linkage Instructions—OEA - 2-70
Table 2-60. Move to/from Machine State Register Instructions - - - - - - - - - - - - - 2-71
Table 2-61. Move to/from Special-Purpose Register Instructions (OEA) - - - - - - - 2-71
Table 2-62. Supervisor-Level Cache Management Instruction - - - - - - - - - - - - - - 2-72
Table 2-63. Segment Register Manipulation Instructions - - - - - - - - - - - - - - - - - 2-72
Table 2-64. Translation Lookaside Buffer Management Instruction - - - - - - - - - - 2-73

Chapter 3—Gekko Instruction and Data Cache Operation

Table 3-1. MEI State Definitions - 3-7
Table 3-2. PLRU Bit Update Rules - 3-17
Table 3-3. PLRU Replacement Block Selection - 3-17
Table 3-4. Bus Operations Caused by Cache Control Instructions (WIM = 001) - - 3-20
Table 3-5. Response to Snooped Bus Transactions - 3-22
Table 3-6. Address/Transfer Attribute Summary - 3-25
Table 3-7. MEI State Transitions - 3-26

Chapter 4—Exceptions

Table 4-1. PowerPC Gekko Microprocessor Exception Classifications - - - - - - - 4-2
Table 4-2. Exceptions and Conditions - 4-3
Table 4-3. PowerPC Gekko Exception Priorities - 4-6
Table 4-4. MSR Bit Settings - 4-8
Table 4-5. IEEE Floating-Point Exception Mode Bits - - - - - - - - - - - - - - - - - - - 4-9
Table 4-6. MSR Setting Due to Exception - 4-12
Table 4-7. System Reset Exception—Register Settings - - - - - - - - - - - - - - - - - - 4-13
Table 4-8. Settings Caused by Hard Reset - 4-14

TABLES (Continued)

IBM Gekko RISC Microprocessor User’s Manual IBM Confidential 5/25/00 Page xvii

Table 4-9. HID0 Machine Check Enable Bits - 4-16
Table 4-10. Machine Check Exception—Register Settings - - - - - - - - - - - - - - - 4-17
Table 4-11. Performance Monitor Interrupt Exception—Register Settings - - - - 4-21
Table 4-12. Instruction Address Breakpoint Exception—Register Settings - - - - 4-21
Table 4-13. Thermal Management Interrupt Exception—Register Settings - - - - 4-22

Chapter 5—Memory Management

Table 5-1. MMU Feature Summary - 5-2
Table 5-2. Access Protection Options for Pages - 5-10
Table 5-3. Translation Exception Conditions - 5-14
Table 5-4. Other MMU Exception Conditions for the Gekko Processor - - - - - - - 5-15
Table 5-5. Gekko Microprocessor Instruction Summary—Control MMUs - - - - - 5-16
Table 5-6. Gekko Microprocessor MMU Registers - 5-17
Table 5-7. Table Search Operations to Update History Bits—TLB Hit Case - - - - 5-19
Table 5-8. Model for Guaranteed R and C Bit Settings - - - - - - - - - - - - - - - - - 5-21

Chapter 6—Instruction Timing

Table 6-1. Performance Effects of Memory Operand Placement - - - - - - - - - - - - 6-24
Table 6-2. TLB Miss Latencies - 6-26
Table 6-3. Branch Instructions - 6-29
Table 6-4. System Register Instructions - 6-29
Table 6-5. Condition Register Logical Instructions - 6-30
Table 6-6. Integer Instructions - 6-30
Table 6-7. Floating-Point Instructions - 6-32
Table 6-8. Load and Store Instructions - 6-34

Chapter 7—Signal Descriptions

Table 7-1. Transfer Type Encodings for PowerPC Gekko Bus Master - - - - - - - 7-6
Table 7-2. PowerPC Gekko Snoop Hit Response - 7-8
Table 7-3. Data Transfer Size - 7-9
Table 7-4. Data Bus Lane Assignments - 7-13
Table 7-5. DP[0–7] Signal Assignments - 7-14
Table 7-6. IEEE Interface Pin Descriptions - 7-18

Chapter 8—Bus Interface Operation

Table 8-1. Transfer Size Signal Encodings - 8-13
Table 8-2. Burst Ordering - 8-14
Table 8-3. Aligned Data Transfers - 8-15
Table 8-4. Misaligned Data Transfers (Four-Byte Examples) - - - - - - - - - - - - - 8-16
Table 8-5. Burst Ordering—32-Bit Bus - 8-34
Table 8-6. Aligned Data Transfers (32-Bit Bus Mode) - - - - - - - - - - - - - - - - - - 8-34
Table 8-7. Misaligned 32-Bit Data Bus Transfer (Four-Byte Examples) - - - - - - 8-36

1

TABLES (Continued)

Page xviii Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Chapter 9—L2 Cache, Locked D-Cache, DMA and
Write Gather Pipe

Table 9-1. L2 Cache Control Register - 9-3

Chapter 10—Power and Thermal Management

Table 10-1. Gekko Microprocessor Programmable Power Modes - - - - - - - - - - - 10-2
Table 10-2. THRM1 and THRM2 Bit Field Settings - 10-7
Table 10-3. THRM3 Bit Field Settings - 10-7
Table 10-4. Valid THRM1 and THRM2 Bit Settings - - - - - - - - - - - - - - - - - - - 10-8
Table 10-5. ICTC Bit Field Settings - 10-10

Chapter 11— Performance Monitor

Table 11-1. Performance Monitor SPRs - 11-2
Table 11-2. MMCR0 Bit Settings - 11-3
Table 11-3. MMCR1 Bit Settings - 11-5
Table 11-4. PMCn Bit Settings - 11-5
Table 11-5. PMC1 Events—MMCR0[19–25] Select Encodings - - - - - - - - - - - - 11-6
Table 11-6. PMC2 Events—MMCR0[26–31] Select Encodings - - - - - - - - - - - - 11-7
Table 11-7. PMC3 Events—MMCR1[0–4] Select Encodings - - - - - - - - - - - - - - 11-8
Table 11-8. PMC4 Events—MMCR1[5–9] Select Encodings - - - - - - - - - - - - - - 11-9

Chapter 12—Instruction Set

Table 12-1. Split-Field Notation and Conventions - 12-1
Table 12-2. Instruction Syntax Conventions - 12-2
Table 12-3. Notation and Conventions - 12-4
Table 12-4. Instruction Field Conventions - 12-6
Table 12-5. Precedence Rules - 12-7
Table 12-6. BO Operand Encodings - 12-23
Table 12-7. BO Operand Encodings - 12-25
Table 12-8. BO Operand Encodings - 12-27
Table 12-9. Gekko UISA SPR Encodings for mfspr - 12-127
Table 12-10. Gekko OEA SPR Encodings for mfspr - 12-128
Table 12-11. TBR Encodings for mftb - 12-134
Table 12-12. Gekko UISA SPR Encodings for mtspr - - - - - - - - - - - - - - - - - - - 12-142
Table 12-13. Gekko OEA SPR Encodings for mtspr - 12-143

TABLES (Continued)

IBM Gekko RISC Microprocessor User’s Manual IBM Confidential 5/25/00 Page xix

Appendix A—– Gekko Instruction Set

Table A-1. Complete Instruction List Sorted by Opcode - - - - - - - - - - - - - - - - - - A-1
Table A-2. Integer Arithmetic Instructions - A-9
Table A-3. Integer Compare Instructions - A-9
Table A-4. Integer Logical Instructions - A-10
Table A-5. Integer Rotate Instructions - A-10
Table A-6. Integer Shift Instructions - A-10
Table A-7. Floating-Point Arithmetic Instructions - A-11
Table A-8. Floating-Point Multiply-Add Instructions - A-12
Table A-9. Floating-Point Rounding and Conversion Instructions - - - - - - - - - - - A-12
Table A-10. Floating-Point Compare Instructions - A-12
Table A-11. Floating-Point Status and Control Register Instructions - - - - - - - - - - A-12
Table A-12. Integer Load Instructions - A-12
Table A-13. Integer Store Instructions - A-14
Table A-14. Integer Load and Store with Byte Reverse Instructions - - - - - - - - - - A-14
Table A-15. Integer Load and Store Multiple Instructions - - - - - - - - - - - - - - - - - A-14
Table A-16. Integer Load and Store String Instructions - - - - - - - - - - - - - - - - - - - A-15
Table A-17. Memory Synchronization Instructions - A-15
Table A-18. Floating-Point Load Instructions - A-15
Table A-19. Floating-Point Store Instructions - A-16
Table A-20. Floating-Point Move Instructions - A-16
Table A-21. Branch Instructions - A-16
Table A-22. Condition Register Logical Instructions - A-17
Table A-23. System Linkage Instructions - A-17
Table A-24. Trap Instructions - A-17
Table A-25. Processor Control Instructions - A-18
Table A-26. Cache Management Instructions - A-18
Table A-27. Segment Register Manipulation Instructions. - - - - - - - - - - - - - - - - - A-19
Table A-28. Lookaside Buffer Management Instructions - - - - - - - - - - - - - - - - - - A-19
Table A-29. External Control Instructions - A-19
Table A-30. Paired-Single Load and Store Instructions - - - - - - - - - - - - - - - - - - - A-20
Table A-31. Paired-Single Floating Point Arithmetic Instructions - - - - - - - - - - - - A-20
Table A-32. Miscellaneous Paired-Single Instructions - - - - - - - - - - - - - - - - - - - A-21

1

Page xx Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

IBM Confidential

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-1

Chapter 1 Gekko Overview
Gekko is an implementation of the PowerPC architecture with enhancements to improve the
floating point performance and the data transfer capability. This chapter provides an overview of
the PowerPC Gekko microprocessor features, including a block diagram showing the major
functional components. It also provides information about how Gekko implementation complies
with the PowerPC™ architecture definition .

1.1 Gekko Microprocessor Overview
This section describes the features and general operation of Gekko and provides a block diagram
showing major functional units. Gekko is an implementation of the PowerPC microprocessor
family of reduced instruction set computer (RISC) microprocessors with extensions to improve the
floating poing performance. Gekko implements the 32-bit portion of the PowerPC architecture,
which provides 32-bit effective addresses, integer data types of 8, 16, and 32 bits, and floating-point
data types of single- and double-precision. Gekko extends the PowerPC architecture with the
paired single-precision floating point data type and a set of paired single floating point instructions.
Gekko is a superscalar processor that can complete two instructions simultaneously. It incorporates
the following six execution units:

• Floating-point unit (FPU)

• Branch processing unit (BPU)

• System register unit (SRU)

• Load/store unit (LSU)

• Two integer units (IUs): IU1 executes all integer instructions. IU2 executes all integer
instructions except multiply and divide instructions.

The ability to execute several instructions in parallel and the use of simple instructions with rapid
execution times yield high efficiency and throughput for Gekko-based systems. Most integer
instructions execute in one clock cycle. The FPU is pipelined, it breaks the tasks it performs into
subtasks, and then executes in three successive stages. Typically, a floating-point instruction can
occupy only one of the three stages at a time, freeing the previous stage to work on the next
floating-point instruction. Thus, three single- or paired single-precision floating-point instructions
can be in the FPU execute stage at a time. Double-precision add instructions have a three-cycle
latency; double-precision multiply and multiply-add instructions have a four-cycle latency.
Figure 1-1 on Page 1-3 shows the parallel organization of the execution units (shaded in the
diagram). The instruction unit fetches, dispatches, and predicts branch instructions. Note that this
is a conceptual model that shows basic features rather than attempting to show how features are
implemented physically.
Gekko has independent on-chip, 32 Kbyte, eight-way set-associative, physically addressed caches
for instructions and data and independent instruction and data memory management units
(MMUs). The data cache can be configured as a four-way 16 KByte locked cache and a four-way
16 KByte normal cache. Each MMU has a 128-entry, two-way set-associative translation lookaside
buffer (DTLB and ITLB) that saves recently used page address translations. Block address
translation is done through the four-entry instruction and data block address translation (IBAT and
DBAT) arrays, defined by the PowerPC architecture. During block translation, effective addresses
are compared simultaneously with all four BAT entries.
For information about the L1 cache, see Chapter 3, "Gekko Instruction and Data Cache Operation"
in this manual.

IBM Confidential

Page 1-2 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

The L2 cache is implemented with an on-chip, two-way set-associative tag memory, and an on-chip
256 Kbyte SRAM with ECC for data storage.
Gekko has a direct memory access (DMA) engine to transfer data from the external memory to the
locked data cache and to transfer data from the locked data cache to the external memory.
A write gather pipe is implemented for effecient non-cacheable store operations.
Gekko has a 32-bit address bus and a 64-bit data bus. Multiple devices compete for system resources
through a central external arbiter. Gekko’s three-state cache-coherency protocol (MEI) supports the
modified, exclusive and invalid states, a compatible subset of the MESI
(modified/exclusive/shared/invalid) four-state protocol, and it operates coherently in systems with
four-state caches. Gekko supports single-beat and burst data transfers for external memory accesses
and memory-mapped I/O operations. The system interface is described in Chapter 7, "Signal
Descriptions" and Chapter 8, "Bus Interface Operation" in this manual.
Gekko has four software-controllable power-saving modes. Three static modes, doze, nap, and sleep,
progressively reduce power dissipation. When functional units are idle, a dynamic power
management mode causes those units to enter a low-power mode automatically without affecting
operational performance, software execution, or external hardware. Gekko also provides a thermal
assist unit (TAU) and a way to reduce the instruction fetch rate for limiting power dissipation. Power
management is described in Chapter 10, "Power and Thermal Management" in this manual.

C
hapter

1. G
ekko O

verview
IB

M
 C

onfidential
5/25/00

P
age 1-3

IB
M

C
onfidential

Figure 1-1. Gekko Microprocessor Block Diagram

Additional Features

• Time Base Counter/Dec-
rementer

• Clock Multiplier

• JTAG/COP Interface

+

+

Fetcher Branch Processing

BTIC
64 Entry

+ x
FPSCRCR FPSCR

CTR
LR

BHT

Data MMU

Instruction MMU

PAEA

+ x

Instruction Unit

Unit

Instruction Queue
(6 Word)

2 Instructions

Reservation Station Reservation Station Reservation Station

Integer Unit 1
System Register

Unit

Dispatch Unit 64-Bit
(2 Instructions)

SRs

ITLB

(Shadow) IBAT
Array

32-Kbyte
I CacheTags

128-Bit
(4 Instructions)

32-Bit

Floating-Point
Unit

Rename Buffers
(6)

FPR File

32-Bit
64-Bit

64-Bit

Reservation Station
(2 Entry)

Load/Store Unit

(EA Calculation)

Store Queue

GPR File

Rename Buffers
(6)

32-Bit

SRs
(Original)

DTLB

DBAT
Array

64-Bit
Completion Unit

Reorder Buffer
(6 Entry)

60x Bus Interface Unit
Instruction Fetch Queue

L1 Castout Queue

Data Load Queue

L2 Cache

32-Bit Address Bus
64-Bit Data Bus

Integer Unit 2

L2CR

256Kbyte
SRAM

Tags

32-Kbyte
D Cache

DMA
DMAL
DMAU

Command

WPAR

Write Gather Pipe

128 Byte Buffer

Reservation Station

Queue

L2 Tag

(2 Entry)

(15 Entry)

IBM Confidential

Page 1-4 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

1.2 Gekko Microprocessor Features
This section lists features of Gekko. The interrelationship of these features is shown in Figure 1-1 on
Page 1-3.

1.2.1 Overview of Gekko Microprocessor Features
Major features of Gekko are:

• High-performance, superscalar microprocessor
— As many as four instructions can be fetched from the instruction cache per clock cycle
— As many as two instructions can be dispatched per clock
— As many as six instructions can execute per clock (including two integer instructions)
— Single-clock-cycle execution for most instructions

• Six independent execution units and two register files
— BPU featuring both static and dynamic branch prediction

– 64-entry (16-set, four-way set-associative) branch target instruction cache (BTIC), a
cache of branch instructions that have been encountered in branch/loop code
sequences. If a target instruction is in the BTIC, it is fetched into the instruction queue
a cycle sooner than it can be made available from the instruction cache. Typically, if a
fetch access hits the BTIC, it provides the first two instructions in the target stream.

– 512-entry branch history table (BHT) with two bits per entry for four levels of
prediction—not-taken, strongly not-taken, taken, strongly taken

– Branch instructions that do not update the count register (CTR) or link register (LR)
are removed from the instruction stream.

— Two integer units (IUs) that share thirty-two GPRs for integer operands
– IU1 can execute any integer instruction
– IU2 can execute all integer instructions except multiply and divide instructions

(multiply, divide, shift, rotate, arithmetic, and logical instructions). Most instructions
that execute in the IU2 take one cycle to execute. The IU2 has a single-entry reservation
station

— Three-stage FPU
– Fully IEEE 754-1985-compliant FPU for both single- and double-precision operations
– Supports paired single-precision floating point arithematic instruction set extension
– Supports non-IEEE mode for time-critical operations
– Hardware support for denormalized numbers
– Two-entry reservation station
– Thirty-two 64-bit FPRs for single-, paired single- or double-precision operands.

— Two-stage LSU
– Two-entry reservation station
– Single-cycle, pipelined cache access
– Dedicated adder performs EA calculations
– Performs alignment and precision conversion for floating-point data
– Performs alignment and sign extension for integer data
– Three-entry store queue
– Supports both big- and little-endian modes
– Supports data type conversion with indexed scaling.

IBM Confidential

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-5

— SRU handles miscellaneous instructions
– Executes CR logical and Move to/Move from SPR instructions (mtspr andmfspr)
– Single-entry reservation station

• Rename buffers
— Six GPR rename buffers
— Six FPR rename buffers
— Condition register buffering supports two CR writes per clock

• Completion unit
— The completion unit retires an instruction from the six-entry reorder buffer (completion

queue) when all instructions ahead of it have been completed, the instruction has
finished execution, and no exceptions are pending.

— Guarantees sequential programming model (precise exception model)
— Monitors all dispatched instructions and retires them in order
— Tracks unresolved branches and flushes instructions from the mispredicted branch
— Retires as many as two instructions per clock

• Separate on-chip instruction and data caches (Harvard architecture)
— 32-Kbyte, eight-way set-associative instruction and data caches
— Pseudo least-recently-used (PLRU) replacement algorithm
— 32-byte (eight-word) cache block
— Physically indexed/physical tags. (Note that the PowerPC architecture refers to physical

address space as real address space.)
— Cache write-back or write-through operation programmable on a per-page or per-block

basis
— Instruction cache can provide four instructions per clock; data cache can provide two

words per clock
— Caches can be disabled in software
— Caches can be locked in software
— Data cache coherency (MEI) maintained in hardware
— The critical double word is made available to the requesting unit when it is burst into

the line-fill buffer. The cache is nonblocking, so it can be accessed during this operation.
— Data cache can be partitioned as a four-way 16 Kbyte normal cache and a four-way

16-Kbyte locked cache.
• On-chip 1:1 L2 cache.

— 256 Kbyte on-chip ECC SRAMs
— On-chip 2-way set-associative tag memory

• DMA engine.
— 15 entry DMA command queue.
— Each DMA command can transfer up to 4 Kbyte data in 32 byte increment.

• Write gather pipe.

— 128 byte circular FIFO buffer.
— Non-cacheable stores to a specified address are gathered for burst transaction transfer.

• Separate memory management units (MMUs) for instructions and data
— 52-bit virtual address; 32-bit physical address
— Address translation for 4-Kbyte pages, variable-sized blocks, and 256-Mbyte segments

IBM Confidential

Page 1-6 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

— Memory programmable as write-back/write-through, cacheable/noncacheable, and
coherency enforced/coherency not enforced on a page or block basis

— Separate IBATs and DBATs (four each) also defined as SPRs
— Separate instruction and data translation lookaside buffers (TLBs)

– Both TLBs are 128-entry, two-way set associative, and use LRU replacement algorithm
– TLBs are hardware-reloadable (that is, the page table search is performed in hardware.

• Bus interface features include the following
– Selectable bus-to-core clock frequency ratios of 2x, 2.5x, 3x, 3.5x, 4x, 4.5x ... 8x and

10x. (2x to 8x, all half-clock multipliers in-between)
– A 64-bit, split-transaction external data bus with burst transfers
– Support for address pipelining and limited out-of-order bus transactions
– Single-entry load queue
– Single-entry instruction fetch queue
– Two-entry L1 cache castout queue
– No-DRTRY mode eliminates theDRTRY signal from the qualified bus grant. This

allows the forwarding of data during load operations to the internal core one bus cycle
sooner than if the use ofDRTRY is enabled.

• Multiprocessing support features include the following:
— Hardware-enforced, three-state cache coherency protocol (MEI) for data cache.
— Load/store with reservation instruction pair for atomic memory references, semaphores,

and other multiprocessor operations
• Power and thermal management

— Three static modes, doze, nap, and sleep, progressively reduce power dissipation:
– Doze—All the functional units are disabled except for the time base/decrementer

registers and the bus snooping logic.
– Nap—The nap mode further reduces power consumption by disabling bus snooping,

leaving only the time base register and the PLL in a powered state.
– Sleep—All internal functional units are disabled, after which external system logic

may disable the PLL and SYSCLK.
— Thermal management facility provides software-controllable thermal management.

Thermal management is performed through the use of three supervisor-level registers and
an Gekko-specific thermal management exception.

— Instruction cache throttling provides control of instruction fetching to limit power
consumption.

• Performance monitor can be used to help debug system designs and improve software
efficiency.

• In-system testability and debugging features through JTAG boundary-scan capability

1.2.2 Instruction Flow
As shown in Figure 1-1 on Page 1-3, the Gekko instruction unit provides centralized control of
instruction flow to the execution units. The instruction unit contains a sequential fetcher, six-entry
instruction queue (IQ), dispatch unit, and BPU. It determines the address of the next instruction to be
fetched based on information from the sequential fetcher and from the BPU.
See Chapter 6, "Instruction Timing" in this manual for a detailed discussion of instruction timing.
The sequential fetcher loads instructions from the instruction cache into the instruction queue. The

IBM Confidential

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-7

BPU extracts branch instructions from the sequential fetcher. Branch instructions that cannot be
resolved immediately are predicted using either Gekko-specific dynamic branch prediction or the
architecture-defined static branch prediction.
Branch instructions that do not affect the LR or CTR are removed from the instruction stream. The
BPU folds branch instructions when a branch is taken (or predicted as taken); branch instructions
that are not taken, or predicted as not taken, are removed from the instruction stream through the
dispatch mechanism.
Instructions issued beyond a predicted branch do not complete execution until the branch is
resolved, preserving the programming model of sequential execution. If branch prediction is
incorrect, the instruction unit flushes all predicted path instructions, and instructions are fetched
from the correct path.

1.2.2.1 Instruction Queue and Dispatch Unit
The instruction queue (IQ), shown inFigure 1-1 on Page 1-3, holds as many as six instructions and
loads up to four instructions from the instruction cache during a single processor clock cycle. The
instruction fetcher continuously attempts to load as many instructions as there were vacancies in
the IQ in the previous clock cycle. All instructions except branch instructions are dispatched to
their respective execution units from the bottom two positions in the instruction queue (IQ0 and
IQ1) at a maximum rate of two instructions per cycle. Reservation stations are provided for the IU1,
IU2, FPU, LSU, and SRU. The dispatch unit checks for source and destination register
dependencies, determines whether a position is available in the completion queue, and inhibits
subsequent instruction dispatching as required.
Branch instructions can be detected, decoded, and predicted from anywhere in the instruction
queue. For a more detailed discussion of instruction dispatch, see Section 6.6.1 on Page 6-27.

1.2.2.2 Branch Processing Unit (BPU)
The BPU receives branch instructions from the sequential fetcher and performs CR lookahead
operations on conditional branches to resolve them early, achieving the effect of a zero-cycle
branch in many cases.
Unconditional branch instructions and conditional branch instructions in which the condition is
known can be resolved immediately. For unresolved conditional branch instructions, the branch
path is predicted using either the architecture-defined static branch prediction or Gekko-specific
dynamic branch prediction. Dynamic branch prediction is enabled if HID0[BHT] = 1.
When a prediction is made, instruction fetching, dispatching, and execution continue from the
predicted path, but instructions can not complete and write back results to architected registers until
the prediction is determined to be correct (resolved).
When a prediction is incorrect, the instructions from the incorrect path are flushed from the
processor and processing begins from the correct path.
Gekko allows a second branch instruction to be predicted; instructions from the second predicted
instruction stream can be fetched but cannot be dispatched.
Dynamic prediction is implemented using a 512-entry branch history table (BHT), a cache that
provides two bits per entry that together indicate four levels of prediction for a branch
instruction—not-taken, strongly not-taken, taken, strongly taken. When dynamic branch prediction
is disabled, the BPU uses a bit in the instruction encoding to predict the direction of the conditional
branch. Therefore, when an unresolved conditional branch instruction is encountered, Gekko
executes instructions from the predicted target stream although the results are not committed to
architected registers until the conditional branch is resolved. This execution can continue until a
second unresolved branch instruction is encountered.

IBM Confidential

Page 1-8 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

When a branch is taken (or predicted as taken), the instructions from the untaken path must be flushed
and the target instruction stream must be fetched into the IQ. The BTIC is a 64-entry cache that
contains the most recently used branch target instructions, typically in pairs. When an instruction
fetch hits in the BTIC, the instructions arrive in the instruction queue in the next clock cycle, a clock
cycle sooner than they would arrive from the instruction cache. Additional instructions arrive from
the instruction cache in the next clock cycle. The BTIC reduces the number of missed opportunities
to dispatch instructions and gives the processor a one-cycle head start on processing the target stream.
The BPU contains an adder to compute branch target addresses and three user-control registers—the
link register (LR), the count register (CTR), and the CR. The BPU calculates the return pointer for
subroutine calls and saves it into the LR for certain types of branch instructions. The LR also contains
the branch target address for the Branch Conditional to Link Register (bclrx) instruction. The CTR
contains the branch target address for the Branch Conditional to Count Register (bcctrx) instruction.
Because the LR and CTR are SPRs, their contents can be copied to or from any GPR. Because the
BPU uses dedicated registers rather than GPRs or FPRs, execution of branch instructions is largely
independent from execution of integer and floating-point instructions.

1.2.2.3 Completion Unit
The completion unit operates closely with the instruction unit. Instructions are fetched and dispatched
in program order. At the point of dispatch, the program order is maintained by assigning each
dispatched instruction a successive entry in the six-entry completion queue. The completion unit
tracks instructions from dispatch through execution and retires them in program order from the two
bottom entries in the completion queue (CQ0 and CQ1).
Instructions cannot be dispatched to an execution unit unless there is a vacancy in the completion
queue. Branch instructions that do not update the CTR or LR are removed from the instruction stream
and do not take an entry in the completion queue. Instructions that update the CTR and LR follow the
same dispatch and completion procedures as non-branch instructions, except that they are not issued
to an execution unit.
Completing an instruction commits execution results to architected registers (GPRs, FPRs, LR, and
CTR). In-order completion ensures the correct architectural state when Gekko must recover from a
mispredicted branch or any exception. Retiring an instruction removes it from the completion queue.
For a more detailed discussion of instruction completion, see Section 6.6.1 on Page 6-27.

IBM Confidential

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-9

1.2.2.4 Independent Execution Units
In addition to the BPU, Gekko has five execution units:

• Two Integer Units (IUs)

• A Floating-Point Unit (FPU)

• A Load/Store Unit (LSU)

• A System Register Unit (SRU)
Each is described in the following sections.

1.2.2.4.1 Integer Units (IUs)
The integer units IU1 and IU2 are shown in Figure 1-1 on Page 1-3. The IU1 can execute any
integer instruction; the IU2 can execute any integer instruction except multiplication and division
instructions. Each IU has a single-entry reservation station that can receive instructions from the
dispatch unit and operands from the GPRs or the rename buffers.
Each IU consists of three single-cycle subunits—a fast adder/comparator, a subunit for logical
operations, and a subunit for performing rotates, shifts, and count-leading-zero operations. These
subunits handle all one-cycle arithmetic instructions; only one subunit can execute an instruction
at a time.
The IU1 has a 32-bit integer multiplier/divider as well as the adder, shift, and logical units of the
IU2. The multiplier supports early exit for operations that do not require full 32-x 32-bit
multiplication.
Each IU has a dedicated result bus (not shown in Figure 1-1 on Page 1-3) that connects to rename
buffers.

1.2.2.4.2 Floating-Point Unit (FPU)
The FPU, shown in Figure 1-1 on Page 1-3, is designed such that single- or paired single-precision
operations require only a single pass, with a latency of three cycles. As instructions are dispatched
to the FPU’s reservation station, source operand data can be accessed from the FPRs or from the
FPR rename buffers. Results in turn are written to the rename buffers and are made available to
subsequent instructions. Instructions pass through the reservation station in dispatch order. The
FPU contains two single-precision multiply-add arrays and the floating-point status and control
register (FPSCR). The multiply-add array allows Gekko to efficiently implement multiply and
multiply-add operations. The FPU is pipelined such that one single-, paired single- or
double-precision instruction can be issued per clock cycle. Thirty-two 64-bit floating-point
registers are provided to support floating-point operations. Stalls due to contention for FPRs are
minimized by automatic allocation of the six floating-point rename registers. Gekko writes the
contents of the rename registers to the appropriate FPR when floating-point instructions are retired
by the completion unit.
Gekko supports all IEEE 754 floating-point data types (normalized, denormalized, NaN, zero, and
infinity) in hardware, eliminating the latency incurred by software exception routines. (Note that
“exception” is also referred to as “interrupt” in the architecture specification.) For paired
single-precision operations, both data paths comply with the IEEE standard independently.

1.2.2.4.3 Load/Store Unit (LSU)
The LSU executes all load and store instructions and provides the data transfer interface between
the GPRs, FPRs, and the cache/memory subsystem. The LSU calculates effective addresses,
performs data alignment, and provides sequencing for load/store string and multiple instructions.
Gekko implements 8 paired single quantization load and store instructions. The load instructions
read a pair of 8- or 16-bit, signed or unsigned integers, convert them into single-precision floating

IBM Confidential

Page 1-10 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

point data with the scaling factor in the quantization register, and write the results into the FPR. The
store instructions read the 64-bit data from the FPR as a pair of single-precision floating point data,
convert the single-precision floating point numbers into a pair of 8- or 16-bit, signed or unsigned
integer data, and store the results.
Load and store instructions are translated and issued in program order; however, some memory
accesses can occur out of order. Synchronizing instructions can be used to enforce strict ordering.
When there are no data dependencies and the guarded bit for the page or block is cleared, a maximum
of one out-of-order cacheable load operation can execute per cycle, with a two-cycle total latency on
a cache hit. Data returned from the cache is held in a rename register until the completion logic
commits the value to a GPR or FPR. Stores cannot be executed out of order and are held in the store
queue until the completion logic signals that the store operation is to be completed to memory. Gekko
executes store instructions with a maximum throughput of one per cycle and a three-cycle total
latency to the data cache. The time required to perform the actual load or store operation depends on
the processor/bus clock ratio and whether the operation involves the on-chip cache, the L2 cache,
system memory, or an I/O device.

1.2.2.4.4 System Register Unit (SRU)
The SRU executes various system-level instructions, as well as condition register logical operations
and move to/from special-purpose register instructions. To maintain system state, most instructions
executed by the SRU are execution-serialized; that is, the instruction is held for execution in the SRU
until all previously issued instructions have executed. Results from execution-serialized instructions
executed by the SRU are not available or forwarded for subsequent instructions until the instruction
completes.
1.2.3 Memory Management Units (MMUs)
Gekko’s MMUs support up to 4 Petabytes (252) of virtual memory and 4 Gigabytes (232) of physical
memory for instructions and data. The MMUs also control access privileges for these spaces on block
and page granularities. Referenced and changed status is maintained by the processor for each page
to support demand-paged virtual memory systems.
The LSU calculates effective addresses for data loads and stores; the instruction unit calculates
effective addresses for instruction fetching. The MMU translates the effective address to determine
the correct physical address for the memory access.
Gekko supports the following types of memory translation:

• Real addressing mode—In this mode, translation is disabled by clearing bits in the machine
state register (MSR): MSR[IR] for instruction fetching or MSR[DR] for data accesses. When
address translation is disabled, the physical address is identical to the effective address.

• Page address translation—translates the page frame address for a 4-Kbyte page size
• Block address translation—translates the base address for blocks (128 Kbytes to 256 Mbytes)

If translation is enabled, the appropriate MMU translates the higher-order bits of the effective address
into physical address bits. The lower-order address bits (that are untranslated and therefore,
considered both logical and physical) are directed to the on-chip caches where they form the index
into the eight-way set-associative tag array. After translating the address, the MMU passes the
higher-order physical address bits to the cache and the cache lookup completes. For caching-inhibited
accesses or accesses that miss in the cache, the untranslated lower-order address bits are concatenated
with the translated higher-order address bits; the resulting 32-bit physical address is used by the
memory unit and the system interface, which accesses external memory.
The TLBs store page address translations for recent memory accesses. For each access, an effective
address is presented for page and block translation simultaneously. If a translation is found in both

IBM Confidential

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-11

the TLB and the BAT array, the block address translation in the BAT array is used. Usually the
translation is in a TLB and the physical address is readily available to the on-chip cache. When a
page address translation is not in a TLB, hardware searches for one in the page table following the
model defined by the PowerPC architecture.
Instruction and data TLBs provide address translation in parallel with the on-chip cache access,
incurring no additional time penalty in the event of a TLB hit. Gekko’s TLBs are 128-entry,
two-way set-associative caches that contain instruction and data address translations. Gekko
automatically generates a TLB search on a TLB miss.

1.2.4 On-Chip Level 1 Instruction and Data Caches
Gekko implements separate instruction and data caches. Each cache is 32-Kbyte and eight-way set
associative. As defined by the PowerPC architecture, they are physically indexed. Each cache block
contains eight contiguous words from memory that are loaded from an 8-word boundary (that is,
bits EA[27–31] are zeros); thus, a cache block never crosses a page boundary. An entire cache
block can be updated by a four-beat burst load. Misaligned accesses across a page boundary can
incur a performance penalty. Caches are nonblocking, write-back caches with hardware support for
reloading on cache misses. The critical double word is transferred on the first beat and is
simultaneously written to the cache and forwarded to the requesting unit, minimizing stalls due to
load delays. The cache being loaded is not blocked to internal accesses while the load completes.
Gekko cache organization is shown in Figure 1-2.

Figure 1-2. Cache Organization

Within one cycle, the data cache provides double-word access to the LSU. Like the instruction
cache, the data cache can be invalidated all at once or on a per-cache-block basis. The data cache
can be disabled and invalidated by clearing HID0[DCE] and setting HID0[DCFI]. The data cache
can be locked by setting HID0[DLOCK]. To ensure cache coherency, the data cache supports the
three-state MEI protocol. The data cache tags are single-ported, so a simultaneous load or store and

8 Words/Way

128 Sets

Way 5

Way 6

Way 7

Way 4 Address Tag 4

Address Tag 5

Address Tag 6

Address Tag 7

Way 1

Way 2

Way 3

Way 0 Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

State

State

State

Words [0–7]

State

Words [0–7]

Words [0–7]

Words [0–7]

State

State

State

Words [0–7]

State

Words [0–7]

Words [0–7]

Words [0–7]

IBM Confidential

Page 1-12 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

a snoop access represent a resource collision. If a snoop hit occurs, the LSU is blocked internally for
one cycle to allow the eight-word block of data to be copied to the write-back buffer.
By setting HID2[LCE] = 1 , thedata cache can be configured into two partitions. The first partition,
consisting of ways 0-3, forms a 16 Kbytes normal data cache. The second partition, consisting of
ways 4-7, forms a 16 Kbyte locked cache which can be used as an on-chip memory. The detail
operation is defined in Chapter 9, "L2 Cache, Locked D-Cache, DMA and Write Gather Pipe" in this
manual. Within one cycle, the instruction cache provides up to four instructions to the instruction
queue. The instruction cache can be invalidated entirely or on a cache-block basis. The instruction
cache can be disabled and invalidated by clearing HID0[ICE] and setting HID0[ICFI]. The
instruction cache can be locked by setting HID0[ILOCK]. The instruction cache supports only the
valid/invalid states.
Gekko also implements a 64-entry (16-set, four-way set-associative) branch target instruction cache
(BTIC). The BTIC is a cache of branch instructions that have been encountered in branch/loop code
sequences. If the target instruction is in the BTIC, it is fetched into the instruction queue a cycle
sooner than it can be made available from the instruction cache. Typically the BTIC contains the first
two instructions in the target stream. The BTIC can be disabled and invalidated through software.
For more information and timing examples showing cache hit and cache miss latencies, see Section
6.3.2 on Page 6-8.

1.2.5 On-Chip Level 2 Cache Implementation
The L2 cache is a unified cache that receives memory requests from both the L1 instruction and data
caches independently. The L2 cache is implemented with an on-chip, two-way, set-associative tag
memory, and with a 256 Kbyte on-chip SRAM for data storage. The L2 cache normally operates in
write-back mode and supports system cache coherency through snooping.
The L2 cache is organized into 64-byte lines, which in turn are subdivided into 32-byte sectors
(blocks), the unit at which cache coherency is maintained.
The L2 cache controller contains the L2 cache control register (L2CR) and the L2 cache tag array.
The L2CR register includes bits to manage the L2 cache. The cache is two-way set-associative with
2K tags per way. Each sector (32-byte cache block) has its own valid and modified status bits.
Requests from the L1 cache generally result from instruction misses, data load or store misses,
write-through operations, or cache management instructions. Requests from the L1 cache are looked
up in the L2 tags and serviced by the L2 cache if they hit; they are forwarded to the bus interface if
they miss.
The L2 cache can accept multiple, simultaneous accesses. The L1 instruction cache can request an
instruction at the same time that the L1 data cache is requesting one load and two store operations.
The L2 cache also services snoop requests from the bus. If there are multiple pending requests to the
L2 cache, snoop requests have highest priority. The next priority consists of load and store requests
from the L1 data cache. The next priority consists of instruction fetch requests from the L1 instruction
cache. For more information, see Chapter 9, "L2 Cache, Locked D-Cache, DMA and Write Gather
Pipe" in this manual.

1.2.6 System Interface/Bus Interface Unit (BIU)
The address and data buses operate independently; address and data tenures of a memory access are
decoupled to provide a more flexible control of memory traffic. The primary activity of the system
interface is transferring data and instructions between the processor and system memory. There are
two types of memory accesses:

IBM Confidential

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-13

• Single-beat transfers—These memory accesses allow transfer sizes of 8, 16, 24, 32, or 64
bits in one bus clock cycle. Single-beat transactions are caused by uncacheable read and
write operations that access memory directly (that is, when caching is disabled),
cache-inhibited accesses, and stores in write-through mode.

• Four-beat burst (32 bytes) data transfers—Burst transactions, which always transfer an
entire cache block (32 bytes), are initiated when an entire cache block is transferred.
Because the first-level caches on Gekko are write-back caches, burst-read memory, burst
operations are the most common memory accesses, followed by burst-write memory
operations, and single-beat (noncacheable or write-through) memory read and write
operations.

Gekko also supports address-only operations, variants of the burst and single-beat operations, (for
example, atomic memory operations and global memory operations that are snooped), and address
retry activity (for example, when a snooped read access hits a modified block in the cache). The
broadcast of some address-only operations is controlled through HID0[ABE]. I/O accesses use the
same protocol as memory accesses.
Access to the system interface is granted through an external arbitration mechanism that allows
devices to compete for bus mastership. This arbitration mechanism is flexible, allowing Gekko to
be integrated into systems that implement various fairness and bus parking procedures to avoid
arbitration overhead.
Typically, memory accesses are weakly ordered—sequences of operations, including load/store
string and multiple instructions, do not necessarily complete in the order they begin—maximizing
the efficiency of the bus without sacrificing data coherency. Gekko allows read operations to go
ahead of store operations (except when a dependency exists, or in cases where a noncacheable
access is performed), and provides support for a write operation to go ahead of a previously queued
read data tenure (for example, letting a snoop push be enveloped between address and data tenures
of a read operation). Because Gekko can dynamically optimize run-time ordering of load/store
traffic, overall performance is improved.
The system interface is specific for each PowerPC microprocessor implementation.
Gekko signals are grouped as shown in Figure 1-3. Test and control signals provide diagnostics for
selected internal circuits.

Figure 1-3. System Interface

The system interface supports address pipelining, which allows the address tenure of one
transaction to overlap the data tenure of another. The extent of the pipelining depends on external
arbitration and control circuitry. Similarly, Gekko supports split-bus transactions for systems with
multiple potential bus masters—one device can have mastership of the address bus while another

Address Arbitration

Address Start

Address Transfer

Transfer Attribute

Address Termination Clocks

Data Arbitration

Data Transfer

Data Termination

Processor Status/Control

Test and Control

System Status

VDD VDD (I/O)

Gekko

IBM Confidential

Page 1-14 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

has mastership of the data bus. Allowing multiple bus transactions to occur simultaneously increases
the available bus bandwidth for other activity.
Gekko’s clocking structure supports a wide range of processor-to-bus clock ratios.

1.2.7 Signals
Gekko’s signals are grouped as follows:

• Address arbitration signals—Gekko uses these signals to arbitrate for address bus mastership.

• Address start signals—These signals indicate that a bus master has begun a transaction on the
address bus.

• Address transfer signals—These signals include the address bus and address parity signals.
They are used to transfer the address and to ensure the integrity of the transfer.

• Transfer attribute signals—These signals provide information about the type of transfer, such
as the transfer size and whether the transaction is bursted, write-through, or caching-inhibited.

• Address termination signals—These signals are used to acknowledge the end of the address
phase of the transaction. They also indicate whether a condition exists that requires the
address phase to be repeated.

• Data arbitration signals—Gekko uses these signals to arbitrate for data bus mastership.

• Data transfer signals—These signals, which consist of the data bus and data parity signals, are
used to transfer the data and to ensure the integrity of the transfer.

• Data termination signals—Data termination signals are required after each data beat in a data
transfer. In a single-beat transaction, a data termination signal also indicates the end of the
tenure; in burst accesses, data termination signals apply to individual beats and indicate the
end of the tenure only after the final data beat. They also indicate whether a condition exists
that requires the data phase to be repeated.

• Interrupt signals—These signals include the interrupt signal, checkstop signals, and both soft
reset and hard reset signals. These signals are used to generate interrupt exceptions and, under
various conditions, to reset the processor.

• Processor status/control signals—These signals are used to set the reservation coherency bit,
enable the time base, and other functions.

• Miscellaneous signals—These signals are used in conjunction with such resources as
secondary caches and the time base facility.

• JTAG/COP interface signals—The common on-chip processor (COP) unit provides a serial
interface to the system for performing board-level boundary scan interconnect tests.

• Clock signals—These signals determine the system clock frequency. These signals can also
be used to synchronize multiprocessor systems.

NOTE
A bar over a signal name indicates that the signal is active low—for
example,ARTRY (address retry) andTS (transfer start). Active-low
signals are referred to as asserted (active) when they are low and
negated when they are high. Signals that are not active low, such as
AP[0–3] (address bus parity signals) and TT[0–4] (transfer type
signals) are referred to as asserted when they are high and negated
when they are low.

IBM Confidential

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-15

1.2.8 Signal Configuration
Figure 1-4 shows Gekko’s logical pin configuration. The signals are grouped by function.

Figure 1-4. Gekko Microprocessor Signal Groups

Signal functionality is described in detail in Chapter 7, "Signal Descriptions" and Chapter 8, "Bus
Interface Operation" in this manual.

1.2.9 Clocking
Gekko requires a single system clock input, SYSCLK, that represents the bus interface frequency.
Internally, the processor uses a phase-locked loop (PLL) circuit to generate a master core clock that
is frequency-multiplied and phase-locked to the SYSCLK input. This core frequency is used to
operate the internal circuitry.
The PLL is configured by the PLL_CFG[0–3] signals, which select the multiplier that the PLL uses
to multiply the SYSCLK frequency up to the internal core frequency. The feedback in the PLL
guarantees that the processor clock is phase locked to the bus clock, regardless of process
variations, temperature changes, or parasitic capacitances.
The PLL also ensures a 50% duty cycle for the processor clock.

Data
Arbitration

BR

BG

TS

AP[0–3]

GBL

TSIZ[0–2]

AACK

ARTRY

SYSCLKDBG

D[0–63]

DP[0–7]

TA

DRTRY

TEA

INT

JTAG/COP

Factory Test

1

11

1

5

3

4

TBST

WT

PLL_CFG[0–3]

TT[0–4]
5

4

1
CKSTP_OUT

MCP

SRESET

TLBISYNC

HRESET

QREQ

QACK

CKSTP_IN

CLK_OUT

1

3

1

1

1

1

1

8

64

1

1

1

1

1

1
1

1

1

1

1

1

CI 1

A[0–31]
32

Address
Arbitration

Address
Bus

Address
Termination

Address
Start

Transfer
Attributes

Data
Transfer

Data
Termination

Interrupts/
Resets

Processor
Status/
Control

VDD VDD (I/O)

Clock
Control

Test
Interface

Gekko

AVDD

Data TerminationData Transfer

Processor/Status
Control

Address Bus

Interupts/Resets

Note: Items in Italics are optional items

IBM Confidential

Page 1-16 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Gekko supports various processor-to-bus clock frequency ratios, although not all ratios are available
for all frequencies. Configuration of the processor/bus clock ratios is displayed through a
Gekko-specific register, HID1. For information about supported clock frequencies, see the Gekko
hardware specifications.

1.3 Gekko Microprocessor: Implementation
The PowerPC architecture is derived from the POWER architecture (Performance Optimized With
Enhanced RISC architecture). The PowerPC architecture shares the benefits of the POWER
architecture optimized for single-chip implementations. The PowerPC architecture design facilitates
parallel instruction execution and is scalable to take advantage of future technological gains.
This section describes the PowerPC architecture in general, and specific details about the
implementation of Gekko as a low-power, 32-bit member of the PowerPC processor family. The
structure of this section follows the organization of the user’s manual; each subsection provides an
overview of each chapter.

• Registers and programming model—Section 1.4 on Page 1-18 describes the registers for the
operating environment architecture common among PowerPC processors and describes the
programming model. It also describes the registers that are unique to Gekko. The information
in this section is described more fully in Chapter 2, "Programming Model" in this manual.

• Instruction set and addressing modes—Section 1.5 on Page 1-23 describes the PowerPC
instruction set and addressing modes for the PowerPC operating environment architecture,
defines the PowerPC instructions implemented in Gekko, and describes new instruction set
extensions to improve the performance of single-precision floating-point operations and the
capability of data transfer. The information in this section is described more fully in
Chapter 2, "Programming Model" in this manual.

• Cache implementation—Section 1.6 on Page 1-25 describes the cache model that is defined
generally for PowerPC processors by the virtual environment architecture. It also provides
specific details about Gekko cache implementation. The information in this section is
described more fully in Chapter 3, "Gekko Instruction and Data Cache Operation" and
Chapter 9, "L2 Cache, Locked D-Cache, DMA and Write Gather Pipe" in this manual.

• Exception model—Section 1.7 on Page 1-25 describes the exception model of the PowerPC
operating environment architecture and the differences in Gekko exception model. The
information in this section is described more fully in Chapter 4, "Exceptions" in this manual.

• Memory management—Section 1.8 on Page 1-28 describes generally the conventions for
memory management among the PowerPC processors. This section also describes Gekko’s
implementation of the 32-bit PowerPC memory management specification. The information
in this section is described more fully in Chapter 5, "Memory Management" in this manual.

• Instruction timing—Section 1.9 on Page 1-29 provides a general description of the instruction
timing provided by the superscalar, parallel execution supported by the PowerPC architecture
and Gekko. The information in this section is described more fully in Chapter 6, "Instruction
Timing" in this manual.

• Power management—Section 1.10 on Page 1-31 describes how the power management can
be used to reduce power consumption when the processor, or portions of it, are idle. The
information in this section is described more fully in Chapter 10, "Power and Thermal
Management" in this manual.

IBM Confidential

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-17

• Thermal management—Section 1.11 on Page 1-32 describes how the thermal management
unit and its associated registers (THRM1–THRM3) and exception can be used to manage
system activity in a way that prevents exceeding system and junction temperature
thresholds. This is particularly useful in high-performance portable systems, which cannot
use the same cooling mechanisms (such as fans) that control overheating in desktop
systems. The information in this section is described more fully in Chapter 10, "Power and
Thermal Management" in this manual.

• Performance monitor—Section 1.12 on Page 1-33 describes the performance monitor
facility, which system designers can use to help bring up, debug, and optimize software
performance. The information in this section is described more fully in Chapter 11,
"Performance Monitor" in this manual.

The following sections summarize the features of Gekko, distinguishing those that are defined by
the architecture from those that are unique to Gekko implementation.
The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be described in terms of which of the following levels of the architecture is
implemented:

• PowerPC user instruction set architecture (UISA)—Defines the base user-level instruction
set, user-level registers, data types, floating-point exception model, memory models for a
uniprocessor environment, and programming model for a uniprocessor environment.

• PowerPC virtual environment architecture (VEA)—Describes the memory model for a
multiprocessor environment, defines cache control instructions, and describes other aspects
of virtual environments. Implementations that conform to the VEA also adhere to the
UISA, but may not necessarily adhere to the OEA.

• PowerPC operating environment architecture (OEA)—Defines the memory management
model, supervisor-level registers, synchronization requirements, and the exception model.
Implementations that conform to the OEA also adhere to the UISA and the VEA.

The PowerPC architecture allows a wide range of designs for such features as cache and system
interface implementations. Gekko implementations support the three levels of the architecture
described above. For more information about the PowerPC architecture, see thePowerPC
Microprocessor Family: The Programming Environments manual.
Specific features of Gekko are listed in Section 1.2 on Page 1-4.

IBM Confidential

Page 1-18 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

1.4 PowerPC Registers and Programming Model
The PowerPC architecture defines register-to-register operations for most computational instructions.
Source operands for these instructions are accessed from the registers or are provided as immediate
values embedded in the instruction opcode. The three-register instruction format allows specification
of a target register distinct from the two source operands. Load and store instructions transfer data
between registers and memory.
PowerPC processors have two levels of privilege—supervisor mode of operation (typically used by
the operating system) and user mode of operation (used by the application software). The
programming models incorporate 32 GPRs, 32 FPRs, special-purpose registers (SPRs), and several
miscellaneous registers. Each PowerPC microprocessor also has its own unique set of hardware
implementation-dependent (HID) registers.
Having access to privileged instructions, registers, and other resources allows the operating system to
control the application environment (providing virtual memory and protecting operating-system and
critical machine resources). Instructions that control the state of the processor, the address translation
mechanism, and supervisor registers can be executed only when the processor is operating in
supervisor mode.
Figure 1-5 on Page 1-19 shows all Gekko registers available at the user and supervisor level. The
numbers to the right of the SPRs indicate the number that is used in the syntax of the instruction
operands to access the register. For more information, see Chapter 2, "Programming Model" in this
manual.

IBM Confidential

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-19

Figure 1-5. Gekko Microprocessor Programming Model—Registers

ICTC SPR 1019
SPR 1020

SPR 1021

SPR 1022

THRM1

THRM2

THRM3

SPR 937

SPR 938

SPR 941

SPR 942

Performance
Counters 1

Sampled
Instruction
Address 1

DSISR

Data Address
Register

SPRGs

Exception Handling Registers
Save and Restore
Registers

Instruction BAT
Registers

Data BAT
Registers

Memory Management Registers

Machine State
Register

MSR

Processor
Version
Register

SPR 287PVR

Configuration RegistersHardware
Implementation Registers 1

SPR 1

USER MODEL UISA

FPSCR

Condition Register

General-Purpose
Registers

XER XER

SPR 8

Link Register

LR

SUPERVISOR MODEL—OEA

DecrementerExternal Access
Register

EAR

SDR1

SPR 9
Count
Register

Miscellaneous Registers

Segment
Registers

CR

Floating-Point Registers
Performance

Monitor Registers
(For Reading)

Performance Counters 1

Monitor Control 1

SPR 939USIA

Sampled Instruction
Address 1

Monitor Control 1

Time Base
(For Writing)

Power/Thermal Management Registers
Thermal Assist
Unit Registers 1

Instruction Cache
Throttling Control
Register 1

USER MODEL—VEA

TBL TBR 268

Time Base Facility (For Reading)

CTR

GPR0

GPR1

GPR31

TBU TBR 269

IBAT0U

IBAT0L

IBAT1U

IBAT1L

IBAT2U

IBAT2L

IBAT3U

IBAT3L

SPR 528

SPR 529

SPR 530

SPR 531

SPR 532

SPR 533

SPR 534

SPR 535

SPR 536

SPR 537

SPR 538

SPR 539

SPR 540

SPR 541

SPR 542

SPR 543

DBAT0U

DBAT0L

DBAT1U

DBAT1L

DBAT2U

DBAT2L

DBAT3U

DBAT3L

SR0

SR1

SR15

SDR1 SPR 25

HID0

HID1

SPR 1008

SPR 1009

FPR0

FPR1

FPR31
UPMC1

UPMC2

UPMC3

UPMC4

UMMCR0

UMMCR1

SPR 936

SPR 940

SPR 953

SPR 954

SPR 957

SPR 958

PMC1

PMC2

PMC3

PMC4

SIA SPR 955

MMCR0

MMCR1

SPR 952

SPR 956

SPRG0

SPRG1

SPRG2

SPRG3

SPR 272

SPR 273

SPR 274

SPR 275

DAR

DSISR

SPR 19

SPR 18

SRR0 SPR 26

SRR1 SPR 27

SPR 282 TBL SPR 284

TBU SPR 285

DEC SPR 22

Data Address
Breakpoint Register

DABR SPR 1013
L2 Control
Register 1

L2CR SPR 1017

Instruction Address
Breakpoint Register 1

IABR SPR 1010

TBR 269 TBR 269

Write Gather Pipe 1

WPAR SPR 921

Direct Memory Access 1

DMAL
DMAU

SPR 923
SPR 922

Floating-Point Status
and Control Register

HID2 SPR 920

GQR4
GQR5
GQR6
GQR7

SPR 912
SPR 913
SPR 914
SPR 915

SPR 916
SPR 917
SPR 918
SPR 919

Quantization Registers 1

These registers are processor- specific registers. They may not be supported by other PowerPC processors.
1

GQRO
GQR1
GQR2
GQR3

Performance Monitor
Registers

IBM Confidential

Page 1-20 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

The following tables summarize the PowerPC registers implemented in Gekko; Table 1-1 describes
registers (excluding SPRs) defined by the architecture.

The OEA defines numerous special-purpose registers that serve a variety of functions, such as
providing controls, indicating status, configuring the processor, and performing special operations.
During normal execution, a program can access the registers, shown in Figure 1-5 on Page 1-19,
depending on the program’s access privilege (supervisor or user, determined by the privilege-level
(PR) bit in the MSR). GPRs and FPRs are accessed through operands that are part of the instructions.
Access to registers can be explicit (that is, through the use of specific instructions for that purpose
such as Move to Special-Purpose Register (mtspr) and Move from Special-Purpose Register (mfspr)
instructions) or implicit, as the part of the execution of an instruction. Some registers can be accessed
both explicitly and implicitly.
In Gekko, all SPRs are 32 bits wide. Table 1-2 on Page 1-21 describes the architecture-defined SPRs
implemented by Gekko. In thePowerPC Microprocessor Family: The Programming Environments
manual, these registers are described in detail, including bit descriptions.
Section 2.1.1 on Page 2-1 describes how these registers are implemented in Gekko. In particular, this
section describes which features the PowerPC architecture defines as optional are implemented on
Gekko.

Table 1-1. Architecture-Defined Registers (Excluding SPRs)

Register Level Function

CR User The condition register (CR) consists of eight four-bit fields that reflect the results of certain
operations, such as move, integer and floating-point compare, arithmetic, and logical
instructions, and provide a mechanism for testing and branching.

FPRs User The 32 floating-point registers (FPRs) serve as the data source or destination for
floating-point instructions. These 64-bit registers can hold single-, paired single- or
double-precision floating-point values.

FPSCR User The floating-point status and control register (FPSCR) contains the floating-point exception
signal bits, exception summary bits, exception enable bits, and rounding control bits needed
for compliance with the IEEE-754 standard.

GPRs User The 32 GPRs serve as the data source or destination for integer instructions.

MSR Supervisor The machine state register (MSR) defines the processor state. Its contents are saved when
an exception is taken and restored when exception handling completes. Gekko implements
MSR[POW], (defined by the architecture as optional), which is used to enable the power
management feature. Gekko-specific MSR[PM] bit is used to mark a process for the
performance monitor.

SR0–SR
15

Supervisor The sixteen 32-bit segment registers (SRs) define the 4-Gbyte space as sixteen 256-Mbyte
segments. Gekko implements segment registers as two arrays—a main array for data
accesses and a shadow array for instruction accesses; see Figure 1-1 on Page 1-3. Loading
a segment entry with the Move to Segment Register (mtsr) instruction loads both arrays. The
mfsr instruction reads the master register, shown as part of the data MMU in Figure 1-1 on
Page 1-3.

IBM Confidential

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-21

Table 1-2. Architecture-Defined SPRs Implemented

Register Level Function

LR User The link register (LR) can be used to provide the branch target address and to hold the
return address after branch and link instructions.

BATs Supervisor The architecture defines 16 block address translation registers (BATs), which operate in
pairs. There are four pairs of data BATs (DBATs) and four pairs of instruction BATs
(IBATs). BATs are used to define and configure blocks of memory.

CTR User The count register (CTR) is decremented and tested by branch-and-count instructions.

DABR Supervisor The optional data address breakpoint register (DABR) supports the data address
breakpoint facility.

DAR User The data address register (DAR) holds the address of an access after an alignment or DSI
exception.

DEC Supervisor The decrementer register (DEC) is a 32-bit decrementing counter that provides a way to
schedule decrementer exceptions.

DSISR User The DSISR defines the cause of data access and alignment exceptions.

EAR Supervisor The external access register (EAR) controls access to the external access facility through
the External Control In Word Indexed (eciwx) and External Control Out Word Indexed
(ecowx) instructions.

PVR Supervisor The processor version register (PVR) is a read-only register that identifies the processor.

SDR1 Supervisor SDR1 specifies the page table format used in virtual-to-physical page address translation.

SRR0 Supervisor The machine status save/restore register 0 (SRR0) saves the address used for restarting
an interrupted program when a Return from Interrupt (rfi) instruction executes.

SRR1 Supervisor The machine status save/restore register 1 (SRR1) is used to save machine status on
exceptions and to restore machine status when an rfi instruction is executed.

SPRG0–S
PRG3

Supervisor SPRG0–SPRG3 are provided for operating system use.

TB User: read
Supervisor:
read/write

The time base register (TB) is a 64-bit register that maintains the time of day and operates
interval timers. The TB consists of two 32-bit fields—time base upper (TBU) and time base
lower (TBL).

XER User The XER contains the summary overflow bit, integer carry bit, overflow bit, and a field
specifying the number of bytes to be transferred by a Load String Word Indexed (lswx) or
Store String Word Indexed (stswx) instruction.

IBM Confidential

Page 1-22 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Table 1-3 describes the SPRs in Gekko that are not defined by the PowerPC architecture. Section
2.1.2 on Page 2-8 gives detailed descriptions of these registers, including bit descriptions.

Table 1-3. Implementation-Specific Registers

Register Level Function

DMAL,
DMAU

Supervisor The DMA upper(DMAU) and DMA low (DMAL) registers are used to issue the DMA
commands.

GQR0-GQR7 Supervisor The quantization registers (GQR0-GQR7) are used to determine the scaling factor and
data type conversion for the quantization load/store instructions.

HID0 Supervisor The hardware implementation-dependent register 0 (HID0) provides checkstop enables
and other functions.

HID1 Supervisor The hardware implementation-dependent register 1 (HID1) allows software to read the
configuration of the PLL configuration signals.

HID2 Supervisor The hardware implementation-dependent register 2 (HID2) enables the paired-single
floating-point operations, L1 cache partition, write pipe and DMA, and controls the
exceptions associated with the DMA and the locked cache operations..

IABR Supervisor The instruction address breakpoint register (IABR) supports instruction address
breakpoint exceptions. It can hold an address to compare with instruction addresses in
the IQ. An address match causes an instruction address breakpoint exception.

ICTC Supervisor The instruction cache-throttling control register (ICTC) has bits for controlling the interval
at which instructions are fetched into the instruction buffer in the instruction unit. This
helps control Gekko’s overall junction temperature.

L2CR Supervisor The L2 cache control register (L2CR) is used to configure and operate the L2 cache.

MMCR0–MM
CR1

Supervisor The monitor mode control registers (MMCR0–MMCR1) are used to enable various
performance monitoring interrupt functions. UMMCR0–UMMCR1 provide user-level read
access to MMCR0–MMCR1.

PMC1–PMC
4

Supervisor The performance monitor counter registers (PMC1–PMC4) are used to count specified
events. UPMC1–UPMC4 provide user-level read access to these registers.

SIA Supervisor The sampled instruction address register (SIA) holds the EA of an instruction executing
at or around the time the processor signals the performance monitor interrupt condition.
The USIA register provides user-level read access to the SIA.

THRM1,
THRM2

Supervisor THRM1 and THRM2 provide a way to compare the junction temperature against two
user-provided thresholds. The thermal assist unit (TAU) can be operated so that the
thermal sensor output is compared to only one threshold, selected in THRM1 or THRM2.

THRM3 Supervisor THRM3 is used to enable the TAU and to control the output sample time.

UMMCR0–U
MMCR1

User The user monitor mode control registers (UMMCR0–UMMCR1) provide user-level read
access to MMCR0–MMCR1.

UPMC1–UP
MC4

User The user performance monitor counter registers (UPMC1–UPMC4) provide user-level
read access to PMC1–PMC4.

USIA User The user sampled instruction address register (USIA) provides user-level read access to
the SIA register.

WPAR Supervisor Write gather pipe address register (WPAR) specifies the address of the non-cacheable
stores to be gathered for burst transfer.

IBM Confidential

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-23

1.5 Instruction Set
All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats are
consistent among all instruction types, permitting efficient decoding to occur in parallel with
operand accesses. This fixed instruction length and consistent format greatly simplify instruction
pipelining.
For more information, see Chapter 2, "Programming Model" in this manual.

1.5.1 PowerPC Instruction Set
The PowerPC instructions are divided into the following categories:

• Integer instructions—These include computational and logical instructions.
— Integer arithmetic instructions
— Integer compare instructions
— Integer logical instructions
— Integer rotate and shift instructions

• Floating-point instructions—These include floating-point computational instructions, as
well as instructions that affect the FPSCR.
— Floating-point arithmetic instructions
— Floating-point multiply/add instructions
— Floating-point rounding and conversion instructions
— Floating-point compare instructions
— Floating-point status and control instructions

• Load/store instructions—These include integer and floating-point load and store
instructions.
— Integer load and store instructions
— Integer load and store multiple instructions
— Floating-point load and store
— Primitives used to construct atomic memory operations (lwarx andstwcx. instructions)

• Flow control instructions—These include branching instructions, condition register logical
instructions, trap instructions, and other instructions that affect the instruction flow.
— Branch and trap instructions
— Condition register logical instructions

• Processor control instructions—These instructions are used for synchronizing memory
accesses and management of caches, TLBs, and the segment registers.
— Move to/from SPR instructions
— Move to/from MSR
— Synchronize
— Instruction synchronize
— Order loads and stores

• Memory control instructions—To provide control of caches, TLBs, and SRs.
— Supervisor-level cache management instructions
— User-level cache instructions
— Segment register manipulation instructions
— Translation lookaside buffer management instructions

IBM Confidential

Page 1-24 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

This grouping does not indicate the execution unit that executes a particular instruction or group of
instructions.
Integer instructions operate on byte, half-word, and word operands. Floating-point instructions
operate on single-precision (one word) and double-precision (one double word) floating-point
operands. The PowerPC architecture uses instructions that are four bytes long and word-aligned. It
provides for byte, half-word, and word operand loads and stores between memory and a set of 32
GPRs. It also provides for word and double-word operand loads and stores between memory and a
set of 32 floating-point registers (FPRs).
Computational instructions do not modify memory. To use a memory operand in a computation and
then modify the same or another memory location, the memory contents must be loaded into a
register, modified, and then written back to the target location with distinct instructions.
PowerPC processors follow the program flow when they are in the normal execution state; however,
the flow of instructions can be interrupted directly by the execution of an instruction or by an
asynchronous event. Either kind of exception may cause one of several components of the system
software to be invoked.
Effective address computations for both data and instruction accesses use 32-bit unsigned binary
arithmetic. A carry from bit 0 is ignored in 32-bit implementations.

1.5.2 Gekko Microprocessor Instruction Set
In addition to the 32-bit single-precision and the 64-bit double-presicion floating-point operands,
Gekko implements a new floating-point operand type: paired single-precision. The paired single
operand uses a 64-bit FPR to maintain two 32-bit single precision floating point operands. The
PowerPC instruction set is substaintially extended to support the paired single data type.
Gekko instruction set is defined as follows:

• Gekko provides hardware support for all 32-bit PowerPC instructions.

• Gekko implements the following instructions optional to the PowerPC architecture:

— External Control In Word Indexed (eciwx)
— External Control Out Word Indexed (ecowx)
— Floating Select (fsel)
— Floating Reciprocal Estimate Single-Precision (fres). Error < 1/4000.
— Floating Reciprocal Square Root Estimate (frsqrte). Error < 1/4000.
— Store Floating-Point as Integer Word (stfiw).

• Gekko implements the following instruction set extension not included in the PowerPC
architecture to support the cache line allocation in the locked cache:

— Data cache block zero and lock (dcbz_l).
• Floating point instructions to support the paired single operand data type.Gekko implements

the following instruction set extension not included in the PowerPC architecture to support
the paired single data type:

— Quantization load instructions.
— Quantization store instructions.
— Floating point instructions to support the paired single operand data type.

IBM Confidential

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-25

1.6 On-Chip Cache Implementation
The following subsections describe the PowerPC architecture’s treatment of cache in general, and
Gekko-specific implementation, respectively. A detailed description of Gekko cache
implementation is provided in Chapter 3, "Gekko Instruction and Data Cache Operation" in this
manual.

1.6.1 PowerPC Cache Model
The PowerPC architecture does not define hardware aspects of cache implementations. For
example, PowerPC processors can have unified caches, separate instruction and data caches
(Harvard architecture), or no cache at all. PowerPC microprocessors control the following memory
access modes on a page or block basis:

• Write-back/write-through mode
• Caching-inhibited mode
• Memory coherency

The caches are physically addressed, and the data cache can operate in either write-back or
write-through mode, as specified by the PowerPC architecture.
The PowerPC architecture defines the term ‘cache block’ as the cacheable unit. The VEA and OEA
define cache management instructions that a programmer can use to affect cache contents.

1.6.2 Gekko Microprocessor Cache Implementation
Gekko cache implementation is described in Section 1.2.4 on Page 1-11 and Section 1.2.5 on Page
1-12. The BPU also contains a 64-entry BTIC that provides immediate access to cached target
instructions. For more information, see Section 1.2.2.2 on Page 1-7.

1.7 Exception Model
The following sections describe the PowerPC exception model and Gekko implementation.
A detailed description of Gekko exception model is provided in Chapter 4, "Exceptions" in this
manual.

1.7.1 PowerPC Exception Model
The PowerPC exception mechanism allows the processor to interrupt the instruction flow to handle
certain situations caused by external signals, errors, or unusual conditions arising from the
instruction execution. When exceptions occur, information about the state of the processor is saved
to certain registers, and the processor begins execution at an address (exception vector)
predetermined for each exception. Exception processing occurs in supervisor mode.
Although multiple exception conditions can map to a single exception vector, a more specific
condition may be determined by examining a register associated with the exception—for example,
the DSISR and the FPSCR. Additionally, some exception conditions can be explicitly enabled or
disabled by software.
The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they are
handled in order. When an instruction-caused exception is recognized, any unexecuted instructions
that appear earlier in the instruction stream, including any that are undispatched, are required to
complete before the exception is taken, and any exceptions those instructions cause must also be
handled first; likewise, asynchronous, precise exceptions are recognized when they occur but are
not handled until the instructions currently in the completion queue successfully retire or generate
an exception, and the completion queue is emptied.
Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. For example, if one instruction encounters multiple exception

IBM Confidential

Page 1-26 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

conditions, those conditions are handled sequentially. After the exception handler handles an
exception, the instruction processing continues until the next exception condition is encountered.
Recognizing and handling exception conditions sequentially guarantees that exceptions are
recoverable.
When an exception is taken, information about the processor state before the exception was taken is
saved in SRR0 and SRR1. Exception handlers must save the information stored in SRR0 and SRR1
early to prevent the program state from being lost due to a system reset and machine check exception
or due to an instruction-caused exception in the exception handler, and before enabling external
interrupts.
The PowerPC architecture supports four types of exceptions:

• Synchronous, precise—These are caused by instructions. All instruction-caused exceptions
are handled precisely; that is, the machine state at the time the exception occurs is known and
can be completely restored. This means that (excluding the trap and system call exceptions)
the address of the faulting instruction is provided to the exception handler and that neither the
faulting instruction nor subsequent instructions in the code stream will complete execution
before the exception is taken. Once the exception is processed, execution resumes at the
address of the faulting instruction (or at an alternate address provided by the exception
handler). When an exception is taken due to a trap or system call instruction, execution
resumes at an address provided by the handler.

• Synchronous, imprecise—The PowerPC architecture defines two imprecise floating-point
exception modes, recoverable and nonrecoverable. Even though Gekko provides a means to
enable the imprecise modes, it implements these modes identically to the precise mode (that
is, enabled floating-point exceptions are always precise).

• Asynchronous, maskable—The PowerPC architecture defines external and decrementer
interrupts as maskable, asynchronous exceptions. When these exceptions occur, their
handling is postponed until the next instruction, and any exceptions associated with that
instruction, completes execution. If no instructions are in the execution units, the exception is
taken immediately upon determination of the correct restart address (for loading SRR0). As
shown in Table 1-4, Gekko implements additional asynchronous, maskable exceptions.

• Asynchronous, nonmaskable—There are two nonmaskable asynchronous exceptions: system
reset and the machine check exception. These exceptions may not be recoverable, or may
provide a limited degree of recoverability. Exceptions report recoverability through the
MSR[RI] bit.

IBM Confidential

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-27

1.7.2 Gekko Microprocessor Exception Implementation
Gekko exception classes described above are shown in Table 1-4. Although exceptions have other
characteristics, such as priority and recoverability, Table 1-4 describes categories of exceptions
Gekko handles uniquely. Table 1-4 includes no synchronous imprecise exceptions; although the
PowerPC architecture supports imprecise handling of floating-point exceptions, Gekko
implements these exception modes precisely.

Table 1-5 lists Gekko exceptions and conditions that cause them. Exceptions specific to Gekko are
indicated.

Table 1-4. Gekko Microprocessor Exception Classifications

Synchronous/Asynchronous Precise/Imprecise Exception Type

Asynchronous, nonmaskable Imprecise Machine check, system reset

Asynchronous, maskable Precise External, decrementer, system management, performance
monitor, and thermal management interrupts

Synchronous Precise Instruction-caused exceptions

Table 1-5. Exceptions and Conditions

Exception Type
Vector Offset

(hex)
Causing Conditions

Reserved 00000 —

System reset 00100 Assertion of either HRESET or SRESET or at power-on reset

Machine check 00200 Assertion of TEA during a data bus transaction, assertion of MCP, an
address, data or L2 double bit error, DMA queue overflow, DMA look-up
misses locked cache, or dcbz_l cache hit. MSR[ME] must be set.

DSI 00300 As specified in the PowerPC architecture. For TLB misses on load, store, or
cache operations, a DSI exception occurs if a page fault occurs.

ISI 00400 As defined by the PowerPC architecture.

External interrupt 00500 MSR[EE] = 1 and INT is asserted.

Alignment 00600 • A floating-point load/store, stmw , stwcx , lmw , lwarx , eciwx or ecowx
instruction operand is not word-aligned.

• A multiple/string load/store operation is attempted in little-endian mode.
• The operand of dcbz or of dcbz_l is in memory that is

write-through-required or caching-inhibited or the cache is disabled

Program 00700 As defined by the PowerPC architecture.

Floating-point
unavailable

00800 As defined by the PowerPC architecture.

Decrementer 00900 As defined by the PowerPC architecture, when the most significant bit of the
DEC register changes from 0 to 1 and MSR[EE] = 1.

Reserved 00A00–00BFF —

System call 00C00 Execution of the System Call (sc) instruction.

Trace 00D00 MSR[SE] = 1 or a branch instruction completes and MSR[BE] = 1. Unlike the
architecture definition, isync does not cause a trace exception

Reserved 00E00 Gekko does not generate an exception to this vector. Other PowerPC
processors may use this vector for floating-point assist exceptions.

Reserved 00E10–00EFF —

Performance monitor1 00F00 The limit specified in a PMC register is reached and MMCR0[ENINT] = 1

IBM Confidential

Page 1-28 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

1.8 Memory Management
The following subsections describe the memory management features of the PowerPC architecture,
and Gekko implementation, respectively. A detailed description of Gekko MMU implementation is
provided in Chapter 5, "Memory Management" in this manual.

1.8.1 PowerPC Memory Management Model
The primary functions of the MMU are to translate logical (effective) addresses to physical addresses
for memory accesses and to provide access protection on blocks and pages of memory. There are two
types of accesses generated by Gekko that require address translation—instruction accesses, and data
accesses to memory generated by load, store, and cache control instructions.
The PowerPC architecture defines different resources for 32- and 64-bit processors; Gekko
implements the 32-bit memory management model. The memory-management model provides 4
Gbytes of logical address space accessible to supervisor and user programs with a 4-Kbyte page size
and 256-Mbyte segment size. BAT block sizes range from 128 Kbyte to 256 Mbyte and are software
selectable. In addition, it defines an interim 52-bit virtual address and hashed page tables for
generating 32-bit physical addresses.
The architecture also provides independent four-entry BAT arrays for instructions and data that
maintain address translations for blocks of memory. These entries define blocks that can vary from
128 Kbytes to 256 Mbytes. The BAT arrays are maintained by system software.
The PowerPC MMU and exception model support demand-paged virtual memory. Virtual memory
management permits execution of programs larger than the size of physical memory; demand-paged
implies that individual pages are loaded into physical memory from system memory only when they
are first accessed by an executing program.
The hashed page table is a variable-sized data structure that defines the mapping between virtual page
numbers and physical page numbers. The page table size is a power of 2, and its starting address is a
multiple of its size. The page table contains a number of page table entry groups (PTEGs). A PTEG
contains eight page table entries (PTEs) of eight bytes each; therefore, each PTEG is 64 bytes long.
PTEG addresses are entry points for table search operations.
Setting MSR[IR] enables instruction address translations and MSR[DR] enables data address
translations. If the bit is cleared, the respective effective address is the same as the physical address.

Instruction address
breakpoint1

01300 IABR[0–29] matches EA[0–29] of the next instruction to complete, IABR[TE]
matches MSR[IR], and IABR[BE] = 1.

Reserved 01400–016FF —

Thermal management
interrupt1

01700 Thermal management is enabled, the junction temperature exceeds the
threshold specified in THRM1 or THRM2, and MSR[EE] = 1.

Reserved 01800–02FFF —

Note :
1 Gekko-specific

Table 1-5. Exceptions and Conditions (Continued)

Exception Type
Vector Offset

(hex)
Causing Conditions

IBM Confidential

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-29

1.8.2 Gekko Microprocessor Memory Management Implementation
Gekko implements separate MMUs for instructions and data. It implements a copy of the segment
registers in the instruction MMU; however, read and write accesses (mfsr andmtsr) are handled
through the segment registers implemented as part of the data MMU. Gekko MMU is described in
Section 1.2.3 on Page 1-10.
The R (referenced) bit is updated in the PTE in memory (if necessary) during a table search due to
a TLB miss. Updates to the changed (C) bit are treated like TLB misses. A complete table search
is performed and the entire TLB entry is rewritten to update the C bit.

1.9 Instruction Timing
Gekko is a pipelined, superscalar processor. A pipelined processor is one in which instruction
processing is divided into discrete stages, allowing work to be done on different instructions in each
stage. For example, after an instruction completes one stage, it can pass on to the next stage leaving
the previous stage available to the subsequent instruction. This improves overall instruction
throughput.
A superscalar processor is one that issues multiple independent instructions into separate execution
units, allowing instructions to execute in parallel. Gekko has six independent execution units, two
for integer instructions, and one each for floating-point instructions, branch instructions, load and
store instructions, and system register instructions. Having separate GPRs and FPRs allows integer,
floating-point calculations, and load and store operations to occur simultaneously without
interference. Additionally, rename buffers are provided to allow operations to post execution
results for use by subsequent instructions without committing them to the architected FPRs and
GPRs.
As shown inFigure 1-6, the common pipeline of Gekko has four stages through which all
instructions must pass—fetch, decode/dispatch, execute, and complete/write back. Some
instructions occupy multiple stages simultaneously and some individual execution units have
additional stages. For example, the floating-point pipeline consists of three stages through which
all floating-point instructions must pass.

IBM Confidential

Page 1-30 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Figure 1-6. Pipeline Diagram

NOTE: Figure 1-6 does not show features, such as reservation stations and rename buffers
that reduce stalls and improve instruction throughput.

The instruction pipeline in Gekko has four major pipeline stages, described as follows:
• The fetch pipeline stage primarily involves retrieving instructions from the memory system

and determining the location of the next instruction fetch. The BPU decodes branches during
the fetch stage and removes those that do not update CTR or LR from the instruction stream.

• The dispatch stage is responsible for decoding the instructions supplied by the instruction
fetch stage and determining which instructions can be dispatched in the current cycle. If
source operands for the instruction are available, they are read from the appropriate register
file or rename register to the execute pipeline stage. If a source operand is not available,
dispatch provides a tag that indicates which rename register will supply the operand when it
becomes available. At the end of the dispatch stage, the dispatched instructions and their
operands are latched by the appropriate execution unit.

• Instructions executed by the IUs, FPU, SRU, and LSU are dispatched from the bottom two
positions in the instruction queue. In a single clock cycle, a maximum of two instructions can
be dispatched to these execution units in any combination. When an instruction is dispatched,
it is assigned a position in the six-entry completion queue. A branch instruction can be issued
on the same clock cycle for a maximum three-instruction dispatch.

• During the execute pipeline stage, each execution unit that has an executable instruction
executes the selected instruction (perhaps over multiple cycles), writes the instruction's result
into the appropriate rename register, and notifies the completion stage that the instruction has
finished execution. In the case of an internal exception, the execution unit reports the
exception to the completion pipeline stage and (except for the FPU) discontinues instruction
execution until the exception is handled. The exception is not signaled until that instruction is

Fetch

Complete (Write-Back)

Dispatch

Execute Stage

FPU3SRU IU2IU1

Maximum three-instruction dis-
patch per clock cycle (includes one
branch instruction)

Maximum two-instruction com-
pletion per clock cycle

FPU2

FPU1

LSU1

Maximum four-instruction fetch
per clock cycle

LSU2

BPU

IBM Confidential

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-31

the next to be completed. Execution of most floating-point instructions is pipelined within
the FPU allowing up to three instructions to be executing in the FPU concurrently. The FPU
stages are multiply, add, and round-convert. Execution of most load/store instructions is
also pipelined. The load/store unit has two pipeline stages. The first stage is for effective
address calculation and MMU translation and the second stage is for accessing the data in
the cache.

• The complete pipeline stage maintains the correct architectural machine state and transfers
execution results from the rename registers to the GPRs and FPRs (and CTR and LR, for
some instructions) as instructions are retired. As with dispatching instructions from the
instruction queue, instructions are retired from the two bottom positions in the completion
queue. If completion logic detects an instruction causing an exception, all following
instructions are cancelled, their execution results in rename registers are discarded, and
instructions are fetched from the appropriate exception vector.

Because the PowerPC architecture can be applied to such a wide variety of implementations,
instruction timing varies among PowerPC processors.
For a detailed discussion of instruction timing with examples and a table of latencies for each
execution unit, see Chaper 6 “Instruction Timing.”

1.10 Power Management
Gekko provides four power modes, selectable by setting the appropriate control bits in the MSR
and HID0 registers. The four power modes are as follows:

• Full-power—This is the default power state of Gekko. Gekko is fully powered and the
internal functional units are operating at the full processor clock speed. If the dynamic
power management mode is enabled, functional units that are idle will automatically enter
a low-power state without affecting performance, software execution, or external hardware.

• Doze—All the functional units of Gekko are disabled except for the time base/decrementer
registers and the bus snooping logic. When the processor is in doze mode, an external
asynchronous interrupt, a system management interrupt, a decrementer exception, a hard or
soft reset, or machine check brings Gekko into the full-power state. Gekko in doze mode
maintains the PLL in a fully powered state and locked to the system external clock input
(SYSCLK) so a transition to the full-power state takes only a few processor clock cycles.

• Nap—The nap mode further reduces power consumption by disabling bus snooping,
leaving only the time base register and the PLL in a powered state. Gekko returns to the
full-power state upon receipt of an external asynchronous interrupt, a system management
interrupt, a decrementer exception, a hard or soft reset, or a machine check input (MCP).
A return to full-power state from a nap state takes only a few processor clock cycles. When
the processor is in nap mode, ifQACK is negated, the processor is put in doze mode to
support snooping.

• Sleep—Sleep mode minimizes power consumption by disabling all internal functional
units, after which external system logic may disable the PLL and SYSCLK. Returning
Gekko to the full-power state requires the enabling of the PLL and SYSCLK, followed by
the assertion of an external asynchronous interrupt, a system management interrupt, a hard
or soft reset, or a machine check input (MCP) signal after the time required to relock the
PLL.

Chapter 10, "Power and Thermal Management" in this manual provides information about power
saving and thermal management modes for Gekko.

IBM Confidential

Page 1-32 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

1.11 Thermal Management
Gekko’s thermal assist unit (TAU) provides a way to control heat dissipation. This ability is
particularly useful in portable computers, which, due to power consumption and size limitations,
cannot use desktop cooling solutions such as fans. Therefore, better heat sink designs coupled with
intelligent thermal management is of critical importance for high performance portable systems.
Primarily, the thermal management system monitors and regulates the system’s operating
temperature. For example, if the temperature is about to exceed a set limit, the system can be made
to slow down or even suspend operations temporarily in order to lower the temperature.
The thermal management facility also ensures that the processor’s junction temperature does not
exceed the operating specification. To avoid the inaccuracies that arise from measuring junction
temperature with an external thermal sensor, Gekko’s on-chip thermal sensor and logic tightly
couples the thermal management implementation.
The TAU consists of a thermal sensor, digital-to-analog convertor, comparator, control logic, and the
dedicated SPRs described in Section 1.4 on Page 1-18. The TAU does the following:

• Compares the junction temperature against user-programmable thresholds

• Generates a thermal management interrupt if the temperature crosses the threshold

• Enables the user to estimate the junction temperature by way of a software successive
approximation routine

The TAU is controlled through the privilegedmtspr/mfspr instructions to the three SPRs provided
for configuring and controlling the sensor control logic, which function as follows:

• THRM1 and THRM2 provide the ability to compare the junction temperature against two
user-provided thresholds. Having dual thresholds gives the thermal management software
finer control of the junction temperature. In single threshold mode, the thermal sensor output
is compared to only one threshold in either THRM1 or THRM2.

• THRM3 is used to enable the TAU and to control the comparator output sample time. The
thermal management logic manages the thermal management interrupt generation and time
multiplexed comparisons in the dual threshold mode as well as other control functions.

Instruction cache throttling provides control of Gekko’s overall junction temperature by determining
the interval at which instructions are fetched. This feature is accessed through the ICTC register.
Chapter 10, "Power and Thermal Management" in this manual provides information about power
saving and thermal management modes for Gekko.

IBM Confidential

Chapter 1. Gekko Overview IBM Confidential 5/25/00 Page 1-33

1.12 Performance Monitor
Gekko incorporates a performance monitor facility that system designers can use to help bring up,
debug, and optimize software performance. The performance monitor counts events during
execution of code, relating to dispatch, execution, completion, and memory accesses.
The performance monitor incorporates several registers that can be read and written to by
supervisor-level software. User-level versions of these registers provide read-only access for
user-level applications. These registers are described in Section 1.4 on Page 1-18. Performance
monitor control registers, MMCR0 or MMCR1, can be used to specify which events are to be
counted and the conditions for which a performance monitoring interrupt is taken. Additionally,
the sampled instruction address register, SIA (USIA), holds the address of the first instruction to
complete after the counter overflowed.
Attempting to write to a user-read-only performance monitor register causes a program exception,
regardless of the MSR[PR] setting.
When a performance monitoring interrupt occurs, program execution continues from vector offset
0x00F00.
Chapter 11, "Performance Monitor" in this manualdescribes the operation of the performance
monitor diagnostic tool incorporated in Gekko.

IBM Confidential

Page 1-34 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-1

Chapter 2 Programming Model
20
20

This chapter describes the Gekko programming model, emphasizing those features specific to the
Gekko processor and summarizing those that are common to PowerPC processors. It consists of
three major sections, which describe the following:

• Registers implemented in Gekko

• Operand conventions

• The Gekko instruction set

For detailed information about architecture-defined features, see thePowerPC Microprocessor
Family: The Programming Environments manual.

2.1 Gekko Processor Register Set
This section describes the registers implemented in Gekko. It includes an overview of registers
defined by the PowerPC architecture, highlighting differences in how these registers are
implemented in Gekko, and a detailed description of Gekko-specific registers. Full descriptions of
the architecture-defined register set are provided in Chapter 2, “PowerPC Register Set" in the
PowerPC Microprocessor Family: The Programming Environments manual.
Registers are defined at all three levels of the PowerPC architecture—user instruction set
architecture (UISA), virtual environment architecture (VEA), and operating environment
architecture (OEA). The PowerPC architecture defines register-to-register operations for all
computational instructions. Source data for these instructions are accessed from the on-chip
registers or are provided as immediate values embedded in the opcode. The three-register
instruction format allows specification of a target register distinct from the two source registers,
thus preserving the original data for use by other instructions and reducing the number of
instructions required for certain operations. Data is transferred between memory and registers with
explicit load and store instructions only.

2.1.1 Register Set
The registers implemented on Gekko are shown in Figure 2-1 on Page 2-2. The number to
the right of the special-purpose registers (SPRs) indicates the number that is used in the
syntax of the instruction operands to access the register (for example, the number used to
access the integer exception register (XER) is SPR 1). These registers can be accessed
using themtspr andmfspr instructions.

IBM Confidential

Page 2-2 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Figure 2-1. Programming Model—Gekko Microprocessor Registers

ICTC SPR 1019
SPR 1020

SPR 1021

SPR 1022

THRM1

THRM2

THRM3

SPR 937

SPR 938

SPR 941

SPR 942

Performance
Counters 1

Sampled
Instruction
Address 1

DSISR

Data Address
Register

SPRGs

Exception Handling Registers
Save and Restore
Registers

Instruction BAT
Registers

Data BAT
Registers

Memory Management Registers

Machine State
Register

MSR

Processor
Version
Register

SPR 287PVR

Configuration RegistersHardware
Implementation Registers 1

SPR 1

USER MODEL UISA

FPSCR

Condition Register

General-Purpose
Registers

XER XER

SPR 8

Link Register

LR

SUPERVISOR MODEL—OEA

DecrementerExternal Access
Register

EAR

SDR1

SPR 9
Count
Register

Miscellaneous Registers

Segment
Registers

CR

Floating-Point Registers
Performance

Monitor Registers
(For Reading)

Performance Counters 1

Monitor Control 1

SPR 939USIA

Sampled Instruction
Address 1

Monitor Control 1

Time Base
(For Writing)

Power/Thermal Management Registers
Thermal Assist
Unit Registers 1

Instruction Cache
Throttling Control
Register 1

USER MODEL—VEA

TBL TBR 268

Time Base Facility (For Reading)

CTR

GPR0

GPR1

GPR31

TBU TBR 269

IBAT0U

IBAT0L

IBAT1U

IBAT1L

IBAT2U

IBAT2L

IBAT3U

IBAT3L

SPR 528

SPR 529

SPR 530

SPR 531

SPR 532

SPR 533

SPR 534

SPR 535

SPR 536

SPR 537

SPR 538

SPR 539

SPR 540

SPR 541

SPR 542

SPR 543

DBAT0U

DBAT0L

DBAT1U

DBAT1L

DBAT2U

DBAT2L

DBAT3U

DBAT3L

SR0

SR1

SR15

SDR1 SPR 25

HID0

HID1

SPR 1008

SPR 1009

FPR0

FPR1

FPR31
UPMC1

UPMC2

UPMC3

UPMC4

UMMCR0

UMMCR1

SPR 936

SPR 940

SPR 953

SPR 954

SPR 957

SPR 958

PMC1

PMC2

PMC3

PMC4

SIA SPR 955

MMCR0

MMCR1

SPR 952

SPR 956

SPRG0

SPRG1

SPRG2

SPRG3

SPR 272

SPR 273

SPR 274

SPR 275

DAR

DSISR

SPR 19

SPR 18

SRR0 SPR 26

SRR1 SPR 27

SPR 282 TBL SPR 284

TBU SPR 285

DEC SPR 22

Data Address
Breakpoint Register

DABR SPR 1013
L2 Control
Register 1

L2CR SPR 1017

Instruction Address
Breakpoint Register 1

IABR SPR 1010

TBR 269 TBR 269

Write Gather Pipe 1

WPAR SPR 921

Direct Memory Access 1

DMAL
DMAU

SPR 923
SPR 922

Floating-Point Status
and Control Register

HID2 SPR 920

GQR4
GQR5
GQR6
GQR7

SPR 912
SPR 913
SPR 914
SPR 915

SPR 916
SPR 917
SPR 918
SPR 919

Quantization Registers 1

These registers are processor-specific registers. They may not be supported by other PowerPC processors.
1

GQRO
GQR1
GQR2
GQR3

Performance Monitor
Registers

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-3

The PowerPC UISA registers are user-level. General-purpose registers (GPRs) and floating-point
registers (FPRs) are accessed through instruction operands. Access to registers can be explicit (by
using instructions for that purpose such as Move to Special-Purpose Register (mtspr) and Move
from Special-Purpose Register (mfspr) instructions) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.
Implementation Note—Gekko fully decodes the SPR field of the instruction. If the SPR specified
is undefined, the illegal instruction program exception occurs. The PowerPC’s user-level registers
are described as follows:

• User-level registers(UISA)—The user-level registers can be accessed by all software with
either user or supervisor privileges. They include the following:

— General-purpose registers (GPRs). The thirty-two GPRs (GPR0–GPR31) serve as data
source or destination registers for integer instructions and provide data for generating
addresses. See “General Purpose Registers (GPRs)" in Chapter 2, “PowerPC Register
Set” of thePowerPC Microprocessor Family: The Programming Environmentsmanual
for more information.

— Floating-point registers (FPRs). The thirty-two FPRs (FPR0–FPR31) serve as the data
source or destination for all floating-point instructions. See “Floating-Point Registers
(FPRs)" in Chapter 2, “PowerPC Register Set” of thePowerPC Microprocessor
Family: The Programming Environments manual.

— Condition register (CR). The 32-bit CR consists of eight 4-bit fields, CR0–CR7, that
reflect results of certain arithmetic operations and provide a mechanism for testing and
branching. See “Condition Register (CR)" in Chapter 2, “PowerPC Register Set” of the
PowerPC Microprocessor Family: The Programming Environments manual.

— Floating-point status and control register (FPSCR). The FPSCR contains all
floating-point exception signal bits, exception summary bits, exception enable bits, and
rounding control bits needed for compliance with the IEEE 754 standard. See
“Floating-Point Status and Control Register (FPSCR)" in Chapter 2, “PowerPC
Register Set" of thePowerPC Microprocessor Family: The Programming Environments
manual.

The remaining user-level registers are SPRs. Note that the PowerPC architecture provides
a separate mechanism for accessing SPRs (themtspr andmfspr instructions). These
instructions are commonly used to explicitly access certain registers, while other SPRs may
be more typically accessed as the side effect of executing other instructions.

— Integer exception register (XER). The XER indicates overflow and carries for integer
operations. See “XER Register (XER)" in Chapter 2, “PowerPC Register Set" of the
PowerPC Microprocessor Family: The Programming Environments manual for more
information.

Implementation Note—To allow emulation of thelscbx instruction defined by the
POWER architecture, XER[16–23] is implemented so that they can be read with
mfspr[XER] and written withmtxer[XER] instructions.

— Link register (LR). The LR provides the branch target address for the Branch
Conditional to Link Register (bclrx) instruction, and can be used to hold the logical
address of the instruction that follows a branch and link instruction, typically used for
linking to subroutines. See “Link Register (LR)" in Chapter 2, “PowerPC Register Set"
of thePowerPC Microprocessor Family: The Programming Environments manual.

IBM Confidential

Page 2-4 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

— Count register (CTR). The CTR holds a loop count that can be decremented during
execution of appropriately coded branch instructions. The CTR can also provide the
branch target address for the Branch Conditional to Count Register (bcctrx) instruction.
See “Count Register (CTR)" in Chapter 2, “PowerPC Register Set" of thePowerPC
Microprocessor Family: The Programming Environments manual.

• User-level registers(VEA)—The PowerPC VEA defines the time base facility (TB), which
consists of two 32-bit registers—time base upper (TBU) and time base lower (TBL). The time
base registers can be written to only by supervisor-level instructions but can be read by both
user- and supervisor-level software. For more information, see “PowerPC VEA Register
Set—Time Base" in Chapter 2, “PowerPC Register Set" of thePowerPC Microprocessor
Family: The Programming Environments manual.

• Supervisor-level registers(OEA)—The OEA defines the registers an operating system uses
for memory management, configuration, exception handling, and other operating system
functions. The OEA defines the following supervisor-level registers for 32-bit
implementations:

— Configuration registers
– Machine state register (MSR). The MSR defines the state of the processor. The MSR

can be modified by the Move to Machine State Register (mtmsr), System Call (sc), and
Return from Exception (rfi) instructions. It can be read by the Move from Machine
State Register (mfmsr) instruction. When an exception is taken, the contents of the
MSR are saved to the machine status save/restore register 1 (SRR1), which is described
below. See “Machine State Register (MSR)" in Chapter 2, “PowerPC Register Set" of
thePowerPC Microprocessor Family: The Programming Environments manual for
more information.

Implementation Note—Table 2-1 describes MSR bits Gekko implements that are not
required by the PowerPC architecture.

NOTE: Setting MSR[EE] masks not only the architecture-defined external interrupt and
decrementer exceptions but also the Gekko-specific system management, performance
monitor, and thermal management exceptions.

– Processor version register (PVR). This register is a read-only register that identifies the
version (model) and revision level of the PowerPC processor. For more information,

Table 2-1. Additional MSR Bits

Bit Name Description

13 POW Power management enable. Optional to the PowerPC architecture.
0 Power management is disabled.
1 Power management is enabled. The processor can enter a power-saving mode when additional

conditions are present. The mode chosen is determined by the DOZE, NAP, and SLEEP bits in
the hardware implementation-dependent register 0 (HID0), described in Table 2-4 on Page
2-9.

29 PM Performance monitor marked mode. This bit is specific to Gekko, and is defined as reserved by the
PowerPC architecture. See Chapter 11, "Performance Monitor" in this manual in this manual.
0 Process is not a marked process.
1 Process is a marked process.

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-5

see “Processor Version Register (PVR)" in Chapter 2, “PowerPC Register Set" of the
PowerPC Microprocessor Family: The Programming Environments manual.

Implementation Note—The processor version number is 0x7000 for Gekko. Early
releases of the hardware may have a processor version number of 0x0008. The
processor revision level starts at 0x0100 and is updated for each silicon revision.

— Memory management registers
– Block-address translation (BAT) registers. The PowerPC OEA includes an array of

block address translation registers that can be used to specify four blocks of
instruction space and four blocks of data space. The BAT registers are implemented
in pairs—four pairs of instruction BATs (IBAT0U–IBAT3U and IBAT0L–IBAT3L)
and four pairs of data BATs (DBAT0U–DBAT3U and DBAT0L–DBAT3L).
Figure 2-1 on Page 2-2 lists the SPR numbers for the BAT registers. For more
information, see “BAT Registers" in Chapter 2, “PowerPC Register Set” of the
PowerPC Microprocessor Family: The Programming Environments manual.
Because BAT upper and lower words are loaded separately, software must ensure
that BAT translations are correct during the time that both BAT entries are being
loaded.

Gekko implements the G bit in the IBAT registers; however, attempting to execute
code from an IBAT area with G = 1 causes an ISI exception. This complies with the
revision of the architecture described in thePowerPC Microprocessor Family: The
Programming Environments manual.

– SDR1. The SDR1 register specifies the page table base address used in
virtual-to-physical address translation. See “SDR1" in Chapter 2, “PowerPC
Register Set” of thePowerPC Microprocessor Family: The Programming
Environments manual.”

– Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment registers
(SR0–SR15). Note that the SRs are implemented on 32-bit implementations only.
The fields in the segment register are interpreted differently depending on the value
of bit 0. See “Segment Registers" in Chapter 2, “PowerPC Register Set” of the
PowerPC Microprocessor Family: The Programming Environments manual for
more information.

Note that Gekko implements separate memory management units (MMUs) for
instruction and data. It associates the architecture-defined SRs with the data MMU
(DMMU). It reflects the values of the SRs in separate, so-called ‘shadow’ segment
registers in the instruction MMU (IMMU).

— Exception-handling registers
– Data address register (DAR). After a DSI or an alignment exception, DAR is set to

the effective address (EA) generated by the faulting instruction. See “Data Address
Register (DAR)" in Chapter 2, “PowerPC Register Set” of thePowerPC
Microprocessor Family: The Programming Environments manual for more
information.

– SPRG0–SPRG3. The SPRG0–SPRG3 registers are provided for operating system
use. See “SPRG0–SPRG3" in Chapter 2, “PowerPC Register Set” of thePowerPC
Microprocessor Family: The Programming Environments manual for more
information.

– DSISR. The DSISR register defines the cause of DSI and alignment exceptions. See

IBM Confidential

Page 2-6 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

“DSISR" in Chapter 2, “PowerPC Register Set" of thePowerPC Microprocessor
Family: The Programming Environments manual for more information.

– Machine status save/restore register 0 (SRR0). The SRR0 register is used to save the
address of the instruction at which execution continues whenrfi executes at the end of
an exception handler routine. See “Machine Status Save/Restore Register 0 (SRR0)" in
Chapter 2, “PowerPC Register Set" of thePowerPC Microprocessor Family: The
Programming Environments manual for more information.

– Machine status save/restore register 1 (SRR1). The SRR1 register is used to save
machine status on exceptions and to restore machine status whenrfi executes. See
“Machine Status Save/Restore Register 1 (SRR1)" in Chapter 2, “PowerPC Register
Set" of thePowerPC Microprocessor Family: The Programming Environmentsmanual
for more information.

Implementation Note—When a machine check exception occurs, Gekko sets one or
more error bits in SRR1. Table 2-2 describes SRR1 bits Gekko implements that are not
required by the PowerPC architecture.

— Miscellaneous registers
– Time base (TB). The TB is a 64-bit structure provided for maintaining the time of day

and operating interval timers. The TB consists of two 32-bit registers—time base upper
(TBU) and time base lower (TBL). The time base registers can be written to only by
supervisor-level software, but can be read by both user- and supervisor-level software.
See “Time Base Facility (TB)—OEA" in Chapter 2, “PowerPC Register Set" of the
PowerPC Microprocessor Family: The Programming Environments manual for more
information.

– Decrementer register (DEC). This register is a 32-bit decrementing counter that
provides a mechanism for causing a decrementer exception after a programmable
delay; the frequency is a subdivision of the processor clock. See “Decrementer Register
(DEC)" in Chapter 2, “PowerPC Register Set" of thePowerPC Microprocessor
Family: The Programming Environments manual for more information.

Implementation Note—In Gekko, the decrementer register is decremented and the
time base is incremented at a speed that is one-fourth the speed of the bus clock.

– Data address breakpoint register (DABR)—This optional register is used to cause a
breakpoint exception if a specified data address is encountered. See “Data Address
Breakpoint Register (DABR)" in Chapter 2, “PowerPC Register Set" of thePowerPC

Table 2-2. Additional SRR1 Bits

Bit Name Description

10 DMA Set by a dcbz_l or DMA error

11 L2DP Set by a double bit ECC error in the L2.

12 MCPIN Set by the assertion of MCP

13 TEA Set by a TEA assertion on the 60x bus

14 DP Set by a data parity error on the 60x bus

15 AP Set by an address parity error on the 60x bus

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-7

Microprocessor Family: The Programming Environments manual.”

– External access register (EAR). This optional register is used in conjunction with
eciwxandecowx. Note that the EAR register and theeciwxandecowxinstructions
are optional in the PowerPC architecture and may not be supported in all PowerPC
processors that implement the OEA. See “External Access Register (EAR)" in
Chapter 2, “PowerPC Register Set" of thePowerPC Microprocessor Family: The
Programming Environments manual for more information.

• Gekko-specific registers—The PowerPC architecture allows implementation-
specific SPRs. Those incorporated in Gekko are described as follows. Note that in Gekko,
these registers are all supervisor-level registers.

— Instruction address breakpoint register (IABR)—This register can be used to cause a
breakpoint exception if a specified instruction address is encountered.

— Hardware implementation-dependent register 0 (HID0)—This register controls various
functions, such as enabling checkstop conditions, and locking, enabling, and
invalidating the instruction and data caches.

— Hardware implementation-dependent register 1 (HID1)—This register reflects the state
of PLL_CFG[0–3] clock signals.

— Hardware implementation-dependent register 2 (HID2)—This register controls the
graphics enhancement facilities, including the locked cache and DMA, the write gather
pipe and paired single processing in the floating-point unit.

— Direct memory access (DMA) registers—The pair of DMA registers, DMAU and
DMAL, is used to specify and issue a DMA command. Each DMA command consists
of a locked cache address, an external memory address, transfer length and transfer
direction.

— Graphics quantization registers (GQRs)—This array of eight registers is used to specify
the conversion parameters used by the paired single quantized load and store
instructions.

— Write pipe address register (WPAR)—This register is used to specify the target address
of non-cacheable store transactions to be gathered by the write gather pipe facility.

— The L2 cache control register (L2CR) is used to configure and operate the L2 cache.
— Performance monitor registers. The following registers are used to define and count

events for use by the performance monitor:
– The performance monitor counter registers (PMC1–PMC4) are used to record the

number of times a certain event has occurred. UPMC1–UPMC4 provide user-level
read access to these registers.

– The monitor mode control registers (MMCR0–MMCR1) are used to enable various
performance monitor interrupt functions. UMMCR0–UMMCR1 provide user-level
read access to these registers.

– The sampled instruction address register (SIA) contains the effective address of an
instruction executing at or around the time that the processor signals the
performance monitor interrupt condition. USIA provides user-level read access to
the SIA.

– Gekko does not implement the sampled data address register (SDA) or the
user-level, read-only USDA registers. However, for compatibility with processors
that do, those registers can be written to by boot code without causing an exception.
SDA is SPR 959; USDA is SPR 943.

IBM Confidential

Page 2-8 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

— The instruction cache throttling control register (ICTC) has bits for enabling the
instruction cache throttling feature and for controlling the interval at which instructions
are forwarded to the instruction buffer in the fetch unit. This provides control over the
processor’s overall junction temperature.

— Thermal management registers (THRM1, THRM2, and THRM3). Used to enable and set
thresholds for the thermal management facility.
– THRM1 and THRM2 provide the ability to compare the junction temperature against

two user-provided thresholds. The dual thresholds allow the thermal management
software differing degrees of action in lowering the junction temperature. The TAU can
be also operated in a single threshold mode in which the thermal sensor output is
compared to only one threshold in either THRM1 or THRM2.

– THRM3 is used to enable the thermal management assist unit (TAU) and to
control the comparator output sample time.

Note that while it is not guaranteed that the implementation of Gekko-specific registers is consistent
among PowerPC processors, other processors may implement similar or identical registers.

2.1.2 Gekko-Specific Registers
This section describes registers that are defined for Gekko but are not included in the PowerPC
architecture.

2.1.2.1 Instruction Address Breakpoint Register (IABR)
The address breakpoint register (IABR), shown in Figure 2-2, supports the instruction address
breakpoint exception. When this exception is enabled, instruction fetch addresses are compared with
an effective address stored in the IABR. If the word specified in the IABR is fetched, the instruction
breakpoint handler is invoked. The instruction that triggers the breakpoint does not execute before the
handler is invoked. For more information, see Section 4.5.14, "Instruction Address Breakpoint
Exception (0x01300)" on Page 4-21. The IABR can be accessed withmtspr andmfspr using the
SPR1010.

Figure 2-2. Instruction Address Breakpoint Register

The IABR bits are described in Table 2-3.

2.1.2.2 Hardware Implementation-Dependent Register 0
The hardware implementation-dependent register 0 (HID0) controls the state of several functions
within Gekko. The HID0 register is shown in Figure 2-3.

Table 2-3. Instruction Address Breakpoint Register Bit Settings

Bits Name Description

0–29 Address Word address to be compared

30 BE Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done.

31 TE Translation enabled. An IABR match is signaled if this bit matches MSR[IR].

0 29 30 31

Address BE TE

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-9

Figure 2-3 . Hardware Implementation-Dependent Register 0 (HID0)

The HID0 bits are described in Table 2-4.

Table 2-4. HID0 Bit Functions

Bit Name Function

0 EMCP Enable MCP. The primary purpose of this bit is to mask out further machine check exceptions
caused by assertion of MCP, similar to how MSR[EE] can mask external interrupts.
0 Masks MCP. Asserting MCP does not generate a machine check exception or a checkstop.
1 Asserting MCP causes checkstop if MSR[ME] = 0 or a machine check exception if ME = 1.

1 DBP Disable 60x bus address and data parity generation.
0 Parity generation is enabled.
1 Disable parity generation. If the system does not use address or data parity and the respective

parity checking is disabled (HID0[EBA] or HID0[EBD] = 0), input receivers for those signals are
disabled, require no pull-up resistors, and thus should be left unconnected. If all parity
generation is disabled, all parity checking should also be disabled and parity signals need not
be connected.

2 EBA Enable/disable 60x bus address parity checking
0 Prevents address parity checking.
1 Allows a address parity error to cause a checkstop if MSR[ME] = 0 or a machine check

exception if MSR[ME] = 1.
EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

3 EBD Enable 60x bus data parity checking
0 Parity checking is disabled.
1 Allows a data parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if

MSR[ME] = 1.
EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

4 BCLK Reserved. Must set to 0.

5 — Not used. Defined as EICE on some earlier processors.

6 ECLK Reserved. Must set to 0.

7 PAR Disable precharge of ARTRY.
0 Precharge of ARTRY enabled
1 Alters bus protocol slightly by preventing the processor from driving ARTRY to high (negated)

state. If this is done, the system must restore the signals to the high state.

8 DOZE Doze mode enable. Operates in conjunction with MSR[POW].
0 Doze mode disabled.
1 Doze mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In doze

mode, the PLL, time base, and snooping remain active.

EBDEBA PAR NAP DPM NHR ICE DCE DCFI

EMCP BCLK ECLK DOZE SLEEP ILOCK
DLOCK

ICFI SPD DCFA BTIC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

BHTABE00DBP 00 0IFEM SGE

NOOPTI

0

IBM Confidential

Page 2-10 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

9 NAP Nap mode enable. Operates in conjunction with MSR[POW].
0 Nap mode disabled.
1 Nap mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In nap

mode, the PLL and the time base remain active.

10 SLEEP Sleep mode enable. Operates in conjunction with MSR[POW].
0 Sleep mode disabled.
1 Sleep mode enabled. Sleep mode is invoked by setting MSR[POW] while this bit is set. QREQ is

asserted to indicate that the processor is ready to enter sleep mode. If the system logic
determines that the processor may enter sleep mode, the quiesce acknowledge signal, QACK,
is asserted back to the processor. Once QACK assertion is detected, the processor enters
sleep mode after several processor clocks. At this point, the system logic may turn off the PLL
by first configuring PLL_CFG[0–3] to PLL bypass mode, then disabling SYSCLK.

11 DPM Dynamic power management enable.
0 Dynamic power management is disabled.
1 Functional units may enter a low-power mode automatically if the unit is idle. This does not

affect operational performance and is transparent to software or any external hardware.

12–14 — Not used

15 NHR Not hard reset (software-use only)—Helps software distinguish a hard reset from a soft reset.
0 A hard reset occurred if software had previously set this bit.
1 A hard reset has not occurred. If software sets this bit after a hard reset, when a reset occurs

and this bit remains set, software can tell it was a soft reset.

16 ICE Instruction cache enable
0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were

marked cache-inhibited (WIM = X1X). Potential cache accesses from the bus (snoop and cache
operations) are ignored. In the disabled state for the L1 caches, the cache tag state bits are
ignored and all accesses are propagated to the L2 cache or bus as single-beat transactions. For
those transactions, however, CI reflects the original state determined by address translation
regardless of cache disabled status. ICE is zero at power-up.

1 The instruction cache is enabled

17 DCE Data cache enable
0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked

cache-inhibited (WIM = X1X). Potential cache accesses from the bus (snoop and cache
operations) are ignored. In the disabled state for the L1 caches, the cache tag state bits are
ignored and all accesses are propagated to the L2 cache or bus as single-beat transactions. For
those transactions, however, CI reflects the original state determined by address translation
regardless of cache disabled status. DCE is zero at power-up.

1 The data cache is enabled.

18 ILOCK Instruction cache lock
0 Normal operation
1 Instruction cache is locked. A locked cache supplies data normally on a hit, but are treated as a

cache-inhibited transaction on a miss. On a miss, the transaction to the bus or the L2 cache is
single-beat, however, CI still reflects the original state as determined by address translation
independent of cache locked or disabled status.

To prevent locking during a cache access, an isync instruction must precede the setting of ILOCK.

Table 2-4. HID0 Bit Functions (Continued)

Bit Name Function

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-11

19 DLOCK Data cache lock.
0 Normal operation
1 Data cache is locked. A locked cache supplies data normally on a hit but is treated as a

cache-inhibited transaction on a miss. On a miss, the transaction to the bus or the L2 cache is
single-beat, however, CI still reflects the original state as determined by address translation
independent of cache locked or disabled status. A snoop hit to a locked L1 data cache performs
as if the cache were not locked. A cache block invalidated by a snoop remains invalid until the
cache is unlocked.

To prevent locking during a cache access, a sync instruction must precede the setting of DLOCK.

20 ICFI Instruction cache flash invalidate
0 The instruction cache is not invalidated. The bit is cleared when the invalidation operation

begins (usually the next cycle after the write operation to the register). The instruction cache
must be enabled for the invalidation to occur.

1 An invalidate operation is issued that marks the state of each instruction cache block as invalid
without writing back modified cache blocks to memory. Cache access is blocked during this
time. Bus accesses to the cache are signaled as a miss during invalidate-all operations. Setting
ICFI clears all the valid bits of the blocks and the PLRU bits to point to way L0 of each set. Once
the L1 flash invalidate bits are set through a mtspr operations, hardware automatically resets
these bits in the next cycle (provided that the corresponding cache enable bits are set in HID0).

Note, in the PowerPC 603 and PowerPC 603e processors, the proper use of the ICFI and DCFI bits
was to set them and clear them in two consecutive mtspr operations. Software that already has
this sequence of operations does not need to be changed to run on Gekko.

21 DCFI Data cache flash invalidate
0 The data cache is not invalidated. The bit is cleared when the invalidation operation begins

(usually the next cycle after the write operation to the register). The data cache must be enabled
for the invalidation to occur.

1 An invalidate operation is issued that marks the state of each data cache block as invalid without
writing back modified cache blocks to memory. Cache access is blocked during this time. Bus
accesses to the cache are signaled as a miss during invalidate-all operations. Setting DCFI
clears all the valid bits of the blocks and the PLRU bits to point to way L0 of each set. Once the
L1 flash invalidate bits are set through a mtspr operations, hardware automatically resets these
bits in the next cycle (provided that the corresponding cache enable bits are set in HID0).

Setting this bit clears all the valid bits of the blocks and the PLRU bits to point to way L0 of each set.
Note, In the PowerPC 603 and PowerPC 603e processors, the proper use of the ICFI and DCFI bits
was to set them and clear them in two consecutive mtspr operations. Software that already has
this sequence of operations does not need to be changed to run on Gekko.

22 SPD Speculative cache access disable
0 Speculative bus accesses to nonguarded space (G = 0) from both the instruction and data

caches is enabled
1 Speculative bus accesses to nonguarded space in both caches is disabled

23 IFEM Enable M bit on bus for instruction fetches.
0 M bit disabled. Instruction fetches are treated as nonglobal on the bus
1 Instruction fetches reflect the M bit from the WIM settings.

24 SGE Store gathering enable
0 Store gathering is disabled
1 Integer store gathering is performed for write-through to nonguarded space or for

cache-inhibited stores to nonguarded space for 4-byte, word-aligned stores. The LSU combines
stores to form a double word that is sent out on the 60x bus as a single-beat operation. Stores
are gathered only if successive, eligible stores, are queued and pending. Store gathering is
performed regardless of address order or endian mode.

Table 2-4. HID0 Bit Functions (Continued)

Bit Name Function

IBM Confidential

Page 2-12 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

HID0 can be accessed withmtspr andmfspr using SPR1008.

2.1.2.3 Hardware Implementation-Dependent Register 1
The hardware implementation-dependent register 1 (HID1) reflects the state of the PLL_CFG[0–3]
signals. The HID1 bits are shown in Figure 2-4.

Figure 2-4 . Hardware Implementation-Dependent Register 1 (HID1)

25 DCFA Data cache flush assist. (Force data cache to ignore invalid sets on miss replacement selection.)
0 The data cache flush assist facility is disabled
1 The miss replacement algorithm ignores invalid entries and follows the replacement sequence

defined by the PLRU bits. This reduces the series of uniquely addressed load or dcbz
instructions to eight per set. The bit should be set just before beginning a cache flush routine
and should be cleared when the series of instructions is complete.

26 BTIC Branch Target Instruction Cache enable—used to enable use of the 64-entry branch instruction
cache.
0 The BTIC is disabled, the contents are invalidated, and the BTIC behaves as if it was empty.

New entries cannot be added until the BTIC is enabled.
1 The BTIC is enabled, and new entries can be added.

27 — Not used. Defined as FBIOB on earlier 603-type processors.

28 ABE Address broadcast enable—controls whether certain address-only operations (such as cache
operations, eieio , and sync) are broadcast on the 60x bus.
0 Address-only operations affect only local L1 and L2 caches and are not broadcast.
1 Address-only operations are broadcast on the 60x bus.Affected instructions are eieio , sync ,

dcbi , dcbf , and dcbst . A sync instruction completes only after a successful broadcast.
Execution of eieio causes a broadcast that may be used to prevent any external devices, such
as a bus bridge chip, from store gathering.

Note that dcbz (with M = 1, coherency required) always broadcasts on the 60x bus regardless of
the setting of this bit. An icbi is never broadcast. No cache operations, except dcbz , are snooped
by Gekko regardless of whether the ABE is set. Bus activity caused by these instructions results
directly from performing the operation on the Gekko cache.

29 BHT Branch history table enable
0 BHT disabled. Gekko uses static branch prediction as defined by the PowerPC architecture

(UISA) for those branch instructions the BHT would have otherwise used to predict (that is,
those that use the CR as the only mechanism to determine direction). For more information on
static branch prediction, see “Conditional Branch Control,” in Chapter 4 of the PowerPC
Microprocessor Family: The Programming Environments manual.

1 Allows the use of the 512-entry branch history table (BHT).
The BHT is disabled at power-on reset. All entries are set to weakly, not-taken.

30 — Not used

31 NOOPTI No-op the data cache touch instructions.
0 The dcbt and dcbtst instructions are enabled.
1 The dcbt and dcbtst instructions are no-oped globally.

Table 2-4. HID0 Bit Functions (Continued)

Bit Name Function

PC2PC0

0 1 2 3 4 31

PC1

Reserved

PC3 00 00000000000000000000000000

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-13

The HID1 bits are described in Table 2-5.

HID1 can be accessed withmtspr andmfspr using SPR 1009.

2.1.2.4 Hardware Implementation-Dependent Register 2
The hardware implementation-dependent register 2 (HID2) controls the state of the graphics
enhancement features in Gekko. The HID2 register is shown in Figure 2-5.

Figure 2-5 . Hardware Implementation-Dependent Register 2 (HID2)

The HID2 bits are described in Table 2-6

Table 2-5. HID1 Bit Functions

Bit(s) Name Description

0 PC0 PLL configuration bit 0 (read-only)

1 PC1 PLL configuration bit 1 (read-only)

2 PC2 PLL configuration bit 2 (read-only)

3 PC3 PLL configuration bit 3 (read-only)

4–31 — Reserved

Note: The clock configuration bits reflect the state of the PLL_CFG[0–3] signals.

Table 2-6. HID2 Bit Settings

Bit Name Function

0 LSQE Load/Store quantized enable for non-indexed format instructions (psq_l , psq_lu , psq_st ,
psq_stu).

1 WPE Write pipe enable.
0 Write gathering is disabled.
1 Write gather pipe is enabled. Non-cacheable stores to the WPAR address are gathered and

transferred in 32 byte blocks over the 60x bus.

2 PSE Paired single enable.
0 All paired single instructions are illegal.
1 Paired single instructions can be used.

3 LCE Locked cache enable.
0 Cache is not partitioned. Data cache is 32 Kbytes. dcbz_l instruction is illegal. DMA facility

is disabled.
1 Data cache is partitioned into 16 Kbytes of normal cache and 16 Kbytes of locked cache.

dcbz_l instruction will allocate lines in the locked cache. DMA facility can be used to move
data between the locked cache and external memory. In Gekko, locked cache and bus
snoop are incompatible. LCE shall be kept at 0 for systems which generate snoop
transactions.

PSE

LSQE

31

WPE

Reserved

LCE 0 000000000000000DMAQL

7 8

DCHERR
DNCERR

DCMERR
DQOERR

9 10 11 12 13 14 15 160 1 2 3 4

DCHEE

DNCEE

DCMEE
DQOEE

IBM Confidential

Page 2-14 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

HID2 can be accessed withmtspr andmfspr using SPR 920.

When usingmtspr to set any of the three enable bits, LSQE, PSE and LCE, the i-cache must be
invalidated before using any of the corresponding Gekko graphics extension instructions.

2.1.2.5 Performance Monitor Registers
This section describes the registers used by the performance monitor, which is described in
Chapter 11, "Performance Monitor" in this manual.

2.1.2.5.1 Monitor Mode Control Register 0 (MMCR0)
The monitor mode control register 0 (MMCR0), shown in Figure 2-6, is a 32-bit SPR provided to
specify events to be counted and recorded. The MMCR0 can be accessed only in supervisor mode.
User-level software can read the contents of MMCR0 by issuing anmfspr instruction to UMMCR0,
described in the next section.

Figure 2-6. Monitor Mode Control Register 0 (MMCR0)

This register must be cleared at power up. Reading this register does not change its contents. The bits

4-7 DMAQL DMA queue length (read only). The DMAQL value indicates the number of DMA commands
outstanding. A value of zero indicates an empty DMA command queue. A value of 15
indicates the DMA command queue is full.

8 DCHERR dcbz_l cache hit error (sticky).

9 DNCERR DMA access to normal cache error (sticky).

10 DCMERR DMA cache miss error (sticky).

11 DQOERR DMA queue overflow error (sticky).

12 DCHEE dcbz_l cache hit error enable.

13 DNCEE DMA access to normal cache error enable.

14 DCMEE DMA cache miss error enable.

15 DQOEE DMA queue overflow error enable.

16-31 — Reserved.

Table 2-6. HID2 Bit Settings

INTONBITTRANS

DISCOUNT

PMC1INTCONTROLENINT

PMC2INTCONTROL

RTCSELECT

PMCTRIGGER

DMSDU PMC1SELECT PMC2SELECT

0 1 2 3 4 5 6 7 8 9 10 15 16 17 18 19 25 26 31

DPDIS DMR THRESHOLD

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-15

of the MMCR0 register are described in Table 2-7.

Table 2-7. MMCR0 Bit Settings

Bit Name Description

0 DIS Disables counting unconditionally
0 The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.

1 DP Disables counting while in supervisor mode
0 The PMCn counters can be changed by hardware.
1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters are not

changed by hardware.

2 DU Disables counting while in user mode
0 The PMCn counters can be changed by hardware.
1 If the processor is in user mode (MSR[PR] is set), the PMCn counters are not

changed by hardware.

3 DMS Disables counting while MSR[PM] is set
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.

4 DMR Disables counting while MSR(PM) is zero.
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.

5 ENINT Enables performance monitor interrupt signaling.
0 Interrupt signaling is disabled.
1 Interrupt signaling is enabled.
Cleared by hardware when a performance monitor interrupt is signaled. To reenable
these interrupt signals, software must set this bit after handling the performance
monitor interrupt. The IPL ROM code clears this bit before passing control to the
operating system.

6 DISCOUNT Disables counting of PMCn when a performance monitor interrupt is signaled (that is,
((PMCnINTCONTROL = 1) & (PMCn[0] = 1) & (ENINT = 1)) or the occurrence of an
enabled time base transition with ((INTONBITTRANS =1) & (ENINT = 1)).
0 Signaling a performance monitor interrupt does not affect counting status of PMCn.
1 The signaling of a performance monitor interrupt prevents changing of PMC1

counter. The PMCn counter do not change if PMC2COUNTCTL = 0.
Because a time base signal could have occurred along with an enabled counter
overflow condition, software should always reset INTONBITTRANS to zero, if the value
in INTONBITTRANS was a one.

7–8 RTCSELECT 64-bit time base, bit selection enable
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11 Pick bit 47 to count

9 INTONBITTRANS Cause interrupt signaling on bit transition (identified in RTCSELECT) from off to on
0 Do not allow interrupt signal if chosen bit transitions.
1 Signal interrupt if chosen bit transitions.
Software is responsible for setting and clearing INTONBITTRANS.

10–15 THRESHOLD Threshold value. Gekko supports all 6 bits, allowing threshold values from 0–63. The
intent of the THRESHOLD support is to characterize L1 data cache misses.

IBM Confidential

Page 2-16 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

MMCR0 can be accessed withmtspr andmfspr using SPR 952.

2.1.2.5.2 User Monitor Mode Control Register 0 (UMMCR0)
The contents of MMCR0 are reflected to UMMCR0, which can be read by user-level software.
MMCR0 can be accessed withmfspr using SPR 936.

2.1.2.5.3 Monitor Mode Control Register 1 (MMCR1)
The monitor mode control register 1 (MMCR1) functions as an event selector for performance
monitor counter registers 3 and 4 (PMC3 and PMC4). The MMCR1 register is shown in Figure 2-7.

Figure 2-7. Monitor Mode Control Register 1 (MMCR1)

16 PMC1INTCONTROL Enables interrupt signaling due to PMC1 counter overflow.
0 Disable PMC1 interrupt signaling due to PMC1 counter overflow
1 Enable PMC1 Interrupt signaling due to PMC1 counter overflow

17 PMCINTCONTROL Enable interrupt signaling due to any PMC2–PMC4 counter overflow. Overrides the
setting of DISCOUNT.
0 Disable PMC2–PMC4 interrupt signaling due to PMC2–PMC4 counter overflow.
1 Enable PMC2–PMC4 interrupt signaling due to PMC2–PMC4 counter overflow.

18 PMCTRIGGER Can be used to trigger counting of PMC2–PMC4 after PMC1 has overflowed or after a
performance monitor interrupt is signaled.
0 Enable PMC2–PMC4 counting.
1 Disable PMC2–PMC4 counting until either PMC1[0] = 1 or a performance monitor

interrupt is signaled.

19–25 PMC1SELECT PMC1 input selector, 128 events selectable. See Table 2-9.

26–31 PMC2SELECT PMC2 input selector, 64 events selectable. See Table 2-9.

Table 2-7. MMCR0 Bit Settings (Continued)

Bit Name Description

0 4 5 10 31

PMC3SELECT

Reserved

PMC4SELECT 0 000000000000000000000

9

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-17

Bits for MMCR1 are shown in Table 2-8; the corresponding events are described in
Section 2.1.2.5.5 below.

MMCR1 can be accessed withmtspr andmfspr using SPR 956. User-level software can read the
contents of MMCR1 by issuing anmfspr instruction to UMMCR1, described next.

2.1.2.5.4 User Monitor Mode Control Register 1 (UMMCR1)
The contents of MMCR1 are reflected to UMMCR1, which can be read by user-level software.
MMCR1 can be accessed withmfspr using SPR 940.

2.1.2.5.5 Performance Monitor Counter Registers (PMC1–PMC4)
PMC1–PMC4, shown in Figure 2-8, are 32-bit counters that can be programmed to generate
interrupt signals when they overflow.

Figure 2-8. Performance Monitor Counter Registers (PMC1–PMC4)

The bits contained in the PMCn registers are described in Table 2-9.

Counters are considered to overflow when the high-order bit (the sign bit) becomes set; that is, they
reach the value 2147483648 (0x8000_0000). However, an interrupt is not signaled unless both
PMCn[INTCONTROL] and MMCR0[ENINT] are also set.
Note that the interrupts can be masked by clearing MSR[EE]; the interrupt signal condition may
occur with MSR[EE] cleared, but the exception is not taken until EE is set. Setting
MMCR0[DISCOUNT] forces counters to stop counting when a counter interrupt occurs.
Software is expected to usemtspr to set PMC explicitly to nonoverflow values. If software sets an
overflow value, an erroneous exception may occur. For example, if both PMCn[INTCONTROL]
and MMCR0[ENINT] are set andmtspr loads an overflow value, an interrupt signal may be
generated without any event counting having taken place.

Table 2-8. MMCR1 Bits

Bits Name Description

0–4 PMC3SELECT PMC3 input selector. 32 events selectable. See Table 2-9for defined selections.

5–9 PMC4SELECT PMC4 input selector. 32 events selectable. See Table 2-9for defined selections.

10–31 — Reserved

Table 2-9. PMCn Bits

Bits Name Description

0 OV Overflow. When this bit is set it indicates that this counter has reached its maximum value.

1–31 Counter value Indicates the number of occurrences of the specified event.

OV

0 1 31

Counter Value

IBM Confidential

Page 2-18 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

The event to be monitored by PMC1 can be chosen by setting MMCR0[19–25]. The event to be
monitored by PMC2 can be chosen by setting MMCR0[26-31]. The event to be monitored by PMC3
can be chosen by setting MMCR1[0-4]. The event to be monitored by PMC4 can be chosen by setting
MMCR1[5-9]. The selected events are counted beginning when MMCR0 is set until either MMCR0
is reset or a performance monitor interrupt is generated.
Table 11-5 on Page 11-6, Table 11-6 on Page 11-7, Table 11-7 on Page 11-8, and Table 11-8 on
Page 11-9 list the selectable events and their encodings.
The PMC registers can be accessed withmtspr andmfspr using following SPR numbers:

• PMC1 is SPR 953

• PMC2 is SPR 954

• PMC3 is SPR 957

• PMC4 is SPR 958

2.1.2.5.6 User Performance Monitor Counter Registers (UPMC1–UPMC4)
The contents of the PMC1–PMC4 are reflected to UPMC1–UPMC4, which can be read by user-level
software. The UPMC registers can be read withmfspr using the following SPR numbers:

• UPMC1 is SPR 937

• UPMC2 is SPR 938

• UPMC3 is SPR 941

• UPMC4 is SPR 942

2.1.2.5.7 Sampled Instruction Address Register (SIA)
The sampled instruction address register (SIA) is a supervisor-level register that contains the effective
address of an instruction executing at or around the time that the processor signals the performance
monitor interrupt condition. The SIA is shown in Figure 2-9.

Figure 2-9. Sampled Instruction Address Registers (SIA)

If the performance monitor interrupt is triggered by a threshold event, the SIA contains the exact
instruction (called the sampled instruction) that caused the counter to overflow.
If the performance monitor interrupt was caused by something besides a threshold event, the SIA
contains the address of the last instruction completed during that cycle. SIA can be accessed with the
mtspr andmfspr instructions using SPR 955.

2.1.2.5.8 User Sampled Instruction Address Register (USIA)
The contents of SIA are reflected to USIA, which can be read by user-level software. USIA can be
accessed with themfspr instructions using SPR 939.

2.1.2.5.9 Sampled Data Address Register (SDA) and User Sampled Data
Address Register (USDA)

Gekko does not implement the sampled data address register (SDA) or the user-level, read-only
USDA registers. However, for compatibility with processors that do, those registers can be written to

0 31

Instruction Address

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-19

by boot code without causing an exception. SDA is SPR 959; USDA is SPR 943.

2.1.2.6 Instruction Cache Throttling Control Register (ICTC)
Reducing the rate of instruction fetching can control junction temperature without the complexity
and overhead of dynamic clock control. System software can control instruction forwarding by
writing a nonzero value to the ICTC register, a supervisor-level register shown in Figure 2-10. The
overall junction temperature reduction comes from the dynamic power management of each
functional unit when Gekko is idle in between instruction fetches. PLL (phase-locked loop) and
DLL (delay-locked loop) configurations are unchanged.

Figure 2-10. Instruction Cache Throttling Control Register (ICTC)

Table 2-10 describes the bit fields for the ICTC register.

Instruction cache throttling is enabled by setting ICTC[E] and writing the instruction forwarding
interval into ICTC[FI]. Enabling, disabling, and changing the instruction forwarding interval affect
instruction forwarding immediately.
The ICTC register can be accessed with themtspr andmfspr instructions using SPR 1019.

2.1.2.7 Thermal Management Registers (THRM1–THRM3)
The on-chip thermal management assist unit provides the following functions:

• Compares the junction temperature against user programmed thresholds

• Generates a thermal management interrupt if the temperature crosses the threshold

• Provides a way for a successive approximation routine to estimate junction temperature

Control and access to the thermal management assist unit is through the privilegedmtspr/mfspr
instructions to the three THRM registers. THRM1 and THRM2, shown in Figure 2-11, provide the
ability to compare the junction temperature against two user-provided thresholds. Having dual
thresholds allows thermal management software differing degrees of action in reducing junction
temperature. Thermal management can use a single-threshold mode in which the thermal sensor

Table 2-10. ICTC Bit Settings

Bits Name Description

0–22 — Reserved

23–30 FI Instruction forwarding interval expressed in processor clocks.
0x00 0 clock cycle.
0x01 1 clock cycle
..
0xFF 255 clock cycles

31 E Cache throttling enable
0 Disable instruction cache throttling.
1 Enable instruction cache throttling.

0 22 23 30 31

EFI0 0000000000000000000000

Reserved

IBM Confidential

Page 2-20 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

output is compared to only one threshold in either THRM1 or THRM2.

Figure 2-11. Thermal Management Registers 1–2 (THRM1–THRM2)

The bits in THRM1 and THRM2 are described in Table 2-11.

Table 2-11. THRM1–THRM2 Bit Settings

Bits Field Description

0 TIN Thermal management interrupt bit. Read-only. This bit is set if the thermal sensor output crosses
the threshold specified in the SPR. The state of TIN is valid only if TIV is set. The interpretation of
TIN is controlled by TID. See Table 2-12.

1 TIV Thermal management interrupt valid. Read-only. This bit is set by the thermal assist logic to
indicate that the thermal management interrupt (TIN) state is valid. See Table 2-12.

2–8 Threshold Threshold that the thermal sensor output is compared to. The range is 0 —127 C, and each bit
represents 1 C. Note that this is not the resolution of the thermal sensor.

9–28 — Reserved. System software should clear these bits when writing to the THRMn SPRs.

29 TID Thermal management interrupt direction bit. Selects the result of the temperature comparison to
set TIN and to assert a thermal management interrupt if TIE is set. If TID is cleared, TIN is set and
an interrupt occurs if the junction temperature exceeds the threshold. If TID is set, TIN is set and
an interrupt is indicated if the junction temperature is below the threshold. See Table 2-16 on Page
2-24.

30 TIE Thermal management interrupt enable. The thermal management interrupt is maskable by the
MSR[EE] bit. If TIE is cleared and THRMn is valid, the TIN bit records the status of the junction
temperature vs. threshold comparison without causing an exception. This lets system software
successively approximate the junction temperature. See Table 2-16 on Page 2-24.

31 V SPR valid bit. Setting this bit indicates the SPR contains a valid threshold, TID and TIE controls
bits. THRM1/2[V] = 1 and THRM3[E] = 1 enables the thermal sensor operation. See Table 2-16 on
Page 2-24.

TIV THRESHOLD

0 1 2 8 9 28 29 30 31

TIDTIN

Reserved

TIE V0 0000000000000000000

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-21

If an mtspr affects a THRM register that contains operating parameters for an ongoing comparison
during operation of the thermal assist unit, the respective TIV bits are cleared and the comparison
is restarted. Changing THRM3 forces the TIV bits of both THRM1 and THRM2 to 0, and restarts
the comparison if THRM3[E] is set.
Examples of valid THRM1/THRM2 bit settings are shown in Table 2-12.

The THRM3 register, shown in Figure 2-12, is used to enable the thermal assist unit and to control
the comparator output sample time. The thermal assist logic manages the thermal management
interrupt generation and time-multiplexed comparisons in dual-threshold mode as well as other
control functions.

Figure 2-12. Thermal Management Register 3 (THRM3)

Table 2-12. Valid THRM1/THRM2 Bit Settings

TIN1

1 TIN and TIV are read-only status bits.

TIV1 TID TIE V Description

x x x x 0 Invalid entry. The threshold in the SPR is not used for comparison.

x x x 0 1 Disable thermal management interrupt assertion.

x x 0 x 1 Set TIN and assert thermal management interrupt if TIE = 1 and the junction
temperature exceeds the threshold.

x x 1 x 1 Set TIN and assert thermal management interrupt if TIE = 1 and the junction
temperature is less than the threshold.

x 0 x x 1 The state of the TIN bit is not valid.

0 1 0 x 1 The junction temperature is less than the threshold and as a result the thermal
management interrupt is not generated for TIE = 1.

1 1 0 x 1 The junction temperature is greater than the threshold and as a result the thermal
management interrupt is generated if TIE = 1.

0 1 1 x 1 The junction temperature is greater than the threshold and as a result the thermal
management interrupt is not generated for TIE = 1.

1 1 1 x 1 The junction temperature is less than the threshold and as a result the thermal
management interrupt is generated if TIE = 1.

Note :

0 17 18 30 31

Reserved

ESampled Interval Timer Value0 00000000000000000

IBM Confidential

Page 2-22 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

The bits in THRM3 are described in Table 2-13.

The THRM registers can be accessed with themtspr andmfspr instructions using the following SPR
numbers:

• THRM1 is SPR 1020

• THRM2 is SPR 1021

• THRM3 is SPR 1022

2.1.2.8 Direct Memory Access (DMA) registers
The pair of DMA registers, DMAU and DMAL, is used to specify and issue a DMA command. A
DMA command specifies the transfer of a contiguous block of data, up to 4 Kbytes, between the
locked cache and external memory. Each DMA command consists of the starting address in locked
cache, the starting address in external memory, the length of the transfer in cache lines, and the
direction of the transfer.
The DMA facility is enabled using the HID2[LCE] bit. When HID2[LCE] = 0, themtspr andmfspr
instructions can be used to read and write the DMA registers, but the DMA commands associated
with these registers will be ignored. In particular, the DMA_T and DMA_F bits in DMAL are always
forced to zero in this mode. When HID2[LCE] = 1, amtspr to DMAL with the DMA_F bit = 1 will
cause the DMA command queue to be flushed, otherwise amtspr DMAL with the DMA_T bit = 1
will cause the DMA command specified in the DMA registers to be added to the DMA command
queue.
Figure 2-13 and Figure 2-14 on Page 2-23 show the format of the upper and lower DMA registers.

Figure 2-13. Direct Memory Access Upper (DMAU) register

Table 2-13. THRM3 Bit Settings

Bits Name Description

0–17 — Reserved for future use. System software should clear these bits when writing to the THRM3.

18–30 SITV Sample interval timer value. Number of elapsed processor clock cycles before a junction
temperature vs. threshold comparison result is sampled for TIN bit setting and interrupt
generation. This is necessary due to the thermal sensor, DAC, and the analog comparator
settling time being greater than the processor cycle time. The value should be configured to allow
a sampling interval of 20 microseconds.

31 E Enables the thermal sensor compare operation if either THRM1[V] or THRM2[V] is set.

0 3126 27

DMA_LEN_UMEM_ADDR

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-23

Figure 2-14. Direct Memory Access Lower (DMAL) register

Table 2-14 and Table 2-15 describe the bit fields for the DMA registers.

DMAU can be accessed withmtspr andmfspr using SPR 922. DMAL can be accessed withmtspr
andmfspr using SPR 923.

2.1.2.9 Graphics Quantization Registers (GQRs)
The eight graphics quantization registers, GQR0 to GQR7, are used to specify the data type and
scaling factor used to convert operands in paired single quantized load and store instructions. The
specific GQR used for a particular instruction is specified by the three bit I field in the instruction.
Figure 2-15 shows the format of a GQR.

Table 2-14. DMAU Bit Settings

Bits Name Description

0–26 MEM_ADDR High order address bits of starting address in external memory of the DMA transfer. The
low order address bits are zero, forcing the starting address to be cache line aligned.

27–31 DMA_LEN_U High order bits of transfer length, in cache lines. Low order bits are in DMAL.

Table 2-15. DMAL Bit Settings

Bits Name Description

0–26 LC_ADDR High order address bits of starting address in locked cache of the DMA transfer. The low
order address bits are zero, forcing the starting address to be cache line aligned.

27 DMA_LD DMA load command
0 Store - transfer from locked cache to external memory
1 Load - transfer from external memory to locked cache

28–29 DMA_LEN_L Low order bits of transfer length, in cache lines. High order bits are in DMAU.

30 DMA_T Trigger bit
0 DMA command inactive.
1 mtspr DMAL instruction with this bit active will enqueue this DMA command.

31 DMA_F Flush bit
0 Normal DMA operation.
1 mtspr DMAL instruction with this bit active will flush the DMA queue.

0 3126 27

DMA_LEN_L

LC_ADDR

28 29 30

DMA_LD DMA_T
DMA_F

IBM Confidential

Page 2-24 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Figure 2-15. Graphics Quantization Register

Table 2-16 describes the bit fields for the GQR registers, and Table 2-17 lists the encoding of the type
fields in the GQR for the various quantized data types.

GQR0 through GQR7 can be accessed withmtspr and mfspr using SPR 912 through 919,
respectively.

2.1.2.10 Write Pipe Address Register (WPAR)
The write pipe address register, shown in Figure 2-16 holds the physical address of operands to be
gathered by the write gather pipe facility. Amtspr to the WPAR establishes the gather address and

Table 2-16. Graphics Quantization Register Bit Settings

Bits Name Description

0–1 — Reserved

2-7 LD_SCALE Scale value used by a load instruction.

8-12 — Reserved

13-15 LD_TYPE Type of operand in memory to be converted by a load instruction. See Table 2-22 on
Page 2-31.

16-17 — Reserved

18-23 ST_SCALE Scale value used by a store instruction.

24-28 — Reserved

29-31 ST_TYPE Type of operand resulting from a conversion by a store instruction. See Table 2-22 on
Page 2-31.

Table 2-17. Quantized Data Types

Code Type

0 single-precision floating-point (no conversion)

1-3 reserved

4 unsigned 8 bit integer

5 unsigned 16 bit integer

6 signed 8 bit integer

7 signed 16 bit integer

0 31

Reserved

0 00000 00 0 0 00 00

1 2 87

LD_SCALE

12 13 15 29

ST_TYPELD_TYPE ST_SCALE

16 17 18 23 24 28

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-25

resets the state of the facility, discarding any data in the buffer. Amfspr WPAR is used to read the
BNE bit to check for any outstanding data transfers.

Figure 2-16 . Write Pipe Address Register (WPAR)

Table 2-18 describes the bit fields for the WPAR register.

WPAR can be accessed withmtspr andmfspr using SPR 921.

2.1.2.11 L2 Cache Control Register (L2CR)
The L2 cache control register, shown in Figure 2-17, is a supervisor-level, implementation-specific
SPR used to configure and operate the L2 cache. It is cleared by a hard reset or power-on reset.

Figure 2-17 . L2 Cache Control Register (L2CR)

The L2 cache interface is described in Chapter 9, "L2 Cache, Locked D-Cache, DMA and Write
Gather Pipe" in this manual,
The L2CR bits are described in Table 2-19.

Table 2-18. Write Pipe Address Register Bit Settings

Bits Name Description

0–26 GB_ADDR High order address bits of the data to be gathered. The low order address bits are zero,
forcing the address to be cache line aligned. Note that only these 27 bits are compared
to determine if a non-cacheable store will be gathered. If the address of the
non-cacheable store has a non-zero value in the low order five bits, incorrect data will be
gathered.

27–30 — Reserved

31 BNE Buffer not empty (read only)

Table 2-19. L2CR Bit Settings

Bit Name Function

0 L2E L2 enable. Enables L2 cache operation (including snooping) starting with the next transaction the L2
cache unit receives. Before enabling the L2 cache, all other L2CR bits must be set appropriately. The
L2 cache may need to be invalidated globally.

0 3126 27

BNEGB_ADDR

30

Reserved

0 00 0

0 1 2 8 9 10 11 12 13 14 30 31

L2E

L2CE
L2WT

L2I

L2DO L2TS L2IP
Reserved

00000 0 00 0 0 0 0 0 0 0 0 000000000

IBM Confidential

Page 2-26 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

The L2CR register can be accessed with themtspr andmfspr instructions using SPR 1017.

1 L2CE L2 Checkstop enable
0 ECC double bit error does not cause a Machine Check.
1 ECC double bit error causes a machine check exception.

2–8 — Reserved

9 L2DO L2 data-only. Setting this bit enables data-only operation in the L2 cache. For this operation, only
transactions from the L1 data cache can be cached in the L2 cache, which treats all transactions from
the L1 instruction cache as cache-inhibited (bypass L2 cache, no L2 checking done). This bit is
provided for L2 testing only.

10 L2I L2 global invalidate. Setting L2I invalidates the L2 cache globally by clearing the L2 bits including
status bits. This bit must not be set while the L2 cache is enabled.

11 — Reserved

12 L2WT L2 write-through. Setting L2WT selects write-through mode (rather than the default write-back mode)
so all writes to the L2 cache also write through to the 60x bus. For these writes, the L2 cache entry is
always marked as clean (valid unmodified) rather than dirty (valid modified). This bit must never be
asserted after the L2 cache has been enabled as previously-modified lines can get remarked as
clean during normal operation.

13 L2TS L2 test support. Setting L2TS causes cache block pushes from the L1 data cache that result from
dcbf and dcbst instructions to be written only into the L2 cache and marked valid, rather than being
written only to the 60x bus and marked invalid in the L2 cache in case of hit. This bit allows a
dcbz /dcbf instruction sequence to be used with the L1 cache enabled to easily initialize the L2 cache
with any address and data information. This bit also keeps dcbz instructions from being broadcast on
the 60x and single-beat cacheable store misses in the L2 from being written to the 60x bus.

14–30 — Reserved

31 L2IP L2 global invalidate in progress (read only). This read-only bit indicates whether an L2 global
invalidate is occurring. It should be monitored after an L2 global invalidate has been initiated by the
L2I bit to determine when it has completed.

Table 2-19. L2CR Bit Settings (Continued)

Bit Name Function

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-27

2.2 Operand Conventions
This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture—UISA and VEA. Detailed descriptions of conventions used for storing
values in registers and memory, accessing PowerPC registers, and representation of data in these
registers can be found in Chapter 3, “Operand Conventions" in thePowerPC Microprocessor
Family: The Programming Environments manual.

2.2.1 Data Organization in Memory and Data Transfers
Bytes in memory are numbered consecutively starting with 0. Each number is the address of the
corresponding byte.
Memory operands may be bytes, half words, words, or double words, or, for the load/store multiple
and load/store string instructions, a sequence of bytes or words. The address of a memory operand
is the address of its first byte (that is, of its lowest-numbered byte). Operand length is implicit for
each instruction.

2.2.2 Alignment and Misaligned Accesses
The operand of a single-register memory access instruction has an alignment boundary equal to its
length. An operand’s address is misaligned if it is not a multiple of its width. Operands for
single-register memory access instructions have the characteristics shown in Table 2-20. Although
not permitted as memory operands, quad words are shown because quad-word alignment is
desirable for certain memory operands.

The concept of alignment is also applied more generally to data in memory. For example, a 12-byte
data item is said to be word-aligned if its address is a multiple of four.
Some instructions require their memory operands to have certain alignment. In addition, alignment
may affect performance. For single-register memory access instructions, the best performance is
obtained when memory operands are aligned.
Instructions are 32 bits (one word) long and must be word-aligned.
Gekko does not provide hardware support for floating-point memory that is not word-aligned. If a
floating-point operand is not aligned, Gekko invokes an alignment exception, and it is left up to
software to break up the offending storage access operation appropriately. In addition, some
non-double-word–aligned memory accesses suffer performance degradation as compared to an
aligned access of the same type.
In general, floating-point word accesses should always be word-aligned and floating-point
double-word accesses should always be double-word–aligned. Frequent use of misaligned

Table 2-20. Memory Operands

Operand Length
Addr[28-31]
If Aligned

Byte 8 bits xxxx

Half word 2 bytes xxx0

Word 4 bytes xx00

Double word 8 bytes x000

Quad word 16 bytes 0000

Note : An “x” in an address bit position indicates that the bit can
be 0 or 1 independent of the state of other bits in the address.

IBM Confidential

Page 2-28 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

accesses is discouraged since they can degrade overall performance.

2.2.3 Floating-Point Operand and Execution Models—UISA
The IEEE 754 standard defines conventions for 64- and 32-bit arithmetic. The standard requires that
single-precision arithmetic be provided for single-precision operands. The standard permits
double-precision arithmetic instructions to have either (or both) single-precision or double-precision
operands, but states that single-precision arithmetic instructions should not accept double-precision
operands.
The PowerPC UISA follows these guidelines:

• Double-precision arithmetic instructions may have single-precision operands but always
produce double-precision results.

• Single-precision arithmetic instructions require all operands to be single-precision and always
produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done explicitly by
software, while conversion from single- to double-precision is done implicitly by the processor.
All PowerPC implementations provide the equivalent of the execution models described in Section
3.3 of thePowerPC Microprocessor Family: The Programming Environmentsmanual to ensure that
identical results are obtained. The definition of the arithmetic instructions for infinities, denormalized
numbers, and NaNs follow conventions described in that section.
Although the double-precision format specifies an 11-bit exponent, exponent arithmetic uses two
additional bit positions to avoid potential transient overflow conditions. An extra bit is required when
denormalized double-precision numbers are prenormalized. A second bit is required to permit
computation of the adjusted exponent value in the following examples when the corresponding
exception enable bit is one:

• Underflow during multiplication using a denormalized operand

• Overflow during division using a denormalized divisor

Gekko provides hardware support for all single- and double-precision floating-point operations for
most value representations and all rounding modes. This architecture provides for hardware to
implement a floating-point system as defined in ANSI/IEEE standard 754-1985,IEEE Standard for
Binary Floating Point Arithmetic. Detailed information about the floating-point execution model for
non-paired single mode (HID2[PSE] = 0) can be found in Chapter 3, “Operand Conventions" in the
PowerPC Microprocessor Family: The Programming Environments manual.
Gekko supports non-IEEE mode whenever FPSCR[29] is set. In this mode, denormalized numbers,
NaNs, and some IEEE invalid operations are treated in a non-IEEE conforming manner. This is
accomplished by delivering results that approximate the values required by the IEEE standard.
In addition to single- and double-precision operands, Gekko supports a third format, called paired
single, when HID2[PSE] = 1. (Note that HID2[PSE] can be changed only when the i-cache is
invalidated and disabled.) Paired single operands are represented in the 64 bit floating-point registers
as two 32 bit single-precision floating-point values.
We will refer to the single-precision floating-point value in the high order word as ps0, and that in the
low order word as ps1.

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-29

Figure 2-18 shows the format of an FPR containing a paired single operand.

Figure 2-18 . Floating-Point Register containing a paired single operand

Most of the new instructions for manipulating these operands allow both values to be processed in
parallel in the execution unit. For example, the paired single multiply-add instruction (ps_madd)
multiplies ps0 in frA by ps0 in frC, then adds it to ps0 in frB to get a result that is placed in ps0 in
frD. Simultaneously, the same operations are applied to the corresponding ps1 values. Note that
paired single instructions, including loads, stores and moves, cause a floating-point unavailable
exception if execution is attempted when MSR[FP] = 0.
Many of the new paired single instructions perform an operation comparable to one of the existing
double-precision instructions. For example,fadd adds double-precision operands from two
registers and places the result into a third register. In the corresponding paired single instruction,
ps_add, two such operations are performed in parallel, one on the ps0 values, and one on the ps1
values. Several other paired single instructions are supported that do not have exact analogs to
existing double-precision instructions. See Chapter 12, "Instruction Set" in this manual for a
detailed description of the paired single instructions.
Most paired single instructions produce a pair of result values. The Floating-Point Status and
Control Register (FPSCR) contains a number of status bits that are affected by the floating-point
computation. FPSCR bits 15-19 are the result bits. They are determined by the result of the ps0
computation, except forps_cmpu1, ps_cmpo1andps_sum1where the result bits are determined
by the result of the ps1 computation.The FPSCR bits that reflect exceptional conditions in the
computation are bits 0-14, and 22-23. For paired single instructions that affect any of these bits,
either the ps0 or the ps1 computation can set the bit. For the Condition Register (CR), the field
specified bycrfD is affected by the ps0 computation forps_cmpo0andps_cmpu0, and by the ps1
computation forps_cmpo1andps_cmpu1. For all other paired single instructions, when RC=1,
the CR1 field of the CR is set from FPSCR bits 0-3, which can be set by either the ps0 or the ps1
computation.
When in paired single mode (HID2[PSE] = 1), all the double-precision instructions are still valid,
and execute as in non-paired single mode. In paired single mode, all the single-precision
floating-point instructions (fadds, fsubs, fmuls, fdivs, fmadds, fmsubs, fnmadds, fnmsubs, fres,
frsp) are valid, and operate on the ps0 operand (the double-precision operand, in the case offrsp)
of the specified registers. The ps1 value in the destination register is duplicated from the ps0 result
in such an operation. (See Page 12-85 for an exception aboutfrsp.) The load floating-point single
instructions (lfs[u][x]) load a single-precision floating-point value into the ps0 position of the FPR,
and duplicate that value in the ps1 position. The store floating-point single instructions (stfs[u][x])
store the ps0 value only.
The relationship between the internal format for paired single operands and that for double-
precision floating-point operands is unspecified. It is a programming error to apply
double-precision instructions to paired single operands and vice versa. In particular, loading an
operand as a double and then storing it as a paired single will not yield the original value back in
memory. This presents a problem when it is desired to save the state of FPRs so that they can later
be restored, particularly in the case of an interrupt.
The solution to this problem is that the following sequence of store and load instructions, executed

0 31

ps1ps0

32 63

IBM Confidential

Page 2-30 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

when HID2[PSE] = 1, is guaranteed to restore the state of floating-point registerfr X regardless of its
format. Assume GQR0 contains the value 0, indicating that no conversion takes place on paired single
quantized loads and stores. Then save each register using the instruction pair:
psq_st frX,0(r1),0,0
stfd fr X,8(r1)
and restore each register using the instruction pair:
psq_l frX,0(r1),0,0
lfd fr X,8(r1)
Note that restoration of the ps1 value of a paired single operand is not exact in the following sense. If
the ps1 value is a Denorm, it will get stored as the value 0, and so its restored value will also be the
value 0.
Programming Note—Conversion from a double-precision operand to a single-precision operand
when HID2[PSE] = 1 is accomplished usingfrsp, which takes a double-precision operand as input
and produces a single-precision result in ps0 of the destination register. (See page 12-85.) Conversion
from a single-precision operand to a double-precision operand, on the other hand, requires a software
conversion routine, in general. However, the Gekko processor supports the following performance
enhancement to implement this conversion. Any single-precision value in ps0 can be used as the input
operand to a double-precision floating-point instruction, including a store.
Note that when HID2[PSE] = 1, thefctiw andfctiwz instructions give the expected result when used
with the stfiwx instruction to store the resultant integer. Since these are are both classified as
double-precision instructions, the integer result is placed in the low order word of the
double-precision operand in the destination FPR. Like other double-precision results, these cannot
then be operated on or stored using paired single operations.
Each of the paired single operands or result values behave the same way as single-precision operands
or results in the following two tables. Table 2-21 summarizes the conditions and mode behavior for
operands.

Table 2-21. Floating-Point Operand Data Type Behavior

Operand A
Data Type

Operand B
Data Type

Operand C
Data Type

IEEE Mode
(NI = 0)

Non-IEEE Mode
(NI = 1)

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalize all three Zero all three

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalized or zero Normalize A and B Zero A and B

Normalized or zero Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalize B and C Zero B and C

Single denormalized
Double denormalized

Normalized or zero Single denormalized
Double denormalized

Normalize A and C Zero A and C

Single denormalized
Double denormalized

Normalized or zero Normalized or zero Normalize A Zero A

Normalized or zero Single denormalized
Double denormalized

Normalized or zero Normalize B Zero B

Normalized or zero Normalized or zero Single denormalized
Double denormalized

Normalize C Zero C

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-31

Table 2-22 summarizes the mode behavior for results.

Single QNaN
Single SNaN
Double QNaN
Double SNaN

Don’t care Don’t care QNaN1 QNaN1

Don’t care Single QNaN
Single SNaN
Double QNaN
Double SNaN

Don’t care QNaN1 QNaN1

Don’t care Don’t care Single QNaN
Single SNaN
Double QNaN
Double SNaN

QNaN1 QNaN1

Single normalized
Single infinity
Single zero
Double normalized
Double infinity
Double zero

Single normalized
Single infinity
Single zero
Double normalized
Double infinity
Double zero

Single normalized
Single infinity
Single zero
Double normalized
Double infinity
Double zero

Do the operation Do the operation

1 Prioritize according to Chapter 3, “Operand Conventions,” in the PowerPC Microprocessor Family: The
Programming Environments manual.

Table 2-22. Floating-Point Result Data Type Behavior

Precision Data Type IEEE Mode (NI = 0) Non-IEEE Mode (NI = 1)

Single Denormalized Return single-precision denormalized number
with trailing zeros.

Return zero.

Single Normalized,
infinity, zero

Return the result. Return the result.

Single QNaN, SNaN Return QNaN. Return QNaN.

Single INT Place integer into low word of FPR. If (Invalid Operation)
then

Place (0x8000) into FPR[32–63]
else

Place integer into FPR[32–63].

Double Denormalized Return double-precision denormalized number. Return zero.

Double Normalized,
infinity, zero

Return the result. Return the result.

Double QNaN, SNaN Return QNaN. Return QNaN.

Double INT Not supported by Gekko Not supported by Gekko

Table 2-21. Floating-Point Operand Data Type Behavior (Continued)

Operand A
Data Type

Operand B
Data Type

Operand C
Data Type

IEEE Mode
(NI = 0)

Non-IEEE Mode
(NI = 1)

IBM Confidential

Page 2-32 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

2.3 Instruction Set Summary
This chapter describes instructions and addressing modes defined for Gekko. These instructions are
divided into the following functional categories:

• Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, "Integer Instructions" on Page 2-37.

• Floating-point instructions—These include floating-point arithmetic instructions
(single-precision, double-precision and paired single), as well as instructions that affect the
floating-point status and control register (FPSCR). For more information, see Section 2.3.4.2,
"Floating-Point Instructions" on Page 2-41.

• Load and store instructions—These include integer and floating-point (including quantized)
load and store instructions. For more information, see Section 2.3.4.3, "Load and Store
Instructions" on Page 2-46.

• Flow control instructions—These include branching instructions, condition register logical
instructions, trap instructions, and other instructions that affect the instruction flow. For more
information, see Section 2.3.4.4, "Branch and Flow Control Instructions" on Page 2-58.

• Processor control instructions—These instructions are used for synchronizing memory
accesses and managing caches, TLBs, and segment registers. For more information, see
Section 2.3.4.6, "Processor Control Instructions—UISA" on Page 2-61, Section 2.3.5.1,
"Processor Control Instructions—VEA" on Page 2-65, and Section 2.3.6.2, "Processor
Control Instructions—OEA" on Page 2-71.

• Memory synchronization instructions—These instructions are used for memory
synchronizing. For more information, see Section 2.3.4.7, "Memory Synchronization
Instructions—UISA" on Page 2-64 and Section 2.3.5.2, "Memory Synchronization
Instructions—VEA" on Page 2-66.

• Memory control instructions—These instructions provide control of caches, TLBs, and
segment registers. For more information, see Section 2.3.5.3, "Memory Control
Instructions—VEA" on Page 2-67 and Section 2.3.6.3, "Memory Control
Instructions—OEA" on Page 2-71.

• External control instructions—These include instructions for use with special input/output
devices. For more information, see Section 2.3.5.4, "Optional External Control Instructions"
on Page 2-69.

NOTE: This grouping of instructions does not necessarily indicate the execution unit that
processes a particular instruction or group of instructions. That information, which is
useful for scheduling instructions most effectively, is provided in Chapter 6, "Instruction
Timing" in this manual.

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision, double-precision and paired single floating-point operands. The PowerPC
architecture uses instructions that are four bytes long and word-aligned. It provides for byte,
half-word, and word operand loads and stores between memory and a set of 32 general-purpose
registers (GPRs). It provides for word and double-word operand loads and stores between memory
and a set of 32 floating-point registers (FPRs). In addition, the Gekko implementation provides for
byte, half word, word and double word quantized loads and stores between memory and the FPRs.
Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory
location in a computation and then modify the same or another memory location, the memory
contents must be loaded into a register, modified, and then written to the target location using load
and store instructions.
The description of each instruction includes the mnemonic and a formatted list of operands. To

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-33

simplify assembly language programming, a set of simplified mnemonics and symbols is provided
for some of the frequently-used instructions; see Appendix F, “Simplified Mnemonics,” in the
PowerPC Microprocessor Family: The Programming Environmentsmanual for a complete list of
simplified mnemonics. Note that the architecture specification refers to simplified mnemonics as
extended mnemonics. Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in that
document.

2.3.1 Classes of Instructions
The Gekko instructions belong to one of the following three classes:

• Defined

• Illegal

• Reserved

Note that while the definitions of these terms are consistent among the PowerPC processors, the
assignment of these classifications is not. For example, PowerPC instructions defined for 64-bit
implementations are treated as illegal by 32-bit implementations such as Gekko.
The class is determined by examining the primary opcode and the extended opcode, if any. If the
opcode, or combination of opcode and extended opcode, is not that of a defined instruction or of a
reserved instruction, the instruction is illegal.
Instruction encodings that are now illegal may become assigned to instructions in the architecture
or may be reserved by being assigned to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined
If instructions are encoded with incorrectly set bits in reserved fields, the results on execution can
be said to be boundedly undefined. If a user-level program executes the incorrectly coded
instruction, the resulting undefined results are bounded in that a spurious change from user to
supervisor state is not allowed, and the level of privilege exercised by the program in relation to
memory access and other system resources cannot be exceeded. Boundedly-undefined results for
a given instruction may vary between implementations, and between execution attempts in the
same implementation.

2.3.1.2 Defined Instruction Class
Defined instructions are guaranteed to be supported in all PowerPC implementations, except as
stated in the instruction descriptions in Chapter 12, "Instruction Set" in this manual. Gekko
provides hardware support for all instructions defined for 32-bit implementations.
It does not support the optionalfsqrt , fsqrts, andtlbia instructions.
A PowerPC processor invokes the illegal instruction error handler (part of the program exception)
when the unimplemented PowerPC instructions are encountered so they may be emulated in
software, as required. Note that the architecture specification refers to exceptions as interrupts.
A defined instruction can have invalid forms. Gekko provides limited support for instructions
represented in an invalid form.

2.3.1.3 Illegal Instruction Class
Illegal instructions can be grouped into the following categories:

• Instructions not defined in the PowerPC architecture.The following primary opcodes are
defined as illegal but may be used in future extensions to the architecture:1, 5, 6, 9, 22

Future versions of the PowerPC architecture may define any of these instructions to
perform new functions.

IBM Confidential

Page 2-34 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

• Instructions defined in the PowerPC architecture but not implemented in a specific PowerPC
implementation. For example, instructions that can be executed on 64-bit PowerPC processors
are considered illegal by 32-bit processors such as Gekko.

The following primary opcodes are defined for 64-bit implementations only and are illegal on
Gekko:2, 30, 58, 62

• All unused extended opcodes are illegal. The unused extended opcodes can be determined
from information in Section A.1 and Section 2.3.1.4, "Reserved Instruction Class" on Page
2-34. Notice that extended opcodes for instructions defined only for 64-bit implementations
are illegal in 32-bit implementations, and vice versa.
The following primary opcodes have unused extended opcodes.

4, 17, 19, 31, 59, 63 (Primary opcodes 30 and 62 are illegal for all 32-bit implementations, but
as 64-bit opcodes they have some unused extended opcodes.)

• An instruction consisting of only zeros is guaranteed to be an illegal instruction. This
increases the probability that an attempt to execute data or uninitialized memory invokes the
system illegal instruction error handler (a program exception). Note that if only the primary
opcode consists of all zeros, the instruction is considered a reserved instruction, as described
in Section 2.3.1.4.

Gekko invokes the system illegal instruction error handler (a program exception) when it detects any
instruction from this class or any instructions defined only for 64-bit implementations.
See Section 4.5.7, "Program Exception (0x00700)" on Page 4-19 for additional information about
illegal and invalid instruction exceptions. Except for an instruction consisting of binary zeros, illegal
instructions are available for additions to the PowerPC architecture.

2.3.1.4 Reserved Instruction Class
Reserved instructions are allocated to specific implementation-dependent purposes not defined by the
PowerPC architecture. Attempting to execute an unimplemented reserved instruction invokes the
illegal instruction error handler (a program exception). See Section 4.5.7, "Program Exception
(0x00700)" on Page 4-19 for information about illegal and invalid instruction exceptions.
The PowerPC architecture defines four types of reserved instructions:

• Instructions in the POWER architecture not part of the PowerPC UISA. For details on
POWER architecture incompatibilities and how they are handled by PowerPC processors, see
Appendix B, “POWER Architecture Cross Reference" in thePowerPC Microprocessor
Family: The Programming Environments manual.

• Implementation-specific instructions required for the processor to conform to the PowerPC
architecture (none of these are implemented in Gekko)

• All other implementation-specific instructions

• Architecturally-allowed extended opcodes

2.3.1.5 Gekko’s implementation-specific instructions
The Gekko processor includes extensions to the PowerPC architecture to enhance the performance of
graphics applications. The new instructions include a new cache control instruction,dcbz_l, four
quantized load and four quantized store instructions, and 29 paired single floating-point instructions.
These new instructions are implemented using primary opcodes 4, 56, 57, 60 and 61. See Chapter 9
for a description of the graphics enhancement features and Chapter 12, "Instruction Set" in this
manual for a detailed description of the new instructions.

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-35

2.3.2 Addressing Modes
This section provides an overview of conventions for addressing memory and for calculating
effective addresses as defined by the PowerPC architecture for 32-bit implementations. For more
detailed information, see “Conventions” in Chapter 4, “Addressing Modes and Instruction Set
Summary" of thePowerPC Microprocessor Family: The Programming Environments manual.

2.3.2.1 Memory Addressing
A program references memory using the effective (logical) address computed by the processor
when it executes a memory access or branch instruction or when it fetches the next sequential
instruction.
Bytes in memory are numbered consecutively starting with zero. Each number is the address of the
corresponding byte.

2.3.2.2 Memory Operands
Memory operands may be bytes, half words, words, or double words, or, for the load/store multiple
and load/store string instructions, a sequence of bytes or words. The address of a memory operand
is the address of its first byte (that is, of its lowest-numbered byte). Operand length is implicit for
each instruction. The PowerPC architecture supports both big-endian and little-endian byte
ordering. The default byte and bit ordering is big-endian. See “Byte Ordering" in Chapter 3,
“Operand Conventions” of thePowerPC Microprocessor Family: The Programming Environments
manual for more information about big- and little-endian byte ordering.
The operand of a single-register memory access instruction has a natural alignment boundary equal
to the operand length. In other words, the “natural” address of an operand is an integral multiple of
the operand length. A memory operand is said to be aligned if it is aligned at its natural boundary;
otherwise it is misaligned.
For a detailed discussion about memory operands, see Chapter 3, “Operand Conventions” of the
PowerPC Microprocessor Family: The Programming Environments manual.

2.3.2.3 Effective Address Calculation
An effective address is the 32-bit sum computed by the processor when executing a memory access
or branch instruction or when fetching the next sequential instruction. For a memory access
instruction, if the sum of the effective address and the operand length exceeds the maximum
effective address, the memory operand is considered to wrap around from the maximum effective
address through effective address 0, as described in the following paragraphs.
Effective address computations for both data and instruction accesses use 32-bit unsigned binary
arithmetic. A carry from bit 0 is ignored.
Load and store operations have the following modes of effective address generation:

• EA = (rA|0) + offset (including offset = 0) (register indirect with immediate index)

• EA = (rA|0) + rB (register indirect with index)

Refer to Section 2.3.4.3.2, "Integer Load and Store Address Generation" on Page 2-47 for a
detailed description of effective address generation for load and store operations.
Branch instructions have three categories of effective address generation:

• Immediate

• Link register indirect

• Count register indirect

IBM Confidential

Page 2-36 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

2.3.2.4 Synchronization
The synchronization described in this section refers to the state of the processor that is performing the
synchronization.

2.3.2.4.1 Context Synchronization
The System Call (sc) and Return from Interrupt (rfi) instructions perform context synchronization by
allowing previously issued instructions to complete before performing a change in context. Execution
of one of these instructions ensures the following:

• No higher priority exception exists (sc).
• All previous instructions have completed to a point where they can no longer cause an

exception. If a prior memory access instruction causes direct-store error exceptions, the
results are guaranteed to be determined before this instruction is executed.

• Previous instructions complete execution in the context (privilege, protection, and address
translation) under which they were issued.

• The instructions following thescor rfi instruction execute in the context established by these
instructions.

2.3.2.4.2 Execution Synchronization
An instruction is execution synchronizing if all previously initiated instructions appear to have
completed before the instruction is initiated or, in the case ofsyncandisync, before the instruction
completes. For example, the Move to Machine State Register (mtmsr) instruction is execution
synchronizing. It ensures that all preceding instructions have completed execution and cannot cause
an exception before the instruction executes, but does not ensure subsequent instructions execute in
the newly established environment. For example, if themtmsr sets the MSR[PR] bit, unless anisync
immediately follows themtmsr instruction, a privileged instruction could be executed or privileged
access could be performed without causing an exception even though the MSR[PR] bit indicates user
mode.

2.3.2.4.3 Instruction-Related Exceptions
There are two kinds of exceptions in Gekko—those caused directly by the execution of an instruction
and those caused by an asynchronous event (or interrupts). Either may cause components of the
system software to be invoked.
Exceptions can be caused directly by the execution of an instruction as follows:

• An attempt to execute an illegal instruction causes the illegal instruction (program exception)
handler to be invoked. Note that thedcbz_l instruction is illegal when HID2[LCE] = 0, the
psq_l, psq_lu, psq_st andpsq_stu instructions are illegal when HID2[PSQE] = 0 or
HID2[PSE] = 0, and all other paired single instructions are illegal when HID2[PSE] = 0. An
attempt by a user-level program to execute the supervisor-level instructions listed below
causes the privileged instruction (program exception) handler to be invoked. Gekko provides
the following supervisor-level instructions:dcbi, mfmsr, mfspr, mfsr, mfsrin , mtmsr,
mtspr, mtsr, mtsrin , rfi , tlbie, andtlbsync. Note that the privilege level of themfspr and
mtspr instructions depends on the SPR encoding.

• Any mtspr, mfspr, ormftb instruction with an invalid SPR (or TBR) field causes an illegal
type program exception. Likewise, a program exception is taken if user-level software tries to
access a supervisor-level SPR. Anmtspr instruction executing in supervisor mode (MSR[PR]
= 0) with the SPR field specifying HID1 or PVR (read-only registers) executes as a no-op.

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-37

• An attempt to access memory that is not available (page fault) causes the ISI or DSI
exception handler to be invoked.

• The execution of anscinstruction invokes the system call exception handler that permits a
program to request the system to perform a service.

• The execution of a trap instruction invokes the program exception trap handler.

• The execution of an instruction that causes a floating-point exception while exceptions are
enabled in the MSR invokes the program exception handler.

A detailed description of exception conditions is provided in Chapter 4, "Exceptions" in this
manual.

2.3.3 Instruction Set Overview
This section provides a brief overview of the PowerPC instructions implemented in Gekko and
highlights any special information with respect to how Gekko implements a particular instruction.
Note that the categories used in this section correspond to those used in Chapter 4, “Addressing
Modes and Instruction Set Summary” in thePowerPC Microprocessor Family: The Programming
Environmentsmanual. These categorizations are somewhat arbitrary and are provided for the
convenience of the programmer and do not necessarily reflect the PowerPC architecture
specification.
Note that some instructions have the following optional features:

• CR Update—The dot (.) suffix on the mnemonic enables the update of the CR.

• Overflow option—Theo suffix indicates that the overflow bit in the XER is enabled.

2.3.4 PowerPC UISA Instructions
The PowerPC UISA includes the base user-level instruction set (excluding a few user-level cache
control, synchronization, and time base instructions), user-level registers, programming model,
data types, and addressing modes. This section discusses the instructions defined in the UISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:

• Integer arithmetic instructions

• Integer compare instructions

• Integer logical instructions

• Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into GPRs,
into the integer exception register (XER), and into condition register (CR) fields.

2.3.4.1.1 Integer Arithmetic Instructions
Table 2-23 lists the integer arithmetic instructions for the PowerPC processors.

Table 2-23. Integer Arithmetic Instructions

Name Mnemonic Syntax

Add Immediate addi r D,rA,SIMM

Add Immediate Shifted addis r D,rA,SIMM

Add add (add. addo addo.) rD,rA,rB

IBM Confidential

Page 2-38 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Although there is no Subtract Immediate instruction, its effect can be achieved by using anaddi
instruction with the immediate operand negated. Simplified mnemonics are provided that include this
negation. Thesubf instructions subtract the second operand (rA) from the third operand (rB).
Simplified mnemonics are provided in which the third operand is subtracted from the second operand.
See Appendix F, “Simplified Mnemonics,” in thePowerPC Microprocessor Family: The
Programming Environments manual for examples.
The UISA states that an implementation that executes instructions that set the overflow enable bit
(OE) or the carry bit (CA) may either execute these instructions slowly or prevent execution of the
subsequent instruction until the operation completes. Chapter 6 describes how Gekko handles CR
dependencies. The summary overflow bit (SO) and overflow bit (OV) in the integer exception register
are set to reflect an overflow condition of a 32-bit result. This can happen only when OE = 1.

Subtract From subf (subf. subfo subfo.) rD,rA,rB

Add Immediate Carrying addic r D,rA,SIMM

Add Immediate Carrying and Record addic. r D,rA,SIMM

Subtract from Immediate Carrying subfic r D,rA,SIMM

Add Carrying addc (addc. addco addco.) rD,rA,rB

Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB

Add Extended adde (adde. addeo addeo.) rD,rA,rB

Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB

Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA

Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA

Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA

Negate neg (neg. nego nego.) rD,rA

Multiply Low Immediate mulli r D,rA,SIMM

Multiply Low mullw (mullw. mullwo mullwo.) rD,rA,rB

Multiply High Word mulhw (mulhw.) rD,rA,rB

Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB

Divide Word divw (divw. divwo divwo.) rD,rA,rB

Divide Word Unsigned divwu divwu. divwuo divwuo. r D,rA,rB

Table 2-23. Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-39

2.3.4.1.2 Integer Compare Instructions
The integer compare instructions algebraically or logically compare the contents of registerrA
with either the zero-extended value of the UIMM operand, the sign-extended value of the SIMM
operand, or the contents of registerrB. The comparison is signed for thecmpi and cmp
instructions, and unsigned for thecmpli andcmpl instructions.
Table 2-24 summarizes the integer compare instructions.

ThecrfD operand can be omitted if the result of the comparison is to be placed in CR0. Otherwise
the target CR field must be specified incrfD, using an explicit field number.
For information on simplified mnemonics for the integer compare instructions see Appendix F,
“Simplified Mnemonics,” in the PowerPC Microprocessor Family: The Programming
Environments manual.

2.3.4.1.3 Integer Logical Instructions
The logical instructions shown in Table 2-25 perform bit-parallel operations on the specified
operands. Logical instructions with the CR updating enabled (uses dot suffix) and instructions
andi. and andis. set CR field CR0 to characterize the result of the logical operation. Logical
instructions do not affect XER[SO], XER[OV], or XER[CA].
See Appendix F, “Simplified Mnemonics,” in thePowerPC Microprocessor Family: The
Programming Environmentsmanual for simplified mnemonic examples for integer logical
operations.

Table 2-24. Integer Compare Instructions

Name Mnemonic Syntax

Compare Immediate cmpi crf D,L,rA,SIMM

Compare cmp crf D,L,rA,rB

Compare Logical Immediate cmpli crf D,L,rA,UIMM

Compare Logical cmpl crf D,L,rA,rB

Table 2-25. Integer Logical Instructions

Name Mnemonic Syntax Implementation Notes

AND Immediate andi. r A,rS,UIMM —

AND Immediate Shifted andis. r A,rS,UIMM —

OR Immediate ori r A,rS,UIMM The PowerPC architecture defines ori r0,r0,0 as the
preferred form for the no-op instruction. The dispatcher
discards this instruction (except for pending trace or
breakpoint exceptions).

OR Immediate Shifted oris r A,rS,UIMM —

XOR Immediate xori r A,rS,UIMM —

XOR Immediate Shifted xoris r A,rS,UIMM —

AND and (and.) rA,rS,rB —

OR or (or.) rA,rS,rB —

IBM Confidential

Page 2-40 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

2.3.4.1.4 Integer Rotate Instructions
Rotation operations are performed on data from a GPR, and the result, or a portion of the result, is
returned to a GPR. See Appendix F, “Simplified Mnemonics,” in thePowerPC Microprocessor
Family: The Programming Environmentsmanual for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost bits of a
register, left justifying or right justifying an arbitrary field, and simple rotates and shifts.
Integer rotate instructions rotate the contents of a register. The result of the rotation is either inserted
into the target register under control of a mask (if a mask bit is 1 the associated bit of the rotated data
is placed into the target register, and if the mask bit is 0 the associated bit in the target register is
unchanged), or ANDed with a mask before being placed into the target register.
The integer rotate instructions are summarized in Table 2-26.

XOR xor (xor.) rA,rS,rB —

NAND nand (nand.) rA,rS,rB —

NOR nor (nor.) rA,rS,rB —

Equivalent eqv (eqv.) rA,rS,rB —

AND with Complement andc (andc.) rA,rS,rB —

OR with Complement orc (orc.) rA,rS,rB —

Extend Sign Byte extsb (extsb.) rA,rS —

Extend Sign Half Word extsh (extsh.) rA,rS —

Count Leading Zeros Word cntlzw (cntlzw.) rA,rS —

Table 2-26. Integer Rotate Instructions

Name Mnemonic Syntax

Rotate Left Word Immediate then AND with Mask rlwinm (rlwinm.) rA,rS,SH,MB,ME

Rotate Left Word then AND with Mask rlwnm (rlwnm.) rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi.) rA,rS,SH,MB,ME

Table 2-25. Integer Logical Instructions (Continued)

Name Mnemonic Syntax Implementation Notes

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-41

2.3.4.1.5 Integer Shift Instructions
The integer shift instructions perform left and right shifts. Immediate-form logical (unsigned) shift
operations are obtained by specifying masks and shift values for certain rotate instructions.
Simplified mnemonics (shown in Appendix F, “Simplified Mnemonics,” in thePowerPC
Microprocessor Family: The Programming Environmentsmanual) are provided to make coding of
such shifts simpler and easier to understand.
Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision Shifts"
in the PowerPC Microprocessor Family: The Programming Environmentsmanual. The integer
shift instructions are summarized in Table 2-27.

2.3.4.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

• Floating-point arithmetic instructions

• Floating-point multiply-add instructions

• Floating-point rounding and conversion instructions

• Floating-point compare instructions

• Floating-point status and control register instructions

• Floating-point move instructions

See Section 2.3.4.3, "Load and Store Instructions" on Page 2-46 for information about
floating-point loads and stores.
The PowerPC architecture supports a floating-point system as defined in the IEEE 754 standard,
but requires software support to conform with that standard. All floating-point operations conform
to the IEEE 754 standard, except if software sets the non-IEEE mode FPSCR[NI].

Table 2-27. Integer Shift Instructions

Name Mnemonic Syntax

Shift Left Word slw (slw.) rA,rS,rB

Shift Right Word srw (srw.) rA,rS,rB

Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH

Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

IBM Confidential

Page 2-42 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

2.3.4.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 2-28.

Double-precision arithmetic instructions, except those involving multiplication (fmul , fmadd,
fmsub, fnmadd, fnmsub) execute with the same latency as their single-precision equivalents. For
additional details on floating-point performance, refer to Chapter 6, "Instruction Timing" in this
manual.

Table 2-28. Floating-Point Arithmetic Instructions

Name Mnemonic Syntax

Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB

Floating Add Single fadds (fadds.) frD,frA,frB

Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB

Floating Subtract Single fsubs (fsubs.) frD,frA,frB

Floating Multiply (Double-Precision) fmul (fmul.) frD,frA,frC

Floating Multiply Single fmuls (fmuls.) frD,frA,frC

Floating Divide (Double-Precision) fdiv (fdiv.) frD,frA,frB

Floating Divide Single fdivs (fdivs.) frD,frA,frB

Floating Reciprocal Estimate Single 1 fres (fres.) frD,frB

Floating Reciprocal Square Root Estimate 1 frsqrte (frsqrte.) frD,frB

Floating Select 1 fsel (fsel.) frD,frA,frC,frB

Paired Single Add 2 ps_add (ps_add.) frD,frA,frB

Paired Single Subtract 2 ps_sub (ps_sub.) frD,frA,frB

Paired Single Multiply 2 ps_mul (ps_mul.) frD,frA,frC

Paired Single Divide 2 ps_div (ps_div.) frD,frA,frB

Paired Single Reciprocal Estimate 2 ps_res (ps_res.) frD,frB

Paired Single Reciprocal Square Root Estimate 2 ps_rsqrte (ps_rsqrte.) frD,frB

Paired Single Select 2 ps_sel (ps_sel.) frD,frA,frC,frB

Paired Single Multiply Scalar High 2 ps_muls0 (ps_muls0.) frD,frA,frC

Paired Single Multiply Scalar Low 2 ps_muls1 (ps_muls1.) frD,frA,frC

Paired Single Vector Sum High 2 ps_sum0 (ps_sum0.) frD,frA,frC,frB

Paired Single Vector Sum Low 2 ps_sum1 (ps_sum1.) frD,frA,frC,frB

Note: 1The fres , frsqrte and fsel instructions are optional in the PowerPC architecture.
Note : 2These instructions belong to the Gekko graphics extensions, and are legal only when HID2[PSE] = 1.

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-43

2.3.4.2.2 Floating-Point Multiply-Add Instructions
These instructions combine multiply and add operations without an intermediate rounding
operation. The floating-point multiply-add instructions are summarized in Table 2-29.

Table 2-29. Floating-Point Multiply-Add Instructions

Name Mnemonic Syntax

Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB

Floating Multiply-Add Single fmadds (fmadds.) frD,frA,frC,frB

Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB

Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB

Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frA,frC,frB

Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frA,frC,frB

Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frA,frC,frB

Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) frD,frA,frC,frB

Paired Single Multiply-Add 1 ps_madd (ps_madd.) frD,frA,frC,frB

Paired Single Multiply-Subtract 1 ps_msub (ps_msub.) frD,frA,frC,frB

Paired Single Negative Multiply-Add 1 ps_nmadd (ps_nmadd.) frD,frA,frC,frB

Paired Single Negative Multiply-Subtract 1 ps_nmsub (ps_nmsub.) frD,frA,frC,frB

Paired Single Multiply-Add Scalar High 1 ps_madds0 (ps_madds0.) frD,frA,frC,frB

Paired Single Multiply-Add Scalar Low 1 ps_madds1 (ps_madds1.) frD,frA,frC,frB

Note : 1These instructions are Gekko-specific, and are legal only when HID2[PSE] = 1.

IBM Confidential

Page 2-44 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions
The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The floating-point
convert instructions convert a 64-bit double-precision floating-point number to a 32-bit signed integer
number.
Examples of uses of these instructions to perform various conversions can be found in Appendix D,
“Floating-Point Models,” in thePowerPC Microprocessor Family: The Programming Environments
manual.

2.3.4.2.4 Floating-Point Compare Instructions
Floating-point compare instructions compare the contents of two floating-point registers. The
comparison ignores the sign of zero (that is +0 = –0).
The floating-point compare instructions are summarized in Table 2-31.

The PowerPC architecture allows anfcmpu or fcmpo instruction with the Rc bit set to produce a
boundedly-undefined result, which may include an illegal instruction program exception. In Gekko,
crfD should be treated as undefined

Table 2-30. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax

Floating Round to Single frsp (frsp.) frD,frB

Floating Convert to Integer Word fctiw (fctiw.) frD,frB

Floating Convert to Integer Word with Round toward Zero fctiwz (fctiwz.) frD,frB

Table 2-31. Floating-Point Compare Instructions

Name Mnemonic Syntax

Floating Compare Unordered fcmpu crf D,frA,frB

Floating Compare Ordered fcmpo crf D,frA,frB

Paired Single Compare Unordered High 1 ps_cmpu0 crf D,frA,frB

Paired Single Compare Unordered Low 1 ps_cmpu1 crf D,frA,frB

Paired Single Compare Ordered High 1 ps_cmpo0 crf D,frA,frB

Paired Single Compare Ordered Low 1 ps_cmpo1 crf D,frA,frB

Note : 1These instructions are Gekko-specific, and are legal only when HID2[PSE] = 1.

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-45

2.3.4.2.5 Floating-Point Status and Control Register Instructions
Every FPSCR instruction appears to synchronize the effects of all floating-point instructions
executed by a given processor. Executing an FPSCR instruction ensures that all floating-point
instructions previously initiated by the given processor appear to have completed before the
FPSCR instruction is initiated and that no subsequent floating-point instructions appear to be
initiated by the given processor until the FPSCR instruction has completed.
The FPSCR instructions are summarized in Table 2-32.

Implementation Note—The PowerPC architecture states that in some implementations, the Move
to FPSCR Fields (mtfsf) instruction may perform more slowly when only some of the fields are
updated as opposed to all of the fields. In Gekko, there is no degradation of performance.

Table 2-32. Floating-Point Status and Control Register Instructions

Name Mnemonic Syntax

Move from FPSCR mffs (mffs.) frD

Move to Condition Register from FPSCR mcrfs crf D,crf S

Move to FPSCR Field Immediate mtfsfi (mtfsfi.) crf D,IMM

Move to FPSCR Fields mtfsf (mtfsf.) FM,frB

Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) crb D

Move to FPSCR Bit 1 mtfsb1 (mtfsb1.) crb D

IBM Confidential

Page 2-46 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

2.3.4.2.6 Floating-Point Move Instructions
Floating-point move instructions copy data from one FPR to another. The floating-point move
instructions do not modify the FPSCR. The CR update option in these instructions controls the
placing of result status into CR1.
Table 2-33 summarizes the floating-point move instructions.

2.3.4.3 Load and Store Instructions
Load and store instructions are issued and translated in program order; however, the accesses can
occur out of order. Synchronizing instructions are provided to enforce strict ordering. This section
describes the load and store instructions, which consist of the following:

• Integer load instructions

• Integer store instructions

• Integer load and store with byte-reverse instructions

• Integer load and store multiple instructions

• Floating-point load instructions, including quantized loads

• Floating-point store instructions, including quantized stores

• Memory synchronization instructions

Implementation Notes—The following describes how Gekko handles misalignment:

Gekko provides hardware support for misaligned memory accesses. It performs those accesses within
a single cycle if the operand lies within a double-word boundary. Misaligned memory accesses that
cross a double-word boundary degrade performance.
For string operations, the hardware makes no attempt to combine register values to reduce the number

Table 2-33. Floating-Point Move Instructions

Name Mnemonic Syntax

Floating Move Register fmr (fmr.) frD,frB

Floating Negate fneg (fneg.) frD,frB

Floating Absolute Value fabs (fabs.) frD,frB

Floating Negative Absolute Value fnabs (fnabs.) frD,frB

Paired Single Move Register 1 ps_mr (ps_mr.) frD,frB

Paired Single Negate 1 ps_neg (ps_neg.) frD,frB

Paired Single Absolute Value 1 ps_abs (ps_abs.) frD,frB

Paired Single Negative Absolute Value 1 ps_nabs (ps_nabs.) frD,frB

Paired Single Merge High 1 ps_merge00 (ps_merge00.) frD,frA,frB

Paired Single Merge Direct 1 ps_merge01 (ps_merge01.) frD,frA,frB

Paired Single Merge Swapped 1 ps_merge10 (ps_merge10.) frD,frA,frB

Paired Single Merge Low 1 ps_merge11 (ps_merge11.) frD,frA,frB

Note : 1These instructions belong to the Gekko graphics extensions, and are legal only when HID2[PSE] = 1.

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-47

of discrete accesses. Combining stores enhances performance if store gathering is enabled and the
accesses meet the criteria described in Section 6.4.7, "Integer Store Gathering" on Page 6-25. Note
that the PowerPC architecture requires load/store multiple instruction accesses to be aligned. At a
minimum, additional cache access cycles are required.

Although many unaligned memory accesses are supported in hardware, the frequent use of them is
discouraged since they can compromise the overall performance of the processor.
Accesses that cross a translation boundary may be restarted. That is, a misaligned access that
crosses a page boundary is completely restarted if the second portion of the access causes a page
fault. This may cause the first access to be repeated.
On some processors, such as the 603, a TLB reload would cause an instruction restart. On Gekko,
TLB reloads are done transparently and only a page fault causes a restart.

2.3.4.3.1 Self-Modifying Code
When a processor modifies a memory location that may be contained in the instruction cache,
software must ensure that memory updates are visible to the instruction fetching mechanism. This
can be achieved by the following instruction sequence:

dcbst ! update memory
sync ! wait for update
icbi ! remove (invalidate) copy in instruction cache
isync ! remove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Since instruction
fetching bypasses the data cache, changes to items in the data cache may not be reflected in
memory until the fetch operations complete.

Special care must be taken to avoid coherency paradoxes in systems that implement unified
secondary caches, and designers should carefully follow the guidelines for maintaining cache
coherency that are provided in the VEA, and discussed in Chapter 5, “Cache Model and Memory
Coherency" in thePowerPC Microprocessor Family: The Programming Environmentsmanual.
Because Gekko does not broadcast the M bit for instruction fetches, external caches are subject to
coherency paradoxes.

2.3.4.3.2 Integer Load and Store Address Generation
Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, "Effective Address Calculation" on Page 2-35 for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally aligned
may suffer performance degradation. Refer to Section 4.5.6, "Alignment Exception (0x00600)" on
Page 4-19 for additional information about load and store address alignment exceptions.

IBM Confidential

Page 2-48 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

2.3.4.3.3 Integer Load Instructions
For integer load instructions, the byte, half word, or word addressed by the EA (effective address) is
loaded intorD. Many integer load instructions have an update form, in whichrA is updated with the
generated effective address. For these forms, ifrA ≠ 0 andrA ≠ rD (otherwise invalid), the EA is
placed intorA and the memory element (byte, half word, or word) addressed by the EA is loaded into
rD. Note that the PowerPC architecture defines load with update instructions with operandrA = 0 or
rA = rD as invalid forms.
Table 2-34 summarizes the integer load instructions.

Implementation Notes—The following notes describe the Gekko implementation of integer load
instructions:

• The PowerPC architecture cautions programmers that some implementations of the
architecture may execute the load half algebraic (lha, lhax) instructions with greater latency
than other types of load instructions. This is not the case for Gekko; these instructions operate
with the same latency as other load instructions.

• The PowerPC architecture cautions programmers that some implementations of the
architecture may run the load/store byte-reverse (lhbrx , lbrx , sthbrx, stwbrx) instructions
with greater latency than other types of load/store instructions. This is not the case for Gekko.
These instructions operate with the same latency as the other load/store instructions.

Table 2-34. Integer Load Instructions

Name Mnemonic Syntax

Load Byte and Zero lbz r D,d(rA)

Load Byte and Zero Indexed lbzx r D,rA,rB

Load Byte and Zero with Update lbzu r D,d(rA)

Load Byte and Zero with Update Indexed lbzux r D,rA,rB

Load Half Word and Zero lhz r D,d(rA)

Load Half Word and Zero Indexed lhzx r D,rA,rB

Load Half Word and Zero with Update lhzu r D,d(rA)

Load Half Word and Zero with Update Indexed lhzux r D,rA,rB

Load Half Word Algebraic lha r D,d(rA)

Load Half Word Algebraic Indexed lhax r D,rA,rB

Load Half Word Algebraic with Update lhau r D,d(rA)

Load Half Word Algebraic with Update Indexed lhaux r D,rA,rB

Load Word and Zero lwz r D,d(rA)

Load Word and Zero Indexed lwzx r D,rA,rB

Load Word and Zero with Update lwzu r D,d(rA)

Load Word and Zero with Update Indexed lwzux r D,rA,rB

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-49

• The PowerPC architecture describes some preferred instruction forms for load and store
multiple instructions and integer move assist instructions that may perform better than other
forms in some implementations. None of these preferred forms affect instruction
performance on Gekko.

• The PowerPC architecture defines thelwarx andstwcx. as a way to update memory
atomically. In Gekko, reservations are made on behalf of aligned 32-byte sections of the
memory address space. Executinglwarx andstwcx. to a page marked write-through does
not cause a DSI exception if the W bit is set, but as with other memory accesses, DSI
exceptions can result for other reasons such as protection violations or page faults.

• In general, becausestwcx. always causes an external bus transaction it has slightly worse
performance characteristics than normal store operations.

2.3.4.3.4 Integer Store Instructions
For integer store instructions, the contents ofrS are stored into the byte, half word or word in
memory addressed by the EA (effective address). Many store instructions have an update form, in
which rA is updated with the EA. For these forms, the following rules apply:

• If rA ≠ 0, the effective address is placed intorA.

• If rS = rA, the contents of registerrS are copied to the target memory element, then the
generated EA is placed intorA (rS).

The PowerPC architecture defines store with update instructions withrA = 0 as an invalid form. In
addition, it defines integer store instructions with the CR update option enabled (Rc field, bit 31, in
the instruction encoding = 1) to be an invalid form.
Table 2-35 summarizes the integer store instructions.

Table 2-35. Integer Store Instructions

Name Mnemonic Syntax

Store Byte stb r S,d(rA)

Store Byte Indexed stbx r S,rA,rB

Store Byte with Update stbu r S,d(rA)

Store Byte with Update Indexed stbux r S,rA,rB

Store Half Word sth r S,d(rA)

Store Half Word Indexed sthx r S,rA,rB

Store Half Word with Update sthu r S,d(rA)

Store Half Word with Update Indexed sthux r S,rA,rB

Store Word stw r S,d(rA)

Store Word Indexed stwx r S,rA,rB

Store Word with Update stwu r S,d(rA)

Store Word with Update Indexed stwux r S,rA,rB

IBM Confidential

Page 2-50 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

2.3.4.3.5 Integer Store Gathering
Gekko performs store gathering for write-through accesses to nonguarded space or to cache-inhibited
stores to nonguarded space if the stores are 4 bytes and they are word-aligned. These stores are
combined in the load/store unit (LSU) to form a double word and are sent out on the 60x bus as a
single-beat operation. However, stores can be gathered only if the successive stores that meet the
criteria are queued and pending. Store gathering takes place regardless of the address order of the
stores. The store gathering feature is enabled by setting HID0[SGE]. Store gathering is done for both
big- and little-endian modes.
Store gathering is not done for the following:

• Cacheable stores

• Stores to guarded cache-inhibited or write-through space

• Byte-reverse store

• stwcx. andecowxaccesses

• Floating-point stores

• Store operations attempted during a hardware table search

If store gathering is enabled and the stores do not fall under the above categories, aneieioor sync
instruction must be used to prevent two stores from being gathered.
Note that the write gather pipe facility provides a separate mechanism for gathering operands before
transferring them to memory. See Chapter 9 for a description of this facility.

2.3.4.3.6 Integer Load and Store with Byte-Reverse Instructions
Table 2-36 describes integer load and store with byte-reverse instructions. When used in a PowerPC
system operating with the default big-endian byte order, these instructions have the effect of loading
and storing data in little-endian order. Likewise, when used in a PowerPC system operating with
little-endian byte order, these instructions have the effect of loading and storing data in big-endian
order. For more information about big-endian and little-endian byte ordering, see “Byte Ordering" in
Chapter 3, “Operand Conventions" in thePowerPC Microprocessor Family: The Programming
Environments manual.

2.3.4.3.7 Integer Load and Store Multiple Instructions
The load/store multiple instructions are used to move blocks of data to and from the GPRs. The load
multiple and store multiple instructions may have operands that require memory accesses crossing a
4-Kbyte page boundary. As a result, these instructions may be interrupted by a DSI exception
associated with the address translation of the second page.

Table 2-36. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Syntax

Load Half Word Byte-Reverse Indexed lhbrx r D,rA,rB

Load Word Byte-Reverse Indexed lwbrx r D,rA,rB

Store Half Word Byte-Reverse Indexed sthbrx r S,rA,rB

Store Word Byte-Reverse Indexed stwbrx r S,rA,rB

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-51

Implementation Notes—The following describes the Gekko implementation of the load/store
multiple instruction:

• For load/store string operations, the hardware does not combine register values to reduce
the number of discrete accesses. However, if store gathering is enabled and the accesses fall
under the criteria for store gathering the stores may be combined to enhance performance.
At a minimum, additional cache access cycles are required.

• Gekko supports misaligned, single-register load and store accesses in little-endian mode
without causing an alignment exception. However, execution of misaligned load/store
multiple/string operations causes an alignment exception.

The PowerPC architecture defines the load multiple word (lmw) instruction withrA in the range
of registers to be loaded as an invalid form.

2.3.4.3.8 Integer Load and Store String Instructions
The integer load and store string instructions allow movement of data from memory to registers or
from registers to memory without concern for alignment. These instructions can be used for a short
move between arbitrary memory locations or to initiate a long move between misaligned memory
fields. However, in some implementations, these instructions are likely to have greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.
Table 2-36 summarizes the integer load and store string instructions. In other PowerPC
implementations operating with little-endian byte order, execution of a load or string instruction
invokes the alignment error handler; see “Byte Ordering" in thePowerPC Microprocessor Family:
The Programming Environments manual for more information.

Load string and store string instructions may involve operands that are not word-aligned.
As described in Section 4.5.6, "Alignment Exception (0x00600)" on Page 4-19, a misaligned string
operation suffers a performance penalty compared to an aligned operation of the same type.
A non–word-aligned string operation that crosses a 4-Kbyte boundary, or a word-aligned string
operation that crosses a 256-Mbyte boundary always causes an alignment exception. A
non–word-aligned string operation that crosses a double-word boundary is also slower than a
word-aligned string operation.

Table 2-37. Integer Load and Store Multiple Instructions

Name Mnemonic Syntax

Load Multiple Word lmw r D,d(rA)

Store Multiple Word stmw r S,d(rA)

Table 2-38. Integer Load and Store String Instructions

Name Mnemonic Syntax

Load String Word Immediate lswi r D,rA,NB

Load String Word Indexed lswx r D,rA,rB

Store String Word Immediate stswi r S,rA,NB

Store String Word Indexed stswx r S,rA,rB

IBM Confidential

Page 2-52 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Implementation Note—The following describes the Gekko implementation of load/store string
instructions:

• For load/store string operations, the hardware does not combine register values to reduce the
number of discrete accesses. However, if store gathering is enabled and the accesses fall under
the criteria for store gathering the stores may be combined to enhance performance. At a
minimum, additional cache access cycles are required.

• Gekko supports misaligned, single-register load and store accesses in little-endian mode
without causing an alignment exception. However, execution of misaligned load/store
multiple/string operations cause an alignment exception.

2.3.4.3.9 Floating-Point Load and Store Address Generation
Floating-point load and store operations generate effective addresses using the register indirect with
immediate index addressing mode and register indirect with index addressing mode. Floating-point
loads and stores are not supported for direct-store accesses. The use of floating-point loads and stores
for direct-store access results in an alignment exception.
Implementation Notes—Gekko treats exceptions as follows:

• The FPU can be run in two different modes—ignore exceptions mode (MSR[FE0] =
MSR[FE1] = 0) and precise mode (any other settings for MSR[FE0,FE1]). For Gekko, ignore
exceptions mode allows floating-point instructions to complete earlier and thus may provide
better performance than precise mode.

• The floating-point load and store indexed instructions (lfsx, lfsux, lfdx , lfdux, stfsx, stfsux,
stfdx, stfdux) are invalid when the Rc bit is one. In Gekko, executing one of these invalid
instruction forms causes CR0 to be set to an undefined value.

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-53

2.3.4.3.10 Floating-Point Load Instructions
There are three forms of the floating-point load instruction—single-precision, double-precision
and paired single (quantized) operand formats. The behavior of double- precision floating-point
load instructions, and the behavior of single-precision floating- point load instructions when
HID2[PSE] = 0 are described here. Paired single floating-point load instructions are illegal when
HID2[PSE] = 0. The behavior of single-precision floating-point load instructions and paired single
(quantized) load instructions when HID2[PSE] = 1 are described in Section 2.3.4.3.12, "Paired
Single Load and Store Instructions" on Page 2-55.
Single-precision floating-point load instructions convert single-precision data to double-precision
format before loading an operand into an FPR.
The PowerPC architecture defines a load with update instruction withrA = 0 as an invalid form.
Table 2-39 summarizes the single- and double-precision floating-point load instructions.

2.3.4.3.11 Floating-Point Store Instructions
This section describes floating-point store instructions. There are four basic forms of the store
instruction—single-precision, double-precision, paired single (quantized) and integer. The integer
form is supported by the optionalstfiwx instruction. The behavior of double- precision
floating-point store instructions, and the behavior of single-precision floating- point store
instructions when HID2[PSE] = 0 are described here. Paired single floating-point store instructions
are illegal when HID2[PSE] = 0. The behavior of single-precision floating-point store instructions
and paired single (quantized) store instructions when HID2[PSE] = 1 is described in
Section 2.3.4.3.12, "Paired Single Load and Store Instructions" on Page 2-55. Single-precision
floating-point store instructions convert double-precision data to single-precision format before
storing the operands.

Table 2-39. Floating-Point Load Instructions

Name Mnemonic Syntax

Load Floating-Point Single lfs fr D,d(rA)

Load Floating-Point Single Indexed lfsx fr D,rA,rB

Load Floating-Point Single with Update lfsu fr D,d(rA)

Load Floating-Point Single with Update Indexed lfsux fr D,rA,rB

Load Floating-Point Double lfd fr D,d(rA)

Load Floating-Point Double Indexed lfdx fr D,rA,rB

Load Floating-Point Double with Update lfdu fr D,d(rA)

Load Floating-Point Double with Update Indexed lfdux fr D,rA,rB

IBM Confidential

Page 2-54 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Table 2-40 summarizes the single- and double-precision floating-point store andstfiwx instructions.
Some floating-point store instructions require conversions in the LSU.

Table 2-41 shows conversions the LSU makes when executing a Store Floating-Point Single
instruction (when HID2[PSE] = 0).

NOTE: The FPRs are not initialized byHRESET, and they must be initialized with some valid
value after PORHRESET and before being stored.

Table 2-40. Floating-Point Store Instructions

Name Mnemonic Syntax

Store Floating-Point Single stfs fr S,d(rA)

Store Floating-Point Single Indexed stfsx fr S,r B

Store Floating-Point Single with Update stfsu fr S,d(rA)

Store Floating-Point Single with Update Indexed stfsux fr S,r B

Store Floating-Point Double stfd fr S,d(rA)

Store Floating-Point Double Indexed stfdx fr S,rB

Store Floating-Point Double with Update stfdu fr S,d(rA)

Store Floating-Point Double with Update Indexed stfdux fr S,r B

Store Floating-Point as Integer Word Indexed 1 stfiwx fr S,rB

Note: 1The stfiwx instruction is optional to the PowerPC architecture.

Table 2-41. Store Floating-Point Single Behavior

FPR Precision Data Type Action

Single Normalized Store

Single Denormalized Store

Single Zero, infinity, QNaN Store

Single SNaN Store

Double Normalized If(exp ≤ 896)
then Denormalize and Store
else

Store

Double Denormalized Store zero

Double Zero, infinity, QNaN Store

Double SNaN Store

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-55

Table 2-42 shows the conversions made when performing a Store Floating-Point Double
instruction. Most entries in the table indicate that the floating-point value is simply stored. Only in
a few cases are any other actions taken.

Architecturally, all single- and double-precision floating-point numbers are represented in
double-precision format within Gekko. Execution of a store floating-point single (stfs, stfsu, stfsx,
stfsux) instruction requires conversion from double- to single-precision format. If the exponent is
not greater than 896, this conversion requires denormalization. Gekko supports this
denormalization by shifting the mantissa one bit at a time. Anywhere from 1 to 23 clock cycles are
required to complete the denormalization, depending upon the value to be stored.
Because of how floating-point numbers are implemented in Gekko, there is also a case when
execution of a store floating-point double (stfd, stfdu, stfdx, stfdux) instruction can require
internal shifting of the mantissa. This case occurs when the operand of a store floating-point double
instruction is a denormalized single-precision value. The value could be the result of a load
floating-point single instruction, a single-precision arithmetic instruction, or a floating round to
single-precision instruction. In these cases, shifting the mantissa takes from 1 to 23 clock cycles,
depending upon the value to be stored. These cycles are incurred during the store.

2.3.4.3.12 Paired Single Load and Store Instructions
In addition to the floating-point load and store instructions defined in the PowerPC architecture,
Gekko includes eight additional load and store instructions that can implicitly convert their
operands between single-precision floating-point and lower precision, quantized data types. For
load instructions, this conversion is an inverse quantization, or dequantization, operation that
converts signed or unsigned, 8 or 16 bit integers to 32 bit single-precision floating-point operands.
This conversion takes place in the load/store unit as the data is being transfered to a floating-point
register (FPR). For store instructions, the conversion is a quantization operation that converts
single-precision floating-point numbers to operands having one of the quantized data types. This
conversion takes place in the load/store unit as the data is transfered out of an FPR.
The load and store instructions for which data quantization applies are for ‘paired single’ operands,
and so are valid only when HID2[PSE] = 1. These new load and store instructions cause an illegal
instruction exception if execution is attempted when HID2[PSE] = 0. Furthermore, the nonindexed
forms of these loads and stores (psq_l[u] andpsq_st[u]) are illegal unless HID2[LSQE] = 1 as
well. The quantization/dequantization hardware in the load/store unit assumes big-endian ordering
of the data in memory. Use of these instructions in little-endian mode (MSR[LE] = 1) will give

Table 2-42. Store Floating-Point Double Behavior

FPR Precision Data Type Action

Single Normalized Store

Single Denormalized Normalize and Store

Single Zero, infinity, QNaN Store

Single SNaN Store

Double Normalized Store

Double Denormalized Store

Double Zero, infinity, QNaN Store

Double SNaN Store

IBM Confidential

Page 2-56 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

undefined results. Whenever a pair of operands are converted, they are both converted in the same
manner.
When operating in paired single mode (HID2[PSE] = 1), the behavior of single-precision
floating-point load and store instructions is different from that described in the previous two sections.
In this mode, a single-precision floating-point load instruction will load one single-precision operand
into both the high and low order words of the operand pair in an FPR. A single-precision
floating-point store instruction will store only the high order word of the operand pair in an FPR.
Table 2-43 summarizes the paired single load and store instructions.

Two paired single load (psq_l, psq_lu) and two paired single store (psq_st, psq_stu) instructions use
a variation of the D-form instruction format. Instead of having a 16 bit displacement field, 12 bits are
used for displacement, and the remaining four are used to specify whether one or two operands are to
be processed (the 1 bit W field) and which of the eight GQRs is to be used to specify the scale and
type for the conversion (the 3 bit I field). The two remaining paired single load (psq_lx, psq_lux) and
the two remaining paired single store (psq_stx, psq_stux) instructions use a variation of the X-form
instruction format. Instead of having a 10 bit secondary opcode field, 6 bits are used for the secondary
opcode, and the remaining four are used for the W field and the I field.
See Chapter 12, "Instruction Set" in this manual for more information on the instruction format.
The dequantization algorithm used to convert each integer of a pair to a single-precision floating-point
operand is as follows:

1. read integer operand from L1 cache

2. convert data to sign and magnitude according to type specified in the selected GQR

3. convert magnitude to normalized mantissa and exponent

4. subtract scaling factor specified in the selected GQR from the exponent

5. load the converted value into the target FPR

For an integer value, I, in memory, the floating-point value F, loaded into the target FPR, is F = I *
2**(-S), where S is the twos compliment value in the LD_SCALE field of the selected GQR.

Table 2-43. Paired Single Load and Store Instructions

Name Mnemonic Syntax

Paired Single Quantized Load 2 psq_l fr D,d(rA),W,qr I

Paired Single Quantized Load Indexed 1 psq_lx fr D,rA,rB,W,qr I

Paired Single Quantized Load with Update 2 psq_lu fr D,d(rA),W,qr I

Paired Single Quantized Load with Update Indexed 1 psq_lux fr D,rA,rB,W,qr I

Paired Single Quantized Store 2 psq_st fr S,d(rA),W,qr I

Paired Single Quantized Store Indexed 1 psq_stx fr S,rA,rB,W,qr I

Paired Single Quantized Store with Update 2 psq_stu fr S,d(rA),W,qr I

Paired Single Quantized Store with Update Indexed 1 psq_stux fr S,rA,rB,W,qr I

Note : 1These instructions belong to the Gekko graphics extensions, and are legal only when HID2[PSE] = 1.
Note : 2These instructions belong to the Gekko graphics extensions, and are legal only when HID2[PSE] = 1
and HID2[LSQE] = 1.

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-57

Table 2-44 shows how an integer value of 1 is converted to a single-precision floating-point value
for various scaling factors.

For a single-precision floating-point operand (type = 0), the value from the L1 cache is passed
directly to the register without any conversion. This includes the case where the operand is a
denorm.
The quantization algorithm used to convert each single-precision floating-point operand of a pair
to an integer is as follows:

1. Move the single-precision floating-point operand from the FPR to the completion
store queue.

2. Add the scaling factor specified in the selected GQR to the exponent

3. Shift mantissa and increment/decrement exponent until exponent is zero

4. Convert sign and magnitude to 2s complement representation, and

5. Round toward zero to get the type specified in the selected GQR

6. Adjust the resulting value on overflow

7. Store the converted value in the L1 cache.

The adjusted result value for overflow of unsigned integers is zero for negative values, 255 and
65535 for positive values, for 8 and 16 bit types, respectively. The adjusted result value for overflow
of signed integers is -128 and -32768 for negative values, 127 and 32767 for positive values, for 8
and 16 bit types, respectively. The converted value produced when the input operand is +Inf or NaN
is the same as the adjusted result value for overflow of positive values for the target data type. The
converted value produced when the input operand is -Inf is the same as the adjusted result value for

Table 2-44. Conversion of integer value 1 to single-precision floating point

GQRx[LD_SCALE] scaling factor (S) floating-point value

100000 -32 4.29 E+9

100001 -31 2.15 E+9

...

111110 -2 4.00 E+0

111111 -1 2.00 E+0

000000 0 1.00 E+0

000001 1 5.00 E-1

000010 2 2.50 E-1

...

011110 30 9.31 E-10

011111 31 4.66 E-10

IBM Confidential

Page 2-58 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

overflow of negative values.
For a single-precision floating-point value, F, in an FPR, the integer value I, stored to memory,
is I = ROUND(F * 2**(S)), where S is the twos compliment value in the ST_SCALE field of the
selected GQR, and ROUND applies the rounding and clamping appropriate to the particular target
integer format.
Table 2-45 shows how a floating-point value of 1.00 E+2 is converted to an integer value for various
scaling factors.

For a single-precision floating-point operand (type = 0), the value from the FPR is passed directly to
the L1 cache without any conversion, except when this operand is a denorm. In the case of a denorm,
the value 0.0 is stored in the L1 cache.

2.3.4.4 Branch and Flow Control Instructions
Some branch instructions can redirect instruction execution conditionally based on the value of bits
in the CR. When the processor encounters one of these instructions, it scans the execution pipelines
to determine whether an instruction in progress may affect the particular CR bit. If no interlock is
found, the branch can be resolved immediately by checking the bit in the CR and taking the action
defined for the branch instruction.

2.3.4.4.1 Branch Instruction Address Calculation
Branch instructions can alter the sequence of instruction execution. Instruction addresses are always
assumed to be word aligned; the PowerPC processors ignore the two low-order bits of the generated
branch target address.

Table 2-45. Conversion of Floating-point Value 1.00 E+2 to Integer

GQRx[LD_
SCALE]

scaling
factor (S)

u8 value u16 s8 s16

100000 -32 0 0 0 0

100001 -31 0 0 0 0

...

111110 -2 25 25 25 25

111111 -1 50 50 50 50

000000 0 100 100 100 100

000001 1 200 200 127 200

000010 2 255 400 127 400

...

011110 30 255 65535 127 32767

011111 31 255 65525 127 32767

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-59

Branch instructions compute the EA of the next instruction address using the following addressing
modes:

• Branch relative

• Branch conditional to relative address

• Branch to absolute address

• Branch conditional to absolute address

• Branch conditional to link register

• Branch conditional to count register

Note that in Gekko, all branch instructions (b, ba, bl, bla, bc, bca, bcl, bcla, bclr, bclrl , bcctr,
bcctrl) and condition register logical instructions (crand, cror, crxor, crnand, crnor, crandc,
creqv, crorc, and mcrf) are executed by the BPU. Some of these instructions can redirect
instruction execution conditionally based on the value of bits in the CR. Whenever the CR bits
resolve, the branch direction is either marked as correct or mispredicted. Correcting a mispredicted
branch requires that Gekko flush speculatively executed instructions and restore the machine state
to immediately after the branch. This correction can be done immediately upon resolution of the
condition registers bits.

2.3.4.4.2 Branch Instructions
Table 2-46 lists the branch instructions provided by the PowerPC processors. To simplify assembly
language programming, a set of simplified mnemonics and symbols is provided for the most
frequently used forms of branch conditional, compare, trap, rotate and shift, and certain other
instructions.
See Appendix F, “Simplified Mnemonics" in thePowerPC Microprocessor Family: The
Programming Environments manual for a list of simplified mnemonic examples.

2.3.4.4.3 Condition Register Logical Instructions
Condition register logical instructions and the Move Condition Register Field (mcrf) instruction
are also defined as flow control instructions.
Table 2-47 shows these instructions.

Table 2-46. Branch Instructions

Name Mnemonic Syntax

Branch b (ba bl bla) target_addr

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr

Branch Conditional to Link Register bclr (bclrl) BO,BI

Branch Conditional to Count Register bcctr (bcctrl) BO,BI

Table 2-47. Condition Register Logical Instructions

Name Mnemonic Syntax

Condition Register AND crand crb D,crb A,crb B

Condition Register OR cror crb D,crb A,crb B

IBM Confidential

Page 2-60 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

NOTE: If the LR update option is enabled for any of these instructions, the PowerPC architecture
defines these forms of the instructions as invalid.

2.3.4.4.4 Trap Instructions
The trap instructions shown in Table 2-48 are provided to test for a specified set of conditions. If any
of the conditions tested by a trap instruction are met, the system trap type program exception is taken.
For more information, see Section 4.5.7, "Program Exception (0x00700)" on Page 4-19. If the tested
conditions are not met, instruction execution continues normally.

See Appendix F, “Simplified Mnemonics" in thePowerPC Microprocessor Family: The
Programming Environments manual for a complete set of simplified mnemonics.

2.3.4.5 System Linkage Instruction—UISA
The System Call (sc) instruction permits a program to call on the system to perform a service; see
Table 2-49. See also Section 2.3.6.1, "System Linkage Instructions—OEA" on Page 2-70 for
additional information.

Executing this instruction causes the system call exception handler to be evoked. For more
information, see Section 4.5.10, "System Call Exception (0x00C00)" on Page 4-20.

Condition Register XOR crxor crb D,crb A,crb B

Condition Register NAND crnand crb D,crb A,crb B

Condition Register NOR crnor crb D,crb A,crb B

Condition Register Equivalent creqv crb D,crb A, crb B

Condition Register AND with Complement crandc crb D,crb A, crb B

Condition Register OR with Complement crorc crb D,crb A, crb B

Move Condition Register Field mcrf crf D,crf S

Table 2-48. Trap Instructions

Name Mnemonic Syntax

Trap Word Immediate twi TO,rA,SIMM

Trap Word tw TO,rA,rB

Table 2-49. System Linkage Instruction—UISA

Name Mnemonic Syntax

System Call sc —

Table 2-47. Condition Register Logical Instructions (Continued)

Name Mnemonic Syntax

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-61

2.3.4.6 Processor Control Instructions—UISA
Processor control instructions are used to read from and write to the condition register (CR),
machine state register (MSR), and special-purpose registers (SPRs).
See Section 2.3.5.1, "Processor Control Instructions—VEA" on Page 2-65 for themftb instruction
and Section 2.3.6.2, "Processor Control Instructions—OEA" on Page 2-71 for information about
the instructions used for reading from and writing to the MSR and SPRs.

2.3.4.6.1 Move to/from Condition Register Instructions
Table 2-50 summarizes the instructions for reading from or writing to the condition register.

Implementation Note—The PowerPC architecture indicates that in some implementations the
Move to Condition Register Fields (mtcrf) instruction may perform more slowly when only a
portion of the fields are updated as opposed to all of the fields. The condition register access latency
for Gekko is the same in both cases.

2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)
Table 2-51 lists themtspr andmfspr instructions.

Table 2-52 lists the SPR numbers for both user- and supervisor-level accesses.

Table 2-50. Move to/from Condition Register Instructions

Name Mnemonic Syntax

Move to Condition Register Fields mtcrf CRM,rS

Move to Condition Register from XER mcrxr crf D

Move from Condition Register mfcr r D

Table 2-51. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Syntax

Move to Special-Purpose Register mtspr SPR,rS

Move from Special-Purpose Register mfspr r D,SPR

Table 2-52. PowerPC Encodings

Register Name
SPR

1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

CTR 9 00000 01001 User (UISA) Both

DABR 1013 11111 10101 Supervisor (OEA) Both

DAR 19 00000 10011 Supervisor (OEA) Both

DBAT0L 537 10000 11001 Supervisor (OEA) Both

DBAT0U 536 10000 11000 Supervisor (OEA) Both

DBAT1L 539 10000 11011 Supervisor (OEA) Both

DBAT1U 538 10000 11010 Supervisor (OEA) Both

IBM Confidential

Page 2-62 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

DBAT2L 541 10000 11101 Supervisor (OEA) Both

DBAT2U 540 10000 11100 Supervisor (OEA) Both

DBAT3L 543 10000 11111 Supervisor (OEA) Both

DBAT3U 542 10000 11110 Supervisor (OEA) Both

DEC 22 00000 10110 Supervisor (OEA) Both

DSISR 18 00000 10010 Supervisor (OEA) Both

EAR 282 01000 11010 Supervisor (OEA) Both

IBAT0L 529 10000 10001 Supervisor (OEA) Both

IBAT0U 528 10000 10000 Supervisor (OEA) Both

IBAT1L 531 10000 10011 Supervisor (OEA) Both

IBAT1U 530 10000 10010 Supervisor (OEA) Both

IBAT2L 533 10000 10101 Supervisor (OEA) Both

IBAT2U 532 10000 10100 Supervisor (OEA) Both

IBAT3L 535 10000 10111 Supervisor (OEA) Both

IBAT3U 534 10000 10110 Supervisor (OEA) Both

LR 8 00000 01000 User (UISA) Both

PVR 287 01000 11111 Supervisor (OEA) mfspr

SDR1 25 00000 11001 Supervisor (OEA) Both

SPRG0 272 01000 10000 Supervisor (OEA) Both

SPRG1 273 01000 10001 Supervisor (OEA) Both

SPRG2 274 01000 10010 Supervisor (OEA) Both

SPRG3 275 01000 10011 Supervisor (OEA) Both

SRR0 26 00000 11010 Supervisor (OEA) Both

SRR1 27 00000 11011 Supervisor (OEA) Both

TBL 2 268 01000 01100 User (VEA) mfspr

284 01000 11100 Supervisor (OEA) mtspr

TBU 2 269 01000 01101 User (VEA) mfspr

285 01000 11101 Supervisor (OEA) mtspr

XER 1 00000 00001 User (UISA) Both

Notes :

Table 2-52. PowerPC Encodings (Continued)

Register Name
SPR

1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-63

Encodings for the Gekko-specific SPRs are listed in Table 2-53.

1 The order of the two 5-bit halves of the SPR number is reversed compared with actual
instruction coding. For mtspr and mfspr instructions, the SPR number coded in assembly
language does not appear directly as a 10-bit binary number in the instruction. The number
coded is split into two 5-bit halves that are reversed in the instruction, with the high-order five
bits appearing in bits 16–20 of the instruction and the low-order five bits in bits 11–15.

2 The TB registers are referred to as TBRs rather than SPRs and can be written to using the
mtspr instruction in supervisor mode and the TBR numbers here. The TB registers can be read
in user mode using either the mftb or mfspr instruction and specifying TBR 268 for TBL and
SPR 269 for TBU.

Table 2-53. SPR Encodings for Gekko-Defined Registers (mfspr)

Register
Name

SPR
1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

DABR 1013 11111 10101 User Both

DMAL 2 923 11100 11011 Supervisor Both

DMAU 2 922 11100 11010 Supervisor Both

GQR0 2 912 11100 10000 Supervisor Both

GQR1 2 913 11100 10001 Supervisor Both

GQR2 2 914 11100 10010 Supervisor Both

GQR3 2 915 11100 10011 Supervisor Both

GQR4 2 916 11100 10100 Supervisor Both

GQR5 2 917 11100 10101 Supervisor Both

GQR6 2 918 11100 10110 Supervisor Both

GQR7 2 919 11100 10111 Supervisor Both

HID0 1008 11111 10000 Supervisor Both

HID1 1009 11111 10001 Supervisor Both

HID2 2 920 11100 11000 Supervisor Both

IABR 1010 11111 10010 Supervisor Both

ICTC 1019 11111 11011 Supervisor Both

L2CR 1017 11111 11001 Supervisor Both

MMCR0 952 11101 11000 Supervisor Both

MMCR1 956 11101 11100 Supervisor Both

PMC1 953 11101 11001 Supervisor Both

PMC2 954 11101 11010 Supervisor Both

PMC3 957 11101 11101 Supervisor Both

IBM Confidential

Page 2-64 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

2.3.4.7 Memory Synchronization Instructions—UISA
Memory synchronization instructions control the order in which memory operations are completed
with respect to asynchronous events, and the order in which memory operations are seen by other
processors or memory access mechanisms. See Chapter 3, "Gekko Instruction and Data Cache
Operation" in this manual for additional information about these instructions and about related

PMC4 958 11101 11110 Supervisor Both

SIA 955 11101 11011 Supervisor Both

THRM1 1020 11111 11100 Supervisor Both

THRM2 1021 11111 11101 Supervisor Both

THRM3 1022 11111 11110 Supervisor Both

UMMCR0 936 11101 01000 User mfspr

UMMCR1 940 11101 01100 User mfspr

UPMC1 937 11101 01001 User mfspr

UPMC2 938 11101 01010 User mfspr

UPMC3 941 11101 01101 User mfspr

UPMC4 942 11101 01110 User mfspr

USIA 939 11101 01011 User mfspr

WPAR 2 921 11100 11001 Supervisor Both

Note :
1Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual
instruction coding.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly
as a 10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are
reversed in the instruction, with the high-order 5 bits appearing in bits 16–20 of the instruction and the
low-order 5 bits in bits 11–15.

2This register is part of the Gekko graphics extensions.

Table 2-53. SPR Encodings for Gekko-Defined Registers (mfspr) (Continued)

Register
Name

SPR
1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-65

aspects of memory synchronization. See Table 2-54 for a summary.

System designs with an L2 cache should take special care to recognize the hardware signaling
caused by a SYNC bus operation and perform the appropriate actions to guarantee that memory
references that may be queued internally to the L2 cache have been performed globally.
See 2.3.5.2, “Memory Synchronization Instructions—VEA" for details about additional memory
synchronization (eieio andisync) instructions.
In the PowerPC architecture, the Rc bit must be zero for most load and store instructions. If Rc is
set, the instruction form is invalid forsync and lwarx instructions. If Gekko encounters one of
these invalid instruction forms, it sets CR0 to an undefined value.

2.3.5 PowerPC VEA Instructions
The PowerPC virtual environment architecture (VEA) describes the semantics of the memory
model that can be assumed by software processes, and includes descriptions of the cache model,
cache control instructions, address aliasing, and other related issues. Implementations that conform
to the VEA also adhere to the UISA, but may not necessarily adhere to the OEA.
This section describes additional instructions that are provided by the VEA.

2.3.5.1 Processor Control Instructions—VEA
In addition to the move to condition register instructions (specified by the UISA), the VEA defines
themftb instruction (user-level instruction) for reading the contents of the time base register; see
Chapter 3, "Gekko Instruction and Data Cache Operation" in this manual for more information.

Table 2-54. Memory Synchronization Instructions—UISA

Name Mnemonic Syntax Implementation Notes

Load Word
and Reserve
Indexed

lwarx r D,rA,rB Programmers can use lwarx with stwcx. to emulate common semaphore
operations such as test and set, compare and swap, exchange memory, and
fetch and add. Both instructions must use the same EA. Reservation
granularity is implementation-dependent. Gekko makes reservations on behalf
of aligned 32-byte sections of the memory address space. If the W bit is set,
executing lwarx and stwcx. to a page marked write-through does not cause a
DSI exception, but DSI exceptions can result for other reasons. If the location is
not word-aligned, an alignment exception occurs.
The stwcx. instruction is the only load/store instruction with a valid form if Rc is
set. If Rc is zero, executing stwcx. sets CR0 to an undefined value. In general,
stwcx. always causes a transaction on the external bus and thus operates with
slightly worse performance characteristics than normal store operations.

Store Word
Conditional
Indexed

stwcx. r S,rA,rB

Synchronize sync — Because it delays subsequent instructions until all previous instructions
complete to where they cannot cause an exception, sync is a barrier against
store gathering when HID2[LCE] = 0 and HID2[WPE] = 0. See Chapter 9, "L2
Cache, Locked D-Cache, DMA and Write Gather Pipe" in this manual for a
description of the modified sync behavior when HID2[LCE] = 1 or HID2[WPE]
= 1. Additionally, all load/store cache/bus activities initiated by prior instructions
are completed. Touch load operations (dcbt , dcbtst) must complete address
translation, but need not complete on the bus. If HID0[ABE] = 1, sync
completes after a successful broadcast.
The latency of sync depends on the processor state when it is dispatched and
on various system-level situations. Therefore, frequent use of sync may
degrade performance.

IBM Confidential

Page 2-66 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Table 2-55 shows themftb instruction.

Simplified mnemonics are provided for themftb instruction so it can be coded with the TBR name
as part of the mnemonic rather than requiring it to be coded as an operand. See Appendix F,
“Simplified Mnemonics" in thePowerPC Microprocessor Family: The Programming Environments
manual for simplified mnemonic examples and for simplified mnemonics for Move from Time Base
(mftb) and Move from Time Base Upper (mftbu), which are variants of themftb instruction rather
than ofmfspr. Themftb instruction serves as both a basic and simplified mnemonic. Assemblers
recognize anmftb mnemonic with two operands as the basic form, and anmftb mnemonic with one
operand as the simplified form. Note that Gekko ignores the extended opcode differences between
mftb andmfspr by ignoring bit 25 and treating both instructions identically.
Implementation Notes—The following information is useful with respect to using the time base
implementation in Gekko:

• Gekko allows user-mode read access to the time base counter through the use of the Move
from Time Base (mftb) and the Move from Time Base Upper (mftbu) instructions. As a
32-bit PowerPC implementation, Gekko can access TBU and TBL only separately, whereas
64-bit implementations can access the entire TB register at once.

• The time base counter is clocked at a frequency that is one-fourth that of the bus clock.

2.3.5.2 Memory Synchronization Instructions—VEA
Memory synchronization instructions control the order in which memory operations are completed
with respect to asynchronous events, and the order in which memory operations are seen by other
processors or memory access mechanisms. See Chapter 3, "Gekko Instruction and Data Cache
Operation" in this manual for more information about these instructions and about related aspects of
memory synchronization.
In addition to thesync instruction (specified by UISA), the VEA defines the Enforce In-Order
Execution of I/O (eieio) and Instruction Synchronize (isync) instructions. The number of cycles
required to complete aneieio instruction depends on system parameters and on the processor's state
when the instruction is issued. As a result, frequent use of this instruction may degrade performance
slightly.

Table 2-55. Move from Time Base Instruction

Name Mnemonic Syntax

Move from Time Base mftb r D, TBR

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-67

Table 2-56 describes the memory synchronization instructions defined by the VEA.

2.3.5.3 Memory Control Instructions—VEA
Memory control instructions can be classified as follows:

• Cache management instructions (user-level and supervisor-level)

• Segment register manipulation instructions (OEA)

• Translation lookaside buffer management instructions (OEA)

This section describes the user-level cache management instructions defined by the VEA. See
Section 2.3.6.3, "Memory Control Instructions—OEA" on Page 2-71 for information about
supervisor-level cache, segment register manipulation, and translation lookaside buffer
management instructions.

2.3.5.3.1 User-Level Cache Instructions—VEA
The instructions summarized in this section help user-level programs manage on-chip caches if
they are implemented. See Chapter 3, "Gekko Instruction and Data Cache Operation" in this
manual for more information about cache topics. The following sections describe how these
operations are treated with respect to Gekko’s cache.
As with other memory-related instructions, the effects of cache management instructions on
memory are weakly-ordered. If the programmer must ensure that cache or other instructions have
been performed with respect to all other processors and system mechanisms, async instruction
must be placed after those instructions.
Note that Gekko interprets cache control instructions (icbi, dcbi, dcbf, dcbz, anddcbst) as if they
pertain only to the local L1 and L2 cache. Adcbz (with M set) is always broadcast on the 60x bus.
Thedcbi, dcbf, anddcbst operations are broadcast if HID0[ABE] is set.
Gekko never broadcasts anicbi. Of the broadcast cache operations, Gekko snoops onlydcbz,
regardless of the HID0[ABE] setting. Any bus activity caused by other cache instructions results

Table 2-56. Memory Synchronization Instructions—VEA

Name Mnemonic Syntax Implementation Notes

Enforce
In-Order
Execution of
I/O

eieio — The eieio instruction is dispatched to the LSU and executes after all previous
cache-inhibited or write-through accesses are performed; all subsequent
instructions that generate such accesses execute after eieio . If HID0[ABE] = 1 an
EIEIO operation is broadcast on the external bus to enforce ordering in the
external memory system. The eieio operation bypasses the L2 cache and is
forwarded to the bus unit. If HID0[ABE] = 0, the operation is not broadcast.
Because Gekko does not reorder noncacheable accesses, eieio is not needed to
force ordering. However, if store gathering is enabled and an eieio is detected in
a store queue, stores are not gathered. If HID0[ABE] = 1, broadcasting eieio
prevents external devices, such as a bus bridge chip, from gathering stores. The
behavior of eieio is modified when either HID2[LCE] = 1 or HID2[WPE] = 1. See
Chapter 9, "L2 Cache, Locked D-Cache, DMA and Write Gather Pipe" in this
manual for a description of this modified behavior.

Instruction
Synchronize

isync — The isync instruction is refetch serializing; that is, it causes Gekko to purge its
instruction queue and wait for all prior instructions to complete before refetching
the next instruction, which is not executed until all previous instructions complete
to the point where they cannot cause an exception. The isync instruction does
not wait for all pending stores in the store queue to complete. Any instruction
after an isync sees all effects of prior instructions.

IBM Confidential

Page 2-68 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

directly from performing the operation on the Gekko cache. All cache control instructions to T = 1
space are no-ops. For information on how cache control instructions affect the L2, see Chapter 9, "L2
Cache, Locked D-Cache, DMA and Write Gather Pipe" in this manual.
Table 2-57 summarizes the cache instructions defined by the VEA. Note that these instructions are
accessible to user-level programs.

Table 2-57. User-Level Cache Instructions

Name Mnemonic Syntax Implementation Notes

Data Cache Block
Touch 1

dcbt r A,rB The VEA defines this instruction to allow for potential system performance
enhancements through the use of software-initiated prefetch hints.
Implementations are not required to take any action based on execution of
this instruction, but they may prefetch the cache block corresponding to
the EA into their cache. When dcbt executes, Gekko checks for protection
violations (as for a load instruction). This instruction is treated as a no-op
for the following cases:
• A valid translation is not found either in BAT or TLB
• The access causes a protection violation.
• The page is mapped cache-inhibited, G = 1 (guarded), or T = 1.
• The cache is locked or disabled
• HID0[NOOPTI] = 1
Otherwise, if no data is in the cache location, Gekko requests a cache line
fill (with intent to modify). Data brought into the cache is validated as if it
were a load instruction. The memory reference of a dcbt sets the
reference bit. The behavior of dcbt is modified when either HID2[LCE] = 1
or HID2[WPE] = 1. See Chapter 9, "L2 Cache, Locked D-Cache, DMA and
Write Gather Pipe" in this manual for a description of this modified
behavior.

Data Cache Block
Touch for Store 1

dcbtst r A,rB This instruction behaves like dcbt .

Data Cache Block
Set to Zero

dcbz r A,rB The EA is computed, translated, and checked for protection violations. For
cache hits, four beats of zeros are written to the cache block and the tag is
marked M. For cache misses with the replacement block marked E, the
zero line fill is performed and the cache block is marked M. However, if the
replacement block is marked M, the contents are written back to memory
first. The instruction executes regardless of whether the cache is locked; if
the cache is disabled, an alignment exception occurs. If M = 1 (coherency
enforced), the address is broadcast to the bus before the zero line fill.
The exception priorities (from highest to lowest) are as follows:
1 Cache disabled—Alignment exception
2 Page marked write-through or cache Inhibited—Alignment exception
3 BAT protection violation—DSI exception
4 TLB protection violation—DSI exception
dcbz is the only cache instruction that broadcasts even if HID0[ABE] = 0.
The behavior of dcbz is modified when either HID2[LCE] = 1 or
HID2[WPE] = 1. SeeChapter 9 for a description of this modified behavior.

Data Cache Block
Set to Zero
Locked

dcbz_l r A,rB This instruction is illegal when HID2[LCE] = 0. See Chapter 9, "L2 Cache,
Locked D-Cache, DMA and Write Gather Pipe" in this manualfor a
description of this instruction when HID2[LCE] = 1.

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-69

2.3.5.4 Optional External Control Instructions
The PowerPC architecture defines an optional external control feature that, if implemented, is
supported by the two external control instructions,eciwx andecowx. These instructions allow a
user-level program to communicate with a special-purpose device. These instructions are provided

Data Cache Block
Store

dcbst r A,rB The EA is computed, translated, and checked for protection violations.
• For cache hits with the tag marked E, no further action is taken.
• For cache hits with the tag marked M, the cache block is written back

to memory and marked E.
A dcbst is not broadcast unless HID0[ABE] = 1 regardless of WIMG
settings. The instruction acts like a load with respect to address
translation and memory protection. It executes regardless of whether the
cache is disabled or locked.
The exception priorities (from highest to lowest) for dcbst are as follows:
1 BAT protection violation—DSI exception
2 TLB protection violation—DSI exception
The behavior of dcbst is modified when either HID2[LCE] = 1 or
HID2[WPE] = 1. See Chapter 9 for a description of this modified behavior.

Data Cache Block
Flush

dcbf r A,rB The EA is computed, translated, and checked for protection violations.
• For cache hits with the tag marked M, the cache block is written back

to memory and the cache entry is invalidated.
• For cache hits with the tag marked E, the entry is invalidated.
• For cache misses, no further action is taken.
A dcbf is not broadcast unless HID0[ABE] = 1 regardless of WIMG
settings. The instruction acts like a load with respect to address
translation and memory protection. It executes regardless of whether the
cache is disabled or locked.
The exception priorities (from highest to lowest) for dcbf are as follows:
1 BAT protection violation—DSI exception
2 TLB protection violation—DSI exception
The behavior of dcbf is modified when either HID2[LCE] = 1 or
HID2[WPE] = 1. See Chapter 9 for a description of this modified behavior.

Instruction Cache
Block Invalidate

icbi r A,rB This instruction performs a virtual lookup into the instruction cache (index
only). The address is not translated, so it cannot cause an exception. All
ways of a selected set are invalidated regardless of whether the cache is
disabled or locked. Gekko never broadcasts icbi onto the 60x bus.

Note :
1 A program that uses dcbt and dcbtst instructions improperly performs less efficiently. To improve

performance, HID0[NOOPTI] may be set, which causes dcbt and dcbtst to be no-oped at the
cache. They do not cause bus activity and cause only a 1-clock execution latency. The default
state of this bit is zero which enables the use of these instructions.

Table 2-57. User-Level Cache Instructions (Continued)

Name Mnemonic Syntax Implementation Notes

IBM Confidential

Page 2-70 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

and are summarized in Table 2-58.

Theeciwx/ecowxinstructions let a system designer map special devices in an alternative way. The
MMU translation of the EA is not used to select the special device, as it is used in most instructions
such as loads and stores. Rather, it is used as an address operand that is passed to the device over the
address bus. Four other signals (the burst and size signals on the 60x bus) are used to select the device;
these four signals output the 4-bit resource ID (RID) field located in the EAR. Theeciwx instruction
also loads a word from the data bus that is output by the special device. For more information about
the relationship between these instructions and the system interface, refer to Chapter 7, "Signal
Descriptions" in this manual.

2.3.6 PowerPC OEA Instructions
The PowerPC operating environment architecture (OEA) includes the structure of the memory
management model, supervisor-level registers, and the exception model. Implementations that
conform to the OEA also adhere to the UISA and the VEA. This section describes the instructions
provided by the OEA.

2.3.6.1 System Linkage Instructions—OEA
This section describes the system linkage instructions (see Table 2-59). The user-levelsc instruction
lets a user program call on the system to perform a service and causes the processor to take a system
call exception. The supervisor-levelrfi instruction is used for returning from an exception handler.

Table 2-58. External Control Instructions

Name Mnemonic Syntax Implementation Notes

External
Control In
Word Indexed

eciwx r D,rA,rB A transfer size of 4 bytes is implied; the TBST and TSIZ[0–2] signals are
redefined to specify the Resource ID (RID), copied from bits EAR[28–31]. For
these operations, TBST carries the EAR[28] data. Misaligned operands for
these instructions cause an alignment exception. Addressing a location
where SR[T] = 1 causes a DSI exception. If MSR[DR] = 0 a programming
error occurs and the physical address on the bus is undefined.
Note : These instructions are optional to the PowerPC architecture.

External
Control Out
Word Indexed

ecowx r S,rA,rB

Table 2-59. System Linkage Instructions—OEA

Name Mnemonic Syntax Implementation Notes

System Call sc — The sc instruction is context-synchronizing.

Return from
Interrupt

rfi — The rfi instruction is context-synchronizing. For Gekko, this means the rfi
instruction works its way to the final stage of the execution pipeline,
updates architected registers, and redirects the instruction flow.

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-71

2.3.6.2 Processor Control Instructions—OEA
This section describes the processor control instructions used to access the MSR and the SPRs.
Table 2-60 lists instructions for accessing the MSR.

The OEA defines encodings ofmtspr andmfspr to provide access to supervisor-level registers.
The instructions are listed in Table 2-61.

Encodings for the architecture-defined SPRs are listed in Table 2-53 on Page 2-63. Encodings for
Gekko-specific, supervisor-level SPRs are listed in Table 2-54 on Page 2-65. Simplified
mnemonics are provided formtspr and mfspr in Appendix F, “Simplified Mnemonics" in the
PowerPC Microprocessor Family: The Programming Environments manual.
For a discussion of context synchronization requirements when altering certain SPRs, refer to
Appendix E, “Synchronization Programming Examples" in thePowerPC Microprocessor Family:
The Programming Environments manual.

2.3.6.3 Memory Control Instructions—OEA
Memory control instructions include the following:

• Cache management instructions (supervisor-level and user-level)

• Segment register manipulation instructions

• Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. Section 2.3.5.3, "Memory
Control Instructions—VEA" on Page 2-67 describes user-level memory control instructions.

Table 2-60. Move to/from Machine State Register Instructions

Name Mnemonic Syntax

Move to Machine State Register mtmsr r S

Move from Machine State Register mfmsr r D

Table 2-61. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Syntax

Move to Special-Purpose Register mtspr SPR,rS

Move from Special-Purpose Register mfspr r D,SPR

IBM Confidential

Page 2-72 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA)
Table 2-62 lists the only supervisor-level cache management instruction.

See Section 2.3.5.3.1, "User-Level Cache Instructions—VEA" on Page 2-67 for cache instructions
that provide user-level programs the ability to manage the on-chip caches. If the effective address
references a direct-store segment, the instruction is treated as a no-op.

2.3.6.3.2 Segment Register Manipulation Instructions (OEA)
The instructions listed in Table 2-63 provide access to the segment registers for 32-bit
implementations. These instructions operate completely independently of the MSR[IR] and
MSR[DR] bit settings. Refer to “Synchronization Requirements for Special Registers and for
Lookaside Buffers" in Chapter 2, “PowerPC Register Set" of thePowerPC Microprocessor Family:
The Programming Environmentsmanual for serialization requirements and other recommended
precautions to observe when manipulating the segment registers.

Table 2-62. Supervisor-Level Cache Management Instruction

Name Mnemonic Syntax Implementation Notes

Data
Cache
Block
Invalidate

dcbi r A,rB The EA is computed, translated, and checked for protection violations. For cache
hits, the cache block is marked I regardless of whether it was marked E or M. A
dcbi is not broadcast unless HID0[ABE] = 1, regardless of WIMG settings. The
instruction acts like a store with respect to address translation and memory
protection. It executes regardless of whether the cache is disabled or locked.
The exception priorities (from highest to lowest) for dcbi are as follows:
1 BAT protection violation—DSI exception
2 TLB protection violation—DSI exception
The behavior of dcbi is modified when either HID2[LCE] = 1 or HID2[WPE] = 1.
See Chapter 9 for a description of this modified behavior.

Table 2-63. Segment Register Manipulation Instructions

Name Mnemonic Syntax Implementation Notes

Move to Segment Register mtsr SR,rS —

Move to Segment Register Indirect mtsrin r S,rB —

Move from Segment Register mfsr r D,SR The shadow SRs in the instruction MMU can be read
by setting HID0[RISEG] before executing mfsr .

Move from Segment Register Indirect mfsrin r D,rB —

IBM Confidential

Chapter 2. Programming Model IBM Confidential 5/25/00 Page 2-73

2.3.6.3.3 Translation Lookaside Buffer Management Instructions—(OEA)
The address translation mechanism is defined in terms of the segment descriptors and page table
entries (PTEs) PowerPC processors use to locate the logical-to-physical address mapping for a
particular access. These segment descriptors and PTEs reside in segment registers and page tables
in memory, respectively.
See Chapter 7, "Signal Descriptions" in this manual for more information about TLB operations.
Table 2-64 summarizes the operation of the TLB instructions in Gekko.

Implementation Note—The tlbia instruction is optional for an implementation if its effects can
be achieved through some other mechanism. Therefore, it is not implemented on Gekko. As
described above,tlbie can be used to invalidate a particular index of the TLB based on
EA[14–19]—a sequence of 64tlbie instructions followed by atlbsync instruction invalidates all
the TLB structures (for EA[14–19] = 0, 1, 2,..., 63). Attempting to executetlbia causes an illegal
instruction program exception.
The presence and exact semantics of the TLB management instructions are
implementation-dependent. To minimize compatibility problems, system software should
incorporate uses of these instructions into subroutines.

2.3.7 Recommended Simplified Mnemonics
To simplify assembly language coding, a set of alternative mnemonics is provided for some
frequently used operations (such as no-op, load immediate, load address, move register, and
complement register). Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in this
document.
For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics" in the
PowerPC Microprocessor Family: The Programming Environments manual.

Table 2-64. Translation Lookaside Buffer Management Instruction

Name Mnemonic Syntax Implementation Notes

TLB
Invalidate
Entry

tlbie r B Invalidates both ways in both instruction and data TLB entries at the index
provided by EA[14–19]. It executes regardless of the MSR[DR] and MSR[IR]
settings.To invalidate all entries in both TLBs, the programmer should issue 64
tlbie instructions that each successively increment this field.

TLB
Synchronize

tlbsync — On Gekko, the only function tlbsync serves is to wait for the TLBISYNC signal to
go inactive.

IBM Confidential

Page 2-74 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

IBM Confidential

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-1

Chapter 3 Gekko Instruction and
Data Cache Operation

30
30

Gekko microprocessor contains separate 32-Kbyte, eight-way set associative instruction and data
caches to allow the execution units and registers rapid access to instructions and data. This chapter
describes the organization of the on-chip instruction and data caches, the MEI cache coherency
protocol, cache control instructions, various cache operations, and the interaction between the
caches, the load/store unit (LSU), the instruction unit, and the bus interface unit (BIU).
At power-on, Gekko sets HID2[LCE] = 0 and the corresponding L1 data cache’s operation is
described in this chapter. When amtspr instruction sets HID2[LCE] = 1, the L1 data cache is
partitioned as a 16 Kbyte normal cache and a 16 Kbyte locked cache.
The operation is described in Chapter 9, "L2 Cache, Locked D-Cache, DMA and Write Gather
Pipe" of this manaul. Also, in Gekko, locked cache and bus snoop are incompatible. HID2[LCE]
shall be kept at 0 for systems which generate snoop transactions.
Note that in this chapter, the term ‘multiprocessor’ is used in the context of maintaining cache
coherency. These multiprocessor devices could be actual processors or other devices that can
access system memory, maintain their own caches, and function as bus masters requiring cache
coherency.
The Gekko cache implementation has the following characteristics:

• There are two separate 32-Kbyte instruction and data caches (Harvard architecture).

• Both instruction and data caches are eight-way set associative.

• The caches implement a pseudo least-recently-used (PLRU) replacement algorithm within
each set.

• The cache directories are physically addressed. The physical (real) address tag is stored in
the cache directory.

• Both the instruction and data caches have 32-byte cache blocks. A cache block is the block
of memory that a coherency state describes, also referred to as a cache line.

• Two coherency state bits for each data cache block allow encoding for three states:

— Modified (Exclusive) (M)
— Exclusive (Unmodified) (E)
— Invalid (I)

• A single coherency state bit for each instruction cache block allows encoding for two
possible states:

— Invalid (INV)
— Valid (VAL)

• Each cache can be invalidated or locked by setting the appropriate bits in the hardware
implementation-dependent register 0 (HID0), a special-purpose register (SPR) specific to
Gekko.

Gekko supports a fully-coherent 4-Gbyte physical memory address space. Bus snooping is used to
drive the MEI three-state cache coherency protocol that ensures the coherency of global memory
with respect to the processor’s data cache. The MEI protocol is described in 3.3.2.”
On a cache miss, Gekko’s cache blocks are filled in four beats of 64 bits each. The burst fill is
performed as a critical-double-word-first operation; the critical double word is simultaneously

IBM Confidential

Page 3-2 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

written to the cache and forwarded to the requesting unit, thus minimizing stalls due to cache fill
latency.
The instruction and data caches are integrated into Gekko as shown in Figure 3-1.

Figure 3-1. Cache Integration

Both caches are tightly coupled into Gekko’s bus interface unit to allow efficient access to the system
memory controller and other bus masters. The bus interface unit receives requests for bus operations
from the instruction and data caches, and executes the operations per the 60x bus protocol. The BIU
provides address queues, prioritizing logic, and bus control logic. The BIU captures snoop addresses
for data cache, address queue, and memory reservation (lwarx andstwcx. instruction) operations.
The data cache provides buffers for load and store bus operations. All the data for the corresponding
address queues (load and store data queues) is located in the data cache. The data queues are
considered temporary storage for the cache and not part of the BIU. The data cache also provides
storage for the cache tags required for memory coherency and performs the cache block replacement
PLRU function.
The data cache supplies data to the GPRs and FPRs by means of the load/store unit. Gekko’s LSU is
directly coupled to the data cache to allow efficient movement of data to and from the general-purpose
and floating-point registers. The load/store unit provides all logic required to calculate effective
addresses, handles data alignment to and from the data cache, and provides sequencing for load and
store string and multiple operations. Write operations to the data cache can be performed on a byte,
half-word, word, or double-word basis.
The instruction cache provides a 128-bit interface to the instruction unit, so four instructions can be
made available to the instruction unit in a single clock cycle. The instruction unit accesses the
instruction cache frequently in order to sustain the high throughput provided by the six-entry
instruction queue.

Instruction Unit
Load/Store Unit

Cache Tags

(LSU)

Instructions (0–127)

Instructions (0–63)

I-Cache
32-Kbyte

8-Way Set Associative

Cache Logic

EA (20–26)

PA (0–19)

PA (0–31)

Cache Tags

Cache Logic

D-Cache

32-Kbyte
8-Way Set Associative

Data (0–63)

Data (0–63)

EA: Effective Address
PA: Physical Address

MMU/L2/60x BIU

IBM Confidential

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-3

3.1 Data Cache Organization
The data cache is organized as 128 sets of eight ways as shown in Figure 3-2. Each way consists
of 32 bytes, two state bits, and an address tag. Note that in the PowerPC architecture, the term
‘cache block,’ or simply ‘block,’ when used in the context of cache implementations, refers to the
unit of memory at which coherency is maintained. For Gekko, this is the eight-word (32 byte) cache
line. This value may be different for other PowerPC implementations.
Each cache block contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bits A[27–31] of the logical (effective) addresses are zero); as a
result, cache blocks are aligned with page boundaries. Note that address bits A[20–26] provide the
index to select a cache set. Bits A[27–31] select a byte within a block. The two state bits implement
a three-state MEI (modified/exclusive/invalid) protocol, a coherent subset of the standard four-state
MESI (modified/exclusive/shared/invalid) protocol. The MEI protocol is described in 3.3.2.” The
tags consist of bits PA[0–19]. Address translation occurs in parallel with set selection (from
A[20–26]), and the higher-order address bits (the tag bits in the cache) are physical.
Gekko’s on-chip data cache tags are single-ported, and load or store operations must be arbitrated
with snoop accesses to the data cache tags. Load or store operations can be performed to the cache
on the clock cycle immediately following a snoop access if the snoop misses; snoop hits may block
the data cache for two or more cycles, depending on whether a copy-back to main memory is
required.

Figure 3-2. Data Cache Organization

8 Words/Block

128 Sets

Way 5

Way 6

Way 7

Way 4 Address Tag 4

Address Tag 5

Address Tag 6

Address Tag 7

Way 1

Way 2

Way 3

Way 0 Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

State

State

State

Words [0–7]

State

Words [0–7]

Words [0–7]

Words [0–7]

State

State

State

Words [0–7]

State

Words [0–7]

Words [0–7]

Words [0–7]

IBM Confidential

Page 3-4 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

3.2 Instruction Cache Organization
The instruction cache also consists of 128 sets of eight ways, as shown in Figure 3-3 on Page 3-5.
Each way consists of 32 bytes, a single state bit, and an address tag. As with the data cache, each
instruction cache block contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bits A[27–31] of the logical (effective) addresses are zero); as a result,
cache blocks are aligned with page boundaries. Also, address bits A[20–26] provide the index to
select a set, and bits A[27–29] select a word within a block.
The tags consist of bits PA[0–19]. Address translation occurs in parallel with set selection (from
A[20–26]), and the higher order address bits (the tag bits in the cache) are physical.
The instruction cache differs from the data cache in that it does not implement MEI cache coherency
protocol, and a single state bit is implemented that indicates only whether a cache block is valid or
invalid. The instruction cache is not snooped, so if a processor modifies a memory location that may
be contained in the instruction cache, software must ensure that such memory updates are visible to
the instruction fetching mechanism. This can be achieved with the following instruction sequence:

dcbst # update memory
sync # wait for update
icbi # remove (invalidate) copy in instruction cache
sync # wait for ICBI operation to be globally performed
isync # remove copy in own instruction buffer

IBM Confidential

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-5

These operations are necessary because the processor does not maintain instruction memory
coherent with data memory. Software is responsible for enforcing coherency of instruction caches
and data memory.

Since instruction fetching may bypass the data cache, changes made to items in the data cache may
not be reflected in memory until after the instruction fetch completes.

Figure 3-3. Instruction Cache Organization

3.3 Memory and Cache Coherency
The primary objective of a coherent memory system is to provide the same image of memory to all
devices using the system. Coherency allows synchronization and cooperative use of shared
resources. Otherwise, multiple copies of a memory location, some containing stale values, could
exist in a system resulting in errors when the stale values are used. Each potential bus master must
follow rules for managing the state of its cache. This section describes the coherency mechanisms
of the PowerPC architecture and the three-state cache coherency protocol of Gekko’s data cache.
Note that unless specifically noted, the discussion of coherency in this section applies to Gekko’s
data cache only. The instruction cache is not snooped. Instruction cache coherency must be
maintained by software. However, Gekko does support a fast instruction cache invalidate capability
as described in 3.4.1.4.”

8 Words/Block

128 Sets

Way 5

Way 6

Way 7

Way 4 Address Tag 4

Address Tag 5

Address Tag 6

Address Tag 7

Way 1

Way 2

Way 3

Way 0 Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

Valid

Valid

Valid

Words [0–7]

Valid

Words [0–7]

Words [0–7]

Words [0–7]

Valid

Valid

Valid

Words [0–7]

Valid

Words [0–7]

Words [0–7]

Words [0–7]

IBM Confidential

Page 3-6 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

3.3.1 Memory/Cache Access Attributes (WIMG Bits)
Some memory characteristics can be set on either a block or page basis by using the WIMG bits in
the BAT registers or page table entry (PTE), respectively. The WIMG attributes control the following
functionality:

• Write-through (W bit)
• Caching-inhibited (I bit)
• Memory coherency (M bit)
• Guarded memory (G bit)

These bits allow both uniprocessor and multiprocessor system designs to exploit numerous
system-level performance optimizations.
The WIMG attributes are programmed by the operating system for each page and block. The
W and I attributes control how the processor performing an access uses its own cache. The M
attributeensures that coherency is maintained for all copies of the addressed memory location.
The G attribute prevents out-of-order loading and prefetching from the addressed memory
location.
The WIMG attributes occupy four bits in the BAT registers for block address translation and in the
PTEs for page address translation. The WIMG bits are programmed as follows:

• The operating system uses themtspr instruction to program the WIMG bits in the BAT
registers for block address translation. The IBAT register pairs do not have a G bit and all
accesses that use the IBAT register pairs are considered not guarded.

• The operating system writes the WIMG bits for each page into the PTEs in system memory
as it sets up the page tables.

When an access requires coherency, the processor performing the access must inform the coherency
mechanisms throughout the system that the access requires memory coherency. The M attribute
determines the kind of access performed on the bus (global or local).
Software must exercise care with respect to the use of these bits if coherent memory support is
desired. Careless specification of these bits may create situations that present coherency paradoxes to
the processor. In particular, this can happen when the state of these bits is changed without
appropriate precautions (such as flushing the pages that correspond to the changed bits from the
caches of all processors in the system) or when the address translations of aliased real addresses
specify different values for any of the WIMG bits. These coherency paradoxes can occur within a
single processor or across several processors. It is important to note that in the presence of a paradox,
the operating system software is responsible for correctness.
For real addressing mode (that is, for accesses performed with address translation
disabled—MSR[IR] = 0 or MSR[DR] = 0 for instruction or data access, respectively), the WIMG bits
are automatically generated as 0b0011 (the data is write-back, caching is enabled, memory coherency
is enforced, and memory is guarded).

3.3.2 MEI Protocol
Gekko data cache coherency protocol is a coherent subset of the standard MESI four-state cache
protocol that omits the shared state. Gekko’s data cache characterizes each 32-byte block it contains
as being in one of three MEI states. Addresses presented to the cache are indexed into the cache
directory with bits A[20–26], and the upper-order 20 bits from the physical address translation
(PA[0–19]) are compared against the indexed cache directory tags. If neither of the indexed tags
matches, the result is a cache miss. If a tag matches, a cache hit occurred and the directory indicates
the state of the cache block through two state bits kept with the tag. The three possible states for a
cache block in the cache are the modified state (M), the exclusive state (E), and the invalid state (I).

IBM Confidential

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-7

The three MEI states are defined in Table 3-1.

Gekko provides dedicated hardware to provide memory coherency by snooping bus transactions.
Figure 3-4 on Page 3-8 shows the MEI cache coherency protocol, as enforced by Gekko. The
information in this figure assumes that the WIM bits for the page or block are set to 001; that is,
write-back, caching-not-inhibited, and memory coherency enforced. Since data cannot be shared,
Gekko signals all cache block fills as if they were write misses (read-with-intent-to-modify), which
flushes the corresponding copies of the data in all caches external to Gekko prior to the
cache-block-fill operation. Following the cache block load, Gekko is the exclusive owner of the
data and may write to it without a bus broadcast transaction. To maintain the three-state coherency,
all global reads observed on the bus by Gekko are snooped as if they were writes, causing Gekko
to flush the cache block (write the cache block back to memory and invalidate the cache block if it
is modified, or simply invalidate the cache block if it is unmodified). The exception to this rule
occurs when a snooped transaction is a caching-inhibited read (either burst or single-beat, where
TT[0–4] = X1010; see Table 7-1 on Page 7-6 for clarification), in which case Gekko does not
invalidate the snooped cache block. If the cache block is modified, the block is written back to
memory, and the cache block is marked exclusive. If the cache block is marked exclusive, no bus
action is taken, and the cache block remains in the exclusive state.
This treatment of caching-inhibited reads decreases the possibility of data thrashing by allowing
noncaching devices to read data without invalidating the entry from Gekko’s data cache.

Table 3-1. MEI State Definitions

MEI State Definition

Modified (M) The addressed cache block is present in the cache, and is modified with respect to system
memory—that is, the modified data in the cache block has not been written back to memory. The
cache block may be present in Gekko’s L2 cache, but it is not present in any other coherent cache.

Exclusive (E) The addressed cache block is present in the cache, and this cache has exclusive ownership of the
addressed block. The addressed block may be present in Gekko’s L2 cache, but it is not present in
any other processor’s cache. The data in this cache block is consistent with system memory.

Invalid (I) This state indicates that the address block does not contain valid data or that the addressed cache
block is not resident in the cache.

IBM Confidential

Page 3-8 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Figure 3-4. MEI Cache Coherency Protocol—State Diagram (WIM = 001)

Section 3.7 on Page 3-26 provides a detailed list of MEI transitions for various operations and WIM
bit settings.

3.3.2.1 MEI Hardware Considerations
While Gekko provides the hardware required to monitor bus traffic for coherency, Gekko’s data cache
tags are single-ported, and a simultaneous load/store and snoop access represents a resource conflict.
In general, the snoop access has highest priority and is given first access to the tags. The load or store
access will then occur on the clock following the snoop. The snoop is not given priority into the tags
when the snoop coincides with a tag write (for example, validation after a cache block load). In these
situations, the snoop is retried and must re-arbitrate before the lookup is possible.
Occasionally, cache snoops cannot be serviced and must be retried. These retries occur if the cache
is busy with a burst read or write when the snoop operation takes place.
Note that it is possible for a snoop to hit a modified cache block that is already in the process of being
written to the copy-back buffer for replacement purposes. If this happens, Gekko retries the snoop,
and raises the priority of the castout operation to allow it to go to the bus before the cache block fill.
Another consideration is page table aliasing. If a store hits to a modified cache block but the page table

Bus Transactions

SH = Snoop Hit = Snoop Push
RH = Read Hit
RM = Read Miss
WH = Write Hit = Cache Block Fill
WM = Write Miss
SH/CRW = Snoop Hit, Cacheable Read/Write
SH/CIR = Snoop Hit, Caching-Inhibited Read

SH/CRW

WM RM

SH/CRW

Invalid

ExclusiveModifiedRH RH

SH/CIRWH

WH

SH

IBM Confidential

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-9

entry is marked write-through (WIMG = 1xxx), then the page has probably been aliased through
another page table entry which is marked write-back (WIMG = 0xxx). If this occurs, Gekko
ignores the modified bit in the cache tag. The cache block is updated during the write-through
operation and the block remains in the modified state.
The global (GBL) signal, asserted as part of the address attribute field during a bus transaction,
enables the snooping hardware of Gekko. Address bus masters assertGBL to indicate that the
current transaction is a global access (that is, an access to memory shared by more than one device).
If GBL is not asserted for the transaction, that transaction is not snooped by Gekko. Note that the
GBL signal is not asserted for instruction fetches, and thatGBL is asserted for all data read or write
operations when using real addressing mode (that is, address translation is disabled).
Normally, GBL reflects the M-bit value specified for the memory reference in the corresponding
translation descriptor(s). Care should be taken to minimize the number of pages marked as global,
because the retry protocol enforces coherency and can use considerable bus bandwidth if much
data is shared. Therefore, available bus bandwidth decreases as more memory is marked as global.
Gekko snoops a transaction if the transfer start (TS) andGBL signals are asserted together in the
same bus clock (this is a qualified snooping condition). No snoop update to Gekko cache occurs if
the snooped transaction is not marked global. Also, because cache block castouts and snoop pushes
do not require snooping, theGBL signal is not asserted for these operations.
When Gekko detects a qualified snoop condition, the address associated with theTS signal is
compared with the cache tags. Snooping finishes if no hit is detected. If, however, the address hits
in the cache, Gekko reacts according to the MEI protocol shown in Figure 3-4 on Page 3-8.

3.3.3 Coherency Precautions in Single Processor Systems
The following coherency paradoxes can be encountered within a single-processor system:

• Load or store to a caching-inhibited page (WIMG = x1xx) and a cache hit occurs.

Gekko ignores any hits to a cache block in a memory space marked
caching-inhibited (WIMG = x1xx). The access is performed on the external bus as
if there were no hit. The data in the cache is not pushed, and the cache block is not
invalidated.

• Store to a page marked write-through (WIMG = 1xxx) and a cache hit occurs to a modified
cache block.

Gekko ignores the modified bit in the cache tag. The cache block is updated during
the write-through operation but the block remains in the modified state (M).

Note that when WIM bits are changed in the page tables or BAT registers, it is critical that the cache
contents reflect the new WIM bit settings. For example, if a block or page that had allowed caching
becomes caching-inhibited, software should ensure that the appropriate cache blocks are flushed to
memory and invalidated.

3.3.4 Coherency Precautions in Multiprocessor Systems
Gekko’s three-state coherency protocol permits no data sharing between Gekko and other caches.
All burst reads initiated by Gekko are performed as read with intent to modify. Burst snoops are
interpreted as read with intent to modify or read with no intent to cache. This effectively places all
caches in the system into a three-state coherency scheme. Four-state caches may share data
amongst themselves but not with Gekko.

IBM Confidential

Page 3-10 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

3.3.5 Gekko-Initiated Load/Store Operations
Load and store operations are assumed to be weakly ordered on Gekko. The load/store unit (LSU)
can perform load operations that occur later in the program ahead of store operations, even when the
data cache is disabled (see 3.3.5.2). However, strongly ordered load and store operations can be
enforced through the setting of the I bit (of the page WIMG bits) when address translation is enabled.
Note that when address translation is disabled (real addressing mode), the default WIMG bits cause
the I bit to be cleared (accesses are assumed to be cacheable), and thus the accesses are weakly
ordered. Refer to Section 5.2 on Page 5-17 for a description of the WIMG bits when address
translation is disabled.
Gekko does not provide support for direct-store segments. Operations attempting to access a
direct-store segment will invoke a DSI exception. For additional information about DSI exceptions,
refer to Section 4.5.3 on Page 4-17.

3.3.5.1 Performed Loads and Stores
The PowerPC architecture defines a performed load operation as one that has the addressed memory
location bound to the target register of the load instruction. The architecture defines a performed store
operation as one where the stored value is the value that any other processor will receive when
executing a load operation (that is of course, until it is changed again). With respect to Gekko,
caching-allowed (WIMG = x0xx) loads and caching-allowed, write-back (WIMG = 00xx) stores are
performed when they have arbitrated to address the cache block. Note that in the event of a cache
miss, these storage operations may place a memory request into the processor’s memory queue, but
such operations are considered an extension to the state of the cache with respect to snooping bus
operations. Caching-inhibited (WIMG = x1xx) loads, caching-inhibited (WIMG = x1xx) stores, and
write-through (WIMG = 1xxx) stores are performed when they have been successfully presented to
the external 60x bus.

3.3.5.2 Sequential Consistency of Memory Accesses
The PowerPC architecture requires that all memory operations executed by a single processor be
sequentially consistent with respect to that processor. This means that all memory accesses appear to
be executed in program order with respect to exceptions and data dependencies.
Gekko achieves sequential consistency by operating a single pipeline to the cache/MMU. All memory
accesses are presented to the MMU in exact program order and therefore exceptions are determined
in order. Loads are allowed to bypass stores once exception checking has been performed for the
store, but data dependency checking is handled in the load/store unit so that a load will not bypass a
store with an address match. Note that although memory accesses that miss in the cache are forwarded
to the memory queue for future arbitration for the external bus, all potential synchronous exceptions
have been resolved before the cache. In addition, although subsequent memory accesses can address
the cache, full coherency checking between the cache and the memory queue is provided to avoid
dependency conflicts.

3.3.5.3 Atomic Memory References
The PowerPC architecture defines the Load Word and Reserve Indexed (lwarx) and the Store Word
Conditional Indexed (stwcx.) instructions to provide an atomic update function for a single, aligned
word of memory. These instructions can be used to develop a rich set of multiprocessor
synchronization primitives.

IBM Confidential

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-11

NOTE: Atomic memory references constructed usinglwarx /stwcx. instructions depend on the
presence of a coherent memory system for correct operation. These instructions should
not be expected to provide atomic access to noncoherent memory. For detailed
information on these instructions, refer to Chapter 2, "Programming Model" and
Chapter 12, "Instruction Set"” in this book.

The lwarx instruction performs a load word from memory operation and creates a reservation for
the 32-byte section of memory that contains the accessed word. The reservation granularity is 32
bytes. Thelwarx instruction makes a nonspecific reservation with respect to the executing
processor and a specific reservation with respect to other masters. This means that any subsequent
stwcx.executed by the same processor, regardless of address, will cancel the reservation. Also, any
bus write or invalidate operation from another processor to an address that matches the reservation
address will cancel the reservation.
The stwcx. instruction does not check the reservation for a matching address. Thestwcx.
instruction is only required to determine whether a reservation exists. Thestwcx. instruction
performs a store word operation only if the reservation exists. If the reservation has been cancelled
for any reason, then thestwcx.instruction fails and clears the CR0[EQ] bit in the condition register.
The architectural intent is to follow thelwarx /stwcx. instruction pair with a conditional branch
which checks to see whether thestwcx. instruction failed.
If the page table entry is marked caching-allowed (WIMG = x0xx), and anlwarx access misses in
the cache, then Gekko performs a cache block fill. If the page is marked caching-inhibited (WIMG
= x1xx) or the cache is locked, and the access misses, then thelwarx instruction appears on the bus
as a single-beat load. All bus operations that are a direct result of either anlwarx instruction or an
stwcx. instruction are placed on the bus with a special encoding. Note that this does not force all
lwarx instructions to generate bus transactions, but rather provides a means for identifying when
an lwarx instruction does generate a bus transaction. If an implementation requires that alllwarx
instructions generate bus transactions, then the associated pages should be marked as
caching-inhibited.
Gekko’s data cache treats allstwcx. operations as write-through independent of the WIMG
settings. However, if thestwcx.operation hits in Gekko’s L2 cache, then the operation completes
with the reservation intact in the L2 cache. See Chapter 9, "L2 Cache, Locked D-Cache, DMA and
Write Gather Pipe" for more information. Otherwise, thestwcx. operation continues to the bus
interface unit for completion. When the write-through operation completes successfully, either in
the L2 cache or on the 60x bus, then the data cache entry is updated (assuming it hits), and
CR0[EQ] is modified to reflect the success of the operation. If the reservation is not intact, the
stwcx. completes in the bus interface unit without performing a bus transaction, and without
modifying either of the caches.

3.4 Cache Control
Gekko’s L1 caches are controlled by programming specific bits in the HID0 special-purpose
register and by issuing dedicated cache control instructions. Section 3.4.1 describes the HID0
cache control bits, and Section 3.4.2 on Page 3-13 describes the cache control instructions.

3.4.1 Cache Control Parameters in HID0
The HID0 special-purpose register contains several bits that invalidate, disable, and lock the
instruction and data caches. The following sections describe these facilities.

IBM Confidential

Page 3-12 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

3.4.1.1 Data Cache Flash Invalidation
The data cache is automatically invalidated when Gekko is powered up and during a hard reset.
However, a soft reset does not automatically invalidate the data cache. Software must use the HID0
data cache flash invalidate bit (HID0[DCFI]) if data cache invalidation is desired after a soft reset.
Once HID0[DCFI] is set through anmtspr operation, Gekko automatically clears this bit in the next
clock cycle (provided that the data cache is enabled in the HID0 register).
Note that some PowerPC microprocessors accomplish data cache flash invalidation by setting and
clearing HID0[DCFI] with two consecutivemtspr instructions (that is, the bit is not automatically
cleared by the microprocessor). Software that has this sequence of operations does not need to be
changed to run on Gekko.

3.4.1.2 Data Cache Enabling/Disabling
The data cache may be enabled or disabled by using the data cache enable bit, HID0[DCE].
HID0[DCE] is cleared on power-up, disabling the data cache.
When the data cache is in the disabled state (HID0[DCE] = 0), the cache tag state bits are ignored,
and all accesses are propagated to the L2 cache or 60x bus as single-beat transactions. Note that the
CI (cache inhibit) signal always reflects the state of the caching-inhibited memory/cache access
attribute (the I bit) independent of the state of HID0[DCE]. Also note that disabling the data cache
does not affect the translation logic; translation for data accesses is controlled by MSR[DR].
The setting of the DCE bit must be preceded by async instruction to prevent the cache from being
enabled or disabled in the middle of a data access. In addition, the cache must be globally flushed
before it is disabled to prevent coherency problems when it is re-enabled.
Snooping is not performed when the data cache is disabled.
Thedcbz instruction will cause an alignment exception when the data cache is disabled. The touch
load (dcbt and dcbtst) instructions are no-ops when the data cache is disabled. Other cache
operations (caused by thedcbf, dcbst, anddcbi instructions) are not affected by disabling the cache.
This can potentially cause coherency errors. For example, adcbf instruction that hits a modified cache
block in the disabled cache will cause a copyback to memory of potentially stale data.

3.4.1.3 Data Cache Locking
The contents of the data cache can be locked by setting the data cache lock bit, HID0[DLOCK]. A
data access that hits in a locked data cache is serviced by the cache. However, all accesses that miss
in the locked cache are propagated to the L2 cache or 60x bus as single-beat transactions. Note that
theCI signal always reflects the state of the caching-inhibited memory/cache access attribute (the I
bit) independent of the state of HID0[DLOCK].
Gekko treats snoop hits to a locked data cache the same as snoop hits to an unlocked data cache.
However, any cache block invalidated by a snoop hit remains invalid until the cache is unlocked.
The setting of the DLOCK bit must be preceded by async instruction to prevent the data cache from
being locked during a data access.

3.4.1.4 Instruction Cache Flash Invalidation
The instruction cache is automatically invalidated when Gekko is powered up and during a hard reset.
However, a soft reset does not automatically invalidate the instruction cache. Software must use the
HID0 instruction cache flash invalidate bit (HID0[ICFI]) if instruction cache invalidation is desired
after a soft reset. Once HID0[ICFI] is set through anmtspr operation, Gekko automatically clears
this bit in the next clock cycle (provided that the instruction cache is enabled in the HID0 register).

IBM Confidential

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-13

NOTE: Some PowerPC microprocessors accomplish instruction cache flash invalidation by
setting and clearing HID0[ICFI] with two consecutivemtspr instructions (that is, the
bit is not automatically cleared by the microprocessor). Software that has this sequence
of operations does not need to be changed to run on Gekko.

3.4.1.5 Instruction Cache Enabling/Disabling
The instruction cache may be enabled or disabled through the use of the instruction cache enable
bit, HID0[ICE]. HID0[ICE] is cleared on power-up, disabling the instruction cache.
When the instruction cache is in the disabled state (HID[ICE] = 0), the cache tag state bits are
ignored, and all instruction fetches are propagated to the L2 cache or 60x bus as single-beat
transactions. Note that theCI signal always reflects the state of the caching-inhibited
memory/cache access attribute (the I bit) independent of the state of HID0[ICE]. Also note that
disabling the instruction cache does not affect the translation logic; translation for instruction
accesses is controlled by MSR[IR].
The setting of the ICE bit must be preceded by anisync instruction to prevent the cache from being
enabled or disabled in the middle of an instruction fetch. In addition, the cache must be globally
flushed before it is disabled to prevent coherency problems when it is re-enabled. Theicbi
instruction is not affected by disabling the instruction cache.

3.4.1.6 Instruction Cache Locking
The contents of the instruction cache can be locked by setting the instruction cache lock bit,
HID0[ILOCK]. An instruction fetch that hits in a locked instruction cache is serviced by the cache.
However, all accesses that miss in the locked cache are propagated to the L2 cache or 60x bus as
single-beat transactions. Note that theCI signal always reflects the state of the caching-inhibited
memory/cache access attribute (the I bit) independent of the state of HID0[ILOCK].
The setting of the ILOCK bit must be preceded by anisync instruction to prevent the instruction
cache from being locked during an instruction fetch.

3.4.2 Cache Control Instructions
The PowerPC architecture defines instructions for controlling both the instruction and data caches
(when they exist). The cache control instructions,dcbt, dcbtst, dcbz, dcbst, dcbf, dcbi, andicbi,
are intended for the management of the local L1 and L2 caches. Gekko interprets the cache control
instructions as if they pertain only to its own L1 or L2 caches. These instructions are not intended
for managing other caches in the system (except to the extent necessary to maintain coherency).
Gekko does not snoop cache control instruction broadcasts, except fordcbzwhen M = 1. Thedcbz
instruction is the only cache control instruction that causes a broadcast on the 60x bus (when M =
1) to maintain coherency. All other data cache control instructions (dcbi, dcbf, dcbst anddcbz)
are not broadcast, unless broadcast is enabled through the HID0[ABE] configuration bit. Note that
dcbi, dcbf, dcbstanddcbzdo broadcast to Gekko’s L2 cache, regardless of HID0[ABE]. Theicbi
instruction is never broadcast.
Gekko implements a new instruction,dcbz_l, to allocate lines in the locked cache when
HID2[LCE] = 1. See Chapter 9, "L2 Cache, Locked D-Cache, DMA and Write Gather Pipe" for
detail.

IBM Confidential

Page 3-14 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

3.4.2.1 Data Cache Block Touch (dcbt) and
Data Cache Block Touch for Store (dcbtst)

The Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst) instructions
provide potential system performance improvement through the use of software-initiated prefetch
hints. Gekko treats these instructions identically (that is, adcbtst instruction behaves exactly the
same as adcbt instruction on Gekko). Note that PowerPC implementations are not required to take
any action based on the execution of these instructions, but they may choose to prefetch the cache
block corresponding to the effective address into their cache.

Gekko loads the data into the cache when the address hits in the TLB or the BAT, is permitted load
access from the addressed page, is not directed to a direct-store segment, and is directed at a cacheable
page. Otherwise, Gekko treats these instructions as no-ops. The data brought into the cache as a result
of this instruction is validated in the same manner that a load instruction would be (that is, it is marked
as exclusive). The memory reference of adcbt (or dcbtst) instruction causes the reference bit to be
set. Note also that the successful execution of thedcbt (or dcbtst) instruction affects the state of the
TLB and cache LRU bits as defined by the PLRU algorithm.

3.4.2.2 Data Cache Block Zero (dcbz)
The effective address is computed, translated, and checked for protection violations as defined in the
PowerPC architecture. Thedcbz instruction is treated as a store to the addressed byte with respect to
address translation and protection.
If the block containing the byte addressed by the EA is in the data cache, all bytes are cleared, and
the tag is marked as modified (M). If the block containing the byte addressed by the EA is not in the
data cache and the corresponding page is caching-allowed, the block is established in the data cache
without fetching the block from main memory, and all bytes of the block are cleared, and the tag is
marked as modified (M).
If the contents of the cache block are from a page marked memory coherence required (M = 1), an
address-only bus transaction is run prior to clearing the cache block. Thedcbz instruction is the only
cache control instruction that causes a broadcast on the 60x bus (when M = 1) to maintain coherency.
The other cache control instructions are not broadcast unless broadcasting is specifically enabled
through the HID0[ABE] configuration bit. Thedcbz instruction executes regardless of whether the
cache is locked, but if the cache is disabled, an alignment exception is generated. If the page
containing the byte addressed by the EA is caching-inhibited or write-through, then the system
alignment exception handler is invoked. BAT and TLB protection violations generate DSI exceptions.

3.4.2.3 Data Cache Block Store (dcbst)
The effective address is computed, translated, and checked for protection violations as defined in the
PowerPC architecture. This instruction is treated as a load with respect to address translation and
memory protection.
If the address hits in the cache and the cache block is in the exclusive (E) state, no action is taken. If
the address hits in the cache and the cache block is in the modified (M) state, the modified block is
written back to memory and the cache block is placed in the exclusive (E) state.
The execution of adcbst instruction does not broadcast on the 60x bus unless broadcast is enabled
through the HID0[ABE] bit. The function of this instruction is independent of the WIMG bit settings
of the block containing the effective address. Thedcbst instruction executes regardless of whether
the cache is disabled or locked; however, a BAT or TLB protection violation generates a DSI
exception.

IBM Confidential

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-15

3.4.2.4 Data Cache Block Flush (dcbf)
The effective address is computed, translated, and checked for protection violations as defined in
the PowerPC architecture. This instruction is treated as a load with respect to address translation
and memory protection.
If the address hits in the cache, and the block is in the modified (M) state, the modified block is
written back to memory and the cache block is placed in the invalid (I) state. If the address hits in
the cache, and the cache block is in the exclusive (E) state, the cache block is placed in the invalid
(I) state. If the address misses in the cache, no action is taken.
The execution ofdcbf does not broadcast on the 60x bus unless broadcast is enabled through the
HID0[ABE] bit. The function of this instruction is independent of the WIMG bit settings of the
block containing the effective address. Thedcbf instruction executes regardless of whether the
cache is disabled or locked; however, a BAT or TLB protection violation generates a DSI
exception.

3.4.2.5 Data Cache Block Invalidate (dcbi)
The effective address is computed, translated, and checked for protection violations as defined in
the PowerPC architecture. This instruction is treated as a store with respect to address translation
and memory protection.
If the address hits in the cache, the cache block is placed in the invalid (I) state, regardless of
whether the data is modified. Because this instruction may effectively destroy modified data, it is
privileged (that is,dcbi is available to programs at the supervisor privilege level, MSR[PR] = 0).
The execution ofdcbi does not broadcast on the 60x bus unless broadcast is enabled through the
HID0[ABE] bit. The function of this instruction is independent of the WIMG bit settings of the
block containing the effective address. Thedcbi instruction executes regardless of whether the
cache is disabled or locked; however, a BAT or TLB protection violation generates a DSI
exception.

3.4.2.6 Instruction Cache Block Invalidate (icbi)
For theicbi instruction, the effective address is not computed or translated, so it cannot generate a
protection violation or exception. This instruction performs a virtual lookup into the instruction
cache (index only). All ways of the selected instruction cache set are invalidated.
The icbi instruction is not broadcast on the 60x bus. Theicbi instruction invalidates the cache
blocks independent of whether the cache is disabled or locked.

3.5 Cache Operations
This section describes Gekko cache operations.

3.5.1 Cache Block Replacement/Castout Operations
Both the instruction and data cache use a pseudo least-recently-used (PLRU) replacement
algorithm when a new block needs to be placed in the cache. When the data to be replaced is in the
modified (M) state, that data is written into a castout buffer while the missed data is being accessed
on the bus. When the load completes, Gekko then pushes the replaced cache block from the castout
buffer to the L2 cache (if L2 is enabled) or to main memory (if L2 is disabled).
The replacement logic first checks to see if there are any invalid blocks in the set and chooses the
lowest-order, invalid block (L[0–7]) as the replacement target. If all eight blocks in the set are valid,
the PLRU algorithm is used to determine which block should be replaced. The PLRU algorithm is
shown in Figure 3-5 on Page 3-16.
Each cache is organized as eight blocks per set by 128 sets. There is a valid bit for each block in

IBM Confidential

Page 3-16 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

the cache, L[0–7]. When all eight blocks in the set are valid, the PLRU algorithm is used to select the
replacement target. There are seven PLRU bits, B[0–6] for each set in the cache. For every hit in the
cache, the PLRU bits are updated using the rules specified in Table 3-2 on Page 3-17.

Figure 3-5. PLRU Replacement Algorithm

Replace
L0

Replace
L1

Replace
L2

Replace
L3

Replace
L4

Replace
L5

Replace
L6

Replace
L7

B0 = 0

B4 = 0

B1 = 0 B1 = 1 B2 = 1B2 = 0

B0 = 1

B3 = 0 B3 = 1 B4 = 1 B5 = 0 B5 = 1 B6 = 0 B6 = 1

Allocate
L0L0 invalid

Allocate
L2L2 invalid

Allocate
L1L1 invalid

Allocate
L3L3 invalid

Allocate
L4L4 invalid

Allocate
L5L5 invalid

Allocate
L6L6 invalid

Allocate
L7L7 invalid

L7 valid

L0 valid

L1 valid

L2 valid

L3 valid

L4 valid

L5 valid

L6 valid

IBM Confidential

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-17

If all eight blocks are valid, then a block is selected for replacement according to the PLRU bit
encodings shown in Table 3-3.

During power-up or hard reset, all the valid bits of the blocks are cleared and the PLRU bits cleared
to point to block L0 of each set. Note that this is also the state of the data or instruction cache after
setting their respective flash invalidate bit (HID0[DCFI] or HID0[ICFI]).

Table 3-2. PLRU Bit Update Rules

If the
Current

Access is
To:

Then the PLRU bits are Changed to: 1

B0 B1 B2 B3 B4 B5 B6

L0 1 1 x 1 x x x

L1 1 1 x 0 x x x

L2 1 0 x x 1 x x

L3 1 0 x x 0 x x

L4 0 x 1 x x 1 x

L5 0 x 1 x x 0 x

L6 0 x 0 x x x 1

L7 0 x 0 x x x 0

Note: 1x = Does not change

Table 3-3. PLRU Replacement Block Selection

If the PLRU Bits Are:

Then the
Block

Selected for
Replacement

Is:

B0

0

B1

0
B3

0 L0

0 0 1 L1

0 1
B4

0 L2

0 1 1 L3

1

B2

0
B5

0 L4

1 0 1 L5

1 1
B6

0 L6

1 1 1 L7

IBM Confidential

Page 3-18 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

3.5.2 Cache Flush Operations
The instruction cache can be invalidated by executing a series oficbi instructions or by setting
HID0[ICFI]. The data cache can be invalidated by executing a series ofdcbi instructions or by setting
HID0[DCFI].
Any modified entries in the data cache can be copied back to memory (flushed) by using thedcbf
instruction or by executing a series of 12 uniquely addressed load ordcbz instructions to each of the
128 sets. The address space should not be shared with any other process to prevent snoop hit
invalidations during the flushing routine. Exceptions should be disabled during this time so that the
PLRU algorithm does not get disturbed.
The data cache flush assist bit, HID0[DCFA], simplifies the software flushing process. When set,
HID0[DCFA] forces the PLRU replacement algorithm to ignore the invalid entries and follow the
replacement sequence defined by the PLRU bits. This reduces the series of uniquely addressed load
or dcbz instructions to eight per set. HID0[DCFA] should be set just prior to the beginning of the
cache flush routine and cleared after the series of instructions is complete.

3.5.3 Data Cache-Block-Fill Operations
Gekko’s data cache blocks are filled in four beats of 64 bits each, with the critical double word loaded
first. The data cache is not blocked to internal accesses while the load (caused by a cache miss)
completes. This functionality is sometimes referred to as ‘hits under misses,’ because the cache can
service a hit while a cache miss fill is waiting to complete. The critical-double-word read from
memory is simultaneously written to the data cache and forwarded to the requesting unit, thus
minimizing stalls due to cache fill latency.
A cache block is filled after a read miss or write miss (read-with-intent-to-modify) occurs in the
cache. The cache block that corresponds to the missed address is updated by a burst transfer of the
data from the L2 or system memory. Note that if a read miss occurs in a system with multiple bus
masters, and the data is modified in another cache, the modified data is first written to external
memory before the cache fill occurs.

3.5.4 Instruction Cache-Block-Fill Operations
Gekko’s instruction cache blocks are loaded in four beats of 64 bits each, with the critical double word
loaded first. The instruction cache is not blocked to internal accesses while the fetch (caused by a
cache miss) completes. On a cache miss, the critical and following double words read from memory
are simultaneously written to the instruction cache and forwarded to the instruction queue, thus
minimizing stalls due to cache fill latency. There is no snooping of the instruction cache.

3.5.5 Data Cache-Block-Push Operation
When a cache block in Gekko is snooped and hit by another bus master and the data is modified, the
cache block must be written to memory and made available to the snooping device. The cache block
is said to be pushed out onto the 60x bus.

3.6 L1 Caches and 60x Bus Transactions
Gekko transfers data to and from the cache in single-beat transactions of two words, or in four-beat
transactions of eight words which fill a cache block. Single-beat bus transactions can transfer from
one to eight bytes to or from Gekko, and can be misaligned. Single-beat transactions can be caused
by cache write-through accesses, caching-inhibited accesses (WIMG = x1xx), accesses when the
cache is disabled (HID0[DCE] bit is cleared), or accesses when the cache is locked (HID0[DLOCK]
bit is cleared).
Burst transactions on Gekko always transfer eight words of data at a time, and are aligned to a
double-word boundary. Gekko transfer burst (TBST) output signal indicates to the system whether

IBM Confidential

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-19

the current transaction is a single-beat transaction or four-beat burst transfer. Burst transactions
have an assumed address order. For cacheable read operations, instruction fetches, or cacheable,
non-write-through write operations that miss the cache, Gekko presents the double-word-aligned
address associated with the load/store instruction or instruction fetch that initiated the transaction.
As shown in Figure 3-6, the first quad word contains the address of the load/store or instruction
fetch that missed the cache. This minimizes latency by allowing the critical code or data to be
forwarded to the processor before the rest of the block is filled. For all other burst operations,
however, the entire block is transferred in order (oct-word-aligned). Critical-double-word-first
fetching on a cache miss applies to both the data and instruction cache.

Figure 3-6 Gekko Cache Addresses

3.6.1 Read Operations and the MEI Protocol
The MEI coherency protocol affects how Gekko data cache performs read operations on the 60x
bus. All reads (except for caching-inhibited reads) are encoded on the bus as
read-with-intent-to-modify (RWITM) to force flushing of the addressed cache block from other
caches in the system.
The MEI coherency protocol also affects how Gekko snoops read operations on the 60x bus. All
reads snooped from the 60x bus (except for caching-inhibited reads) are interpreted as RWITM to
cause flushing from Gekko’s cache. Single-beat reads (TBST negated) are interpreted by Gekko as
caching inhibited.
These actions for read operations allow Gekko to operate successfully (coherently) on the bus with
other bus masters that implement either the three-state MEI or a four-state MESI cache coherency
protocol.

3.6.2 Bus Operations Caused by Cache Control Instructions
The cache control, TLB management, and synchronization instructions supported by Gekko may
affect or be affected by the operation of the 60x bus. The operation of the instructions may also
indirectly cause bus transactions to be performed, or their completion may be linked to the bus.
Thedcbz instruction is the only cache control instruction that causes an address-only broadcast on
the 60x bus. All other data cache control instructions (dcbi, dcbf, dcbst, and dcbz) are not
broadcast unless specifically enabled through the HID0[ABE] configuration bit. Note thatdcbi,

If the address requested is in double-word A, the address placed on the bus is that of double-word A, and
the four data beats are ordered in the following manner:

If the address requested is in double-word C, the address placed on the bus will be that of double-word
C, and the four data beats are ordered in the following manner:

A B C D

111000 01

A B C D

320 1
Beat

Bits (27... 28)

C D A B

320 1
Beat

Gekko Cache Address

IBM Confidential

Page 3-20 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

dcbf, dcbst, anddcbzdo broadcast to Gekko’s L2 cache, regardless of HID0[ABE]. HID0[ABE] also
controls the broadcast of thesync andeieio instructions.
Theicbi instruction is never broadcast. No broadcasts by other masters are snooped by Gekko (except
for dcbzkill block transactions). Thedcbz_l instruction is never broadcast. For detailed information
on the cache control instructions, refer to Chapter 2, "Programming Model" and Chapter 12,
"Instruction Set" in this book.
Table 3-4 provides an overview of the bus operations initiated by cache control instructions. Note that
the information in this table assumes that the WIM bits are set to 001; that is, the cache is operating
in write-back mode, caching is permitted and coherency is enforced.

For additional details about the specific bus operations performed by Gekko, see Chapter 8, "Bus
Interface Operation" in this manual.

Table 3-4. Bus Operations Caused by Cache Control Instructions (WIM = 001)

Instruction
Current

Cache State
Next Cache State Bus Operation Comment

sync Don’t care No change sync
(if enabled in
HID0[ABE])

Waits for memory queues
to complete bus activity

tlbie — — None —

tlbsync — — None Waits for the negation of
the TLBSYNC input signal
to complete

eieio Don’t care No change eieio
(if enabled in
HID0[ABE])

Address-only bus
operation

icbi Don’t care I None —

dcbi Don’t care I Kill block
(if enabled in
HID0[ABE])

Address-only bus
operation

dcbf I, E I Flush block
(if enabled in
HID0[ABE])

Address-only bus
operation

dcbf M I Write with kill Block is pushed

dcbst I, E No change Clean block
(if enabled in
HID0[ABE])

Address-only bus
operation

dcbst M E Write with kill Block is pushed

dcbz I M Write with kill —

dcbz E, M M Kill block Writes over modified data

dcbz_l M, E, I M None —

dcbt I E Read-with-intent-t
o-modify

Fetched cache block is
stored in the cache

dcbt E, M No change None —

dcbtst I E Read-with-intent-t
o-modify

Fetched cache block is
stored in the cache

dcbtst E,M No change None —

IBM Confidential

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-21

3.6.3 Snooping
Gekko maintains data cache coherency in hardware by coordinating activity between the data
cache, the bus interface logic, the L2 cache, and the memory system. Gekko has a copy-back cache
which relies on bus snooping to maintain cache coherency with other caches in the system. For
Gekko, the coherency size of the bus is the size of a cache block, 32 bytes. This means that any bus
transactions that cross an aligned 32-byte boundary must present a new address onto the bus at that
boundary for proper snoop operation by Gekko, or they must operate noncoherently with respect
to Gekko.
As bus operations are performed on the bus by other bus masters, Gekko’s bus snooping logic
monitors the addresses and transfer attributes that are referenced. Gekko snoops the bus
transactions during the cycle thatTS is asserted for any of the following qualified snoop conditions:

• The global signal (GBL) is asserted indicating that coherency enforcement is required.
• A reservation is currently active in Gekko as the result of anlwarx instruction, and the

transfer type attributes (TT[0–4]) indicate a write or kill operation. These transactions are
snooped regardless of whetherGBL is asserted to support reservations in the MEI cache
protocol.

All transactions snooped by Gekko are checked for correct address bus parity. Every assertion of
TS detected by Gekko (whether snooped or not) must be followed by an accompanying assertion
of AACK.
The locked cache and bus snoop are incompatible. HID2[LCE] shall be kept at 0 for systems which
generate snoop transactions
Once a qualified snoop condition is detected on the bus, the snooped address associated withTS is
compared against the data cache tags, memory queues, and/or other storage elements as
appropriate. The L1 data cache tags and L2 cache tags are snooped for standard data cache
coherency support. No snooping is done in the instruction cache for coherency.
The memory queues are snooped for pipeline collisions and memory coherency collisions. A
pipeline collision is detected when another bus master addresses any portion of a line that this 750’s
data cache is currently in the process of loading (L1 loading from L2, or L1/L2 loading from
memory). A memory coherency collision occurs when another bus master addresses any portion
of a line that Gekko has currently queued to write to memory from the data cache (castout or
copy-back), but has not yet been granted bus access to perform.
If a snooped transaction results in a cache hit or pipeline collision or memory queue collision,
Gekko assertsARTRY on the 60x bus. The current bus master, detecting the assertion of the
ARTRY signal, should abort the transaction and retry it at a later time, so that Gekko can first
perform a write operation back to memory from its cache or memory queues. Gekko may also retry
a bus transaction if it is unable to snoop the transaction on that cycle due to internal resource
conflicts. Additional snoop action may be forwarded to the cache as a result of a snoop hit in some
cases (a cache push of modified data, or a cache block invalidation). There is no immediate way
for another CPU bus agent to determine the cause of GekkoARTRY.
Implementation Note: Snooping of the memory queues for pipeline collisions, as described
above, is performed for burst read operations in progress only. In this case, the read address has
completed on the bus, however, the data tenure may be either in-progress or not yet started by the
processor. During this time Gekko will retry any other global access to that line by another bus
master until all data has been received in it’s L1 cache. Pipeline collisions, however, do not apply
for burst write operations in progress. If Gekko has completed an address tenure for a burst write,
and is currently waiting for a data bus grant or is currently transferring data to memory, it will not
generate an address retry to another bus master that addresses the line. It is the responsibility of the

IBM Confidential

Page 3-22 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

memory system to handle this collision (usually by keeping the data transactions to memory in order).
Note also that all burst writes by Gekko and 603e are performed as non-global, and hence do not
normally enable snooping, even for address collision purposes. (Snooping may still occur for
reservation cancelling purposes.)

3.6.4 Snoop Response to 60x Bus Transactions
There are several bus transaction types defined for the 60x bus. The transactions in Table 3-5
correspond to the transfer type signals TT[0–4], which are described in Section 7.2.4.1 on Page 7-6.
Gekko never retries a transaction in whichGBL is not asserted, even if the tags are busy or there is a
tag hit. Reservations are snooped regardless of the state ofGBL.

Table 3-5. Response to Snooped Bus Transactions

Snooped Transaction TT[0–4] Gekko Response

Clean block 00000 No action is taken.

Flush block 00100 No action is taken.

SYNC 01000 No action is taken.

Kill block 01100 The kill block operation is an address-only bus transaction initiated
when a dcbz or dcbi instruction is executed
• If the addressed cache block is in the exclusive (E) state, the cache

block is placed in the invalid (I) state.
• If the addressed cache block is in the modified (M) state, Gekko

asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the invalid (I) state.

• If the address misses in the cache, no action is taken.
Any reservation associated with the address is canceled.

EIEIO 10000 No action is taken.

External control word
write

10100 No action is taken.

TLB invalidate 11000 No action is taken.

External control word
read

11100 No action is taken.

lwarx reservation set 00001 No action is taken.

Reserved 00101 —

TLBSYNC 01001 No action is taken.

ICBI 01101 No action is taken.

Reserved 1XX01 —

IBM Confidential

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-23

Write-with-flush 00010 A write-with-flush operation is a single-beat or burst transaction
initiated when a caching-inhibited or write-through store instruction is
executed.
• If the addressed cache block is in the exclusive (E) state, the cache

block is placed in the invalid (I) state.
• If the addressed cache block is in the modified (M) state, Gekko

asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the invalid (I) state.

• If the address misses in the cache, no action is taken.
Any reservation associated with the address is canceled.

Write-with-kill 00110 A write-with-kill operation is a burst transaction initiated due to a
castout, caching-allowed push, or snoop copy -back.
• If the address hits in the cache, the cache block is placed in the

invalid (I) state (killing modified data that may have been in the
block).

• If the address misses in the cache, no action is taken.
Any reservation associated with the address is canceled.

Read 01010 A read operation is used by most single-beat and burst load
transactions on the bus.
For single-beat, caching-inhibited read transaction:
• If the addressed cache block is in the exclusive (E) state, the cache

block remains in the exclusive (E) state.
• If the addressed cache block is in the modified (M) state, Gekko

asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the exclusive (E) state.

• If the address misses in the cache, no action is taken.
For burst read transactions:
• If the addressed cache block is in the exclusive (E) state, the cache

block is placed in the invalid (I) state.
• If the addressed cache block is in the modified (M) state, Gekko

asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the invalid (I) state.

• If the address misses in the cache, no action is taken.

Read-with-intent-to-mo
dify (RWITM)

01110 A RWITM operation is issued to acquire exclusive use of a memory
location for the purpose of modifying it.
• If the addressed cache block is in the exclusive (E) state, the cache

block is placed in the invalid (I) state.
• If the addressed cache block is in the modified (M) state, Gekko

asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the invalid (I) state.

• If the address misses in the cache, no action is taken.

Write-with-flush-atomic 10010 Write-with-flush-atomic operations occur after the processor issues
an stwcx. instruction.
• If the addressed cache block is in the exclusive (E) state, the cache

block is placed in the invalid (I) state.
• If the addressed cache block is in the modified (M) state, Gekko

asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the invalid (I) state.

• If the address misses in the cache, no action is taken.
Any reservation is canceled, regardless of the address.

Reserved 10110 —

Table 3-5. Response to Snooped Bus Transactions (Continued)

Snooped Transaction TT[0–4] Gekko Response

IBM Confidential

Page 3-24 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

3.6.5 Transfer Attributes
In addition to the address and transfer type signals, Gekko supports the transfer attribute signals
TBST, TSIZ[0–2],WT, CI, andGBL. The TBST and TSIZ[0–2] signals indicate the data transfer size
for the bus transaction.
TheWT signal reflects the write-through status (the complement of the W bit) for the transaction as
determined by the MMU address translation during write operations.WT is asserted for burst writes
due todcbf (flush) anddcbst (clean) instructions, and for snoop pushes;WT is negated forecowx
transactions. Since the write-through status is not meaningful for reads, Gekko uses theWT signal
during read transactions to indicate that the transaction is an instruction fetch (WT negated), or not
an instruction fetch (WT asserted).
The CI signal reflects the caching-inhibited/allowed status (the complement of the I bit) of the
transaction as determined by the MMU address translation even if the L1 caches are disabled or
locked.CI is always asserted foreciwx/ecowxbus transactions independent of the address translation.
TheGBL signal reflects the memory coherency requirements (the complement of the M bit) of the
transaction as determined by the MMU address translation. Castout and snoop copy-back operations
(TT[0–4] = 00110) are generally marked as nonglobal (GBL negated) and are not snooped (except
for reservation monitoring). Other masters, however, may perform DMA write operations with this
encoding but marked global (GBL asserted) and thus must be snooped. Table 3-6 summarizes the
address and transfer attribute information presented on the bus by Gekko for various master or
snoop-related transactions.

Read-atomic 11010 Read atomic operations appear on the bus in response to lwarx
instructions and generate the same snooping responses as read
operations.

Read-with-intent-to-mo
dify-atomic

11110 The RWITM atomic operations appear on the bus in response to
stwcx. instructions and generate the same snooping responses as
RWITM operations.

Reserved 00011 —

Reserved 00111 —

Read-with-no-intent-to-
cache (RWNITC)

01011 A RWNITC operation is issued to acquire exclusive use of a memory
location with no intention of modifying the location.
• If the addressed cache block is in the exclusive (E) state, the cache

block remains in the exclusive (E) state.
• If the addressed cache block is in the modified (M) state, Gekko

asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the exclusive (E) state.

• If the address misses in the cache, no action is taken.

Reserved 01111 —

Reserved 1XX11 —

Table 3-5. Response to Snooped Bus Transactions (Continued)

Snooped Transaction TT[0–4] Gekko Response

IBM Confidential

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-25

Table 3-6. Address/Transfer Attribute Summary

Bus Transaction A[0–31] TT[0–4] TBST TSIZ[0–2] GBL WT CI

Instruction fetch operations:
Burst (caching-allowed) PA[0–28] || 0b000 0 1 1 1 0 0 0 1 0 ¬ M 1 1*
Single-beat read
(caching-inhibited or cache
disabled)

PA[0–28] || 0b000 0 1 0 1 0 1 0 0 0 ¬ M 1 ¬ I

Data cache operations:
Cache block fill (due to load or
store miss)

PA[0–28] || 0b000 A 1 1 1 0 0 0 1 0 ¬ M 0 1*

Castout
(normal replacement)

CA[0–26] || 0b00000 0 0 1 1 0 0 0 1 0 1 1 1*

Push (cache block push due to
dcbf /dcbst)

PA[0–26] || 0b00000 0 0 1 1 0 0 0 1 0 1 0 1*

Snoop copyback CA[0–26] || 0b00000 0 0 1 1 0 0 0 1 0 1 0 1*
Data cache bypass operations:

Single-beat read
(caching-inhibited or cache
disabled)

PA[0–31] A 1 0 1 0 1 S S S ¬ M 0 ¬ I

Single-beat write
(caching-inhibited, write-through,
or cache disabled)

PA[0–31] 0 0 0 1 0 1 S S S ¬ M ¬W ¬ I

Special instructions:
dcbz (addr-only) PA[0–28] || 0b000 0 1 1 0 0 0 0 1 0 0* 0 1*
dcbi (if HID0[ABE] = 1,
addr-only)

PA[0–26] || 0b00000 0 1 1 0 0 0 0 1 0 ¬ M 0 1*

dcbf (if HID0[ABE] = 1,
addr-only)

PA[0–26] || 0b00000 0 0 1 0 0 0 0 1 0 ¬ M 0 1*

dcbst (if HID0[ABE] = 1,
addr-only)

PA[0–26] || 0b00000 0 0 0 0 0 0 0 1 0 ¬ M 0 1*

sync (if HID0[ABE] = 1,
addr-only)

0x0000_0000 0 1 0 0 0 0 0 1 0 0 0 0

eieio (if HID0[ABE] = 1,
addr-only)

0x0000_0000 1 0 0 0 0 0 0 1 0 0 0 0

stwcx. (always single-beat write) PA[0–29] || 0b00 1 0 0 1 0 1 1 0 0 ¬ M ¬ W ¬ I
eciwx PA[0–29] || 0b00 1 1 1 0 0 EAR[28–31] 1 0 0
ecowx PA[0–29] || 0b00 1 0 1 0 0 EAR[28–31] 1 1 0

Notes:
PA = Physical address, CA = Cache address.
W,I,M = WIM state from address translation; ¬ = complement; 0*or 1* = WIM state implied by transaction type in table
For instruction fetches, reflection of the M bit must be enabled through HID0[IFEM].
A = Atomic; high if lwarx , low otherwise
S = Transfer size
Special instructions listed may not generate bus transactions depending on cache state.

IBM Confidential

Page 3-26 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

3.7 MEI State Transactions
Table 3-7 shows MEI state transitions for various operations. Bus operations are described in
Table 3-4 on Page 3-20.

Table 3-7. MEI State Transitions

Operation
Cache

Operation
Bus
sync

WIM
Current
Cache
State

Next
Cache
State

Cache Actions
Bus

Operation

Load
(T = 0)

Read No x0x I Same 1 Cast out of modified
block (as required)

Write-with-kill

2 Pass four-beat read
to memory queue

Read

Load
(T = 0)

Read No x0x E,M Same Read data from cache —

Load (T = 0) Read No x1x I Same Pass single-beat read to
memory queue

Read

Load (T = 0) Read No x1x E I CRTRY read —

Load (T = 0) Read No x1x M I CRTRY read (push
sector to write queue)

Write-with-kill

lwarx Read Acts like other reads but bus operation uses special encoding

Store
(T = 0)

Write No 00x I Same Cast out of modified
block (if necessary)

Write-with-kill

Pass RWITM to
memory queue

RWITM

Store
(T = 0)

Write No 00x E,M M Write data to cache —

Store stwcx.
(T = 0)

Write No 10x I Same Pass single-beat write
to memory queue

Write-with-flus
h

Store stwcx.
(T = 0)

Write No 10x E Same Write data to cache —

Pass single-beat write
to memory queue

Write-with-flus
h

Store stwcx.
(T = 0)

Write No 10x M Same CRTRY write —

Push block to write
queue

Write-with-kill

Store (T = 0)
or stwcx.
(WIM = 10x)

Write No x1x I Same Pass single-beat write
to memory queue

Write-with-flus
h

Store (T = 0)
or stwcx.
(WIM = 10x)

Write No x1x E I CRTRY write —

IBM Confidential

Chapter 3. Gekko Instruction and Data Cache Operation IBM Confidential 5/25/00 Page 3-27

Store (T = 0)
or stwcx.
(WIM = 10x)

Write No x1x M I CRTRY write —

Push block to write
queue

Write-with-kill

stwcx. Conditional
write

If the reserved bit is set, this operation is like other writes except the bus operation
uses a special encoding.

dcbf Data cache
block flush

No xxx I,E Same CRTRY dcbf —

Pass flush Flush

Same I State change only —

dcbf Data cache
block flush

No xxx M I Push block to write
queue

Write-with-kill

dcbst Data cache
block store

No xxx I,E Same CRTRY dcbst —

Pass clean Clean

Same Same No action —

dcbst Data cache
block store

No xxx M E Push block to write
queue

Write-with-kill

dcbz Data cache
block set to
zero

No x1x x x Alignment trap —

dcbz Data cache
block set to
zero

No 10x x x Alignment trap —

dcbz Data cache
block set to
zero

Yes 00x I Same CRTRY dcbz —

Cast out of modified
block

Write-with-kill

Pass kill Kill

Same M Clear block —

dcbz Data cache
block set to
zero

No 00x E,M M Clear block —

dcbt Data cache
block touch

No x1x I Same Pass single-beat read to
memory queue

Read

dcbt Data cache
block touch

No x1x E I CRTRY read —

dcbt Data cache
block touch

No x1x M I CRTRY read —

Push block to write
queue

Write-with-kill

Table 3-7. MEI State Transitions (Continued)

Operation
Cache

Operation
Bus
sync

WIM
Current
Cache
State

Next
Cache
State

Cache Actions
Bus

Operation

IBM Confidential

Page 3-28 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

NOTE: Single-beat writes are not snooped in the write queue.

dcbt Data cache
block touch

No x0x I Same Cast out of modified
block (as required)

Write-with-kill

Pass four-beat read to
memory queue

Read

dcbt Data cache
block touch

No x0x E,M Same No action —

Single-beat
read

Reload
dump 1

No xxx I Same Forward data_in —

Four-beat read
(double-word-al
igned)

Reload
dump

No xxx I E Write data_in to cache —

Four-beat write
(double-word-al
igned)

Reload
dump

No xxx I M Write data_in to cache —

E→I Snoop
write or kill

No xxx E I State change only
(committed)

—

M→I Snoop
kill

No xxx M I State change only
(committed)

—

Push
M→I

Snoop
flush

No xxx M I Conditionally push Write-with-kill

Push
M→E

Snoop
clean

No xxx M E Conditionally push Write-with-kill

tlbie TLB
invalidate

No xxx x x CRTRY TLBI —

Pass TLBI —

No action —

sync Synchroni-
zation

No xxx x x CRTRY sync —

Pass sync —

No action —

Table 3-7. MEI State Transitions (Continued)

Operation
Cache

Operation
Bus
sync

WIM
Current
Cache
State

Next
Cache
State

Cache Actions
Bus

Operation

IBM Confidential

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-1

Chapter 4 Exceptions
40
40

The OEA portion of the PowerPC architecture defines the mechanism by which PowerPC
processors implement exceptions (referred to as interrupts in the architecture specification).
Exception conditions may be defined at other levels of the architecture. For example, the UISA
defines conditions that may cause floating-point exceptions; the OEA defines the mechanism by
which the exception is taken.
The PowerPC exception mechanism allows the processor to change to supervisor state as a result
of unusual conditions arising in the execution of instructions and from external signals, bus errors,
or various internal conditions. When exceptions occur, information about the state of the processor
is saved to certain registers and the processor begins execution at an address (exception vector)
predetermined for each exception. Processing of exceptions begins in supervisor mode.
Although multiple exception conditions can map to a single exception vector, often a more specific
condition may be determined by examining a register associated with the exception—for example,
the DSISR and the floating-point status and control register (FPSCR). Also, software can explicitly
enable or disable some exception conditions.
The PowerPC architecture requires that exceptions be taken in program order; therefore, although
a particular implementation may recognize exception conditions out of order, they are handled
strictly in order with respect to the instruction stream. When an instruction-caused exception is
recognized, any unexecuted instructions that appear earlier in the instruction stream, including any
that have not yet entered the execute state, are required to complete before the exception is taken.
For example, if a single instruction encounters multiple exception conditions, those exceptions are
taken and handled sequentially. Likewise, exceptions that are asynchronous and precise are
recognized when they occur, but are not handled until all instructions currently in the execute stage
successfully complete execution and report their results.
To prevent loss of state information, exception handlers must save the information stored in the
machine status save/restore registers, SRR0 and SRR1, soon after the exception is taken to prevent
this information from being lost due to another exception being taken. Because exceptions can
occur while an exception handler routine is executing, multiple exceptions can become nested. It
is up to the exception handler to save the necessary state information if control is to return to the
excepting program.
In many cases, after the exception handler handles an exception, there is an attempt to execute the
instruction that caused the exception. Instruction execution continues until the next exception
condition is encountered. Recognizing and handling exception conditions sequentially guarantees
that the machine state is recoverable and processing can resume without losing instruction results.
In this book, the following terms are used to describe the stages of exception processing:

Recognition Exception recognition occurs when the condition that can cause an
exception is identified by the processor.

Taken An exception is said to be taken when control of instruction execution is
passed to the exception handler; that is, the context is saved and the
instruction at the appropriate vector offset is fetched and the exception
handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the appropriate
vector offset. Exception handling is begun in supervisor mode (referred to
as privileged state in the architecture specification).

IBM Confidential

Page 4-2 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

NOTE: The PowerPC architecture documentation refers to exceptions as interrupts. In this book,
the term ‘interrupt’ is reserved to refer to asynchronous exceptions and sometimes to the
event that causes the exception. Also, the PowerPC architecture uses the word ‘exception’
to refer to IEEE-defined floating-point exception conditions that may cause a program
exception to be taken; see 4.5.7. The occurrence of these IEEE exceptions may not cause
an exception to be taken. IEEE-defined exceptions are referred to as IEEE floating-point
exceptions or floating-point exceptions.

4.1 PowerPC Gekko Microprocessor Exceptions
As specified by the PowerPC architecture, exceptions can be either precise or imprecise and either
synchronous or asynchronous. Asynchronous exceptions are caused by events external to the
processor’s execution; synchronous exceptions are caused by instructions.
The types of exceptions are shown in Table 4-1.

NOTE: All exceptions except for the system management interrupt, thermal management, and
performance monitor exception are defined, at least to some extent, by the PowerPC
architecture.

These classifications are discussed in greater detail in Section 4.2, “Exception Recognition and
Priorities" on Page 4-4.

For a better understanding of how Gekko implements precise exceptions, see Chapter 6, “Exceptions”
of the PowerPC Microprocessor Family: The Programming Environmentsmanual. Exceptions
implemented in Gekko, and conditions that cause them, are listed in Table 4-2.

Table 4-1. PowerPC Gekko Microprocessor Exception Classifications

Synchronous/Asynchronous Precise/Imprecise Exception Types

Asynchronous, nonmaskable Imprecise Machine check, system reset

Asynchronous, maskable Precise External interrupt, decrementer, performance monitor interrupt,
thermal management interrupt

Synchronous Precise Instruction-caused exceptions

IBM Confidential

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-3

Table 4-2. Exceptions and Conditions

Exception Type
Vector Offset

(hex)
Causing Conditions

Reserved 00000 —

System reset 00100 Assertion of either HRESET or SRESET or at power-on reset

Machine check 00200 Assertion of TEA during a data bus transaction, assertion of MCP, an address,
data or L2 double bit error, DMA queue overflow, DMA look-up misses locked
cache, or dcbz_l cache hit. MSR[ME] must be set.

DSI 00300 As specified in the PowerPC architecture. For TLB misses on load, store, or
cache operations, a DSI exception occurs if a page fault occurs.

ISI 00400 As defined by the PowerPC architecture

External interrupt 00500 MSR[EE] = 1 and INT is asserted

Alignment 00600 • A floating-point load/store, stmw , stwcx. , lmw , lwarx , eciwx , or ecowx
instruction operand is not word-aligned.

• A multiple/string load/store operation is attempted in little-endian mode
• An operand of a dcbz or dcbz_l instruction is on a page that is

write-through or cache-inhibited for a virtual mode access.
• An attempt to execute a dcbz or dcbz_l instruction occurs when the cache

is disabled.

Program 00700 As defined by the PowerPC architecture

Floating-point
unavailable

00800 As defined by the PowerPC architecture

Decrementer 00900 As defined by the PowerPC architecture, when the most-significant bit of the
DEC register changes from 0 to 1 and MSR[EE] = 1

Reserved 00A00–00BFF —

System call 00C00 Execution of the System Call (sc) instruction

Trace 00D00 MSR[SE] =1 or a branch instruction is completing and MSR[BE] =1. Gekko
differs from the OEA by not taking this exception on an isync .

Reserved 00E00 Gekko does not generate an exception to this vector. Other PowerPC
processors may use this vector for floating-point assist exceptions.

Reserved 00E10–00EFF —

Performance monitor 00F00 The limit specified in PMCn is met and MMCR0[ENINT] = 1 (Gekko-specific)

Instruction address
breakpoint

01300 IABR[0–29] matches EA[0–29] of the next instruction to complete, IABR[TE]
matches MSR[IR], and IABR[BE] = 1 (Gekko-specific)

Reserved 01400–016FF —

IBM Confidential

Page 4-4 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

4.2 Exception Recognition and Priorities
Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other
exceptions—system reset and machine check exceptions (although the machine check
exception condition can be disabled so the condition causes the processor to go directly
into the checkstop state). These exceptions cannot be delayed and do not wait for
completion of any precise exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

3. Imprecise exceptions (imprecise mode floating-point enabled exceptions) are caused
by instructions and they are delayed until higher priority exceptions are taken. Note
that Gekko does not implement an exception of this type.

4. Maskable asynchronous exceptions (external, decrementer, thermal management,
system management, performance monitor, and interrupt exceptions) are delayed until
higher priority exceptions are taken.

The following list of exception categories describes how Gekko handles exceptions up to the point of
signaling the appropriate interrupt to occur. Note that a recoverable state is reached if the completed
store queue is empty (drained, not ca..
y instruction that is next in program order and has been signaled to complete has completed. If
MSR[RI] = 0, Gekko is in a nonrecoverable state. Also, instruction completion is defined as updating
all architectural registers associated with that instruction, and then removing that instruction from the
completion buffer.

• Exceptions caused by asynchronous events (interrupts). These exceptions are further
distinguished by whether they are maskable and recoverable.

— Asynchronous, nonmaskable, nonrecoverable

System reset for assertion ofHRESET—Has highest priority and is taken immediately
regardless of other pending exceptions or recoverability. (Includes power-on reset)

— Asynchronous, maskable, nonrecoverable

Machine check exception—Has priority over any other pending exception except system
reset for assertion ofHRESET. Taken immediately regardless of recoverability.

— Asynchronous, nonmaskable, recoverable

Thermal
management
interrupt

01700 Thermal management is enabled, junction temperature exceeds the threshold
specified in THRM1 or THRM2, and MSR[EE] = 1 (Gekko-specific)

Reserved 01800–02FFF —

Table 4-2. Exceptions and Conditions (Continued)

Exception Type
Vector Offset

(hex)
Causing Conditions

IBM Confidential

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-5

System reset forSRESET—Has priority over any other pending exception except
system reset forHRESET (or power-on reset), or machine check. Taken immediately
when a recoverable state is reached.

— Asynchronous, maskable, recoverable

System management, performance monitor, thermal management, external, and
decrementer interrupts—Before handling this type of exception, the next instruction in
program order must complete. If that instruction causes another type of exception, that
exception is taken and the asynchronous, maskable recoverable exception remains
pending, until the instruction completes. Further instruction completion is halted. The
asynchronous, maskable recoverable exception is taken when a recoverable state is
reached.

• Instruction-related exceptions. These exceptions are further organized into the point in
instruction processing in which they generate an exception.

— Instruction fetch

ISI exceptions—Once this type of exception is detected, dispatching stops and the
current instruction stream is allowed to drain out of the machine. If completing any of
the instructions in this stream causes an exception, that exception is taken and the
instruction fetch exception is discarded (but may be encountered again when instruction
processing resumes). Otherwise, once all pending instructions have executed and a
recoverable state is reached, the ISI exception is taken.

— Instruction dispatch/execution

Program, DSI, alignment, floating-point unavailable, system call, and instruction
address breakpoint—This type of exception is determined during dispatch or execution
of an instruction. The exception remains pending until all instructions before the
exception-causing instruction in program order complete. The exception is then taken
without completing the exception-causing instruction. If completing these previous
instructions causes an exception, that exception takes priority over the pending
instruction dispatch/execution exception, which is then discarded (but may be
encountered again when instruction processing resumes).

— Post-instruction execution

Trace—Trace exceptions are generated following execution and completion of an
instruction while trace mode is enabled. If executing the instruction produces
conditions for another type of exception, that exception is taken and the post-instruction
exception is forgotten for that instruction.

NOTE: These exception classifications correspond to how exceptions are prioritized, as
described in Table 4-3.

IBM Confidential

Page 4-6 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Table 4-3. PowerPC Gekko Exception Priorities

Priority Exception Cause

Asynchronous Exceptions (Interrupts)

0 System reset Power on reset, assertion of HRESET and TRST (hard reset)

1 Machine check Any enabled machine check condition (L1 address or data parity error, L2 data
double bit error, assertion of TEA or MCP)

2 System reset Assertion of SRESET (soft reset)

3 External interrupt Assertion of INT

4 Performance monitor Any programmer-specified performance monitor condition

5 Decrementer Decrementer passes through zero

6 Thermal management Any programmer-specified thermal management condition

Instruction Fetch Exceptions

0 ISI Any ISI exception condition

Instruction Dispatch/Execution Exceptions

0 Instruction address
breakpoint

Any instruction address breakpoint exception condition

1 Program Occurrence of an illegal instruction, privileged instruction, or trap exception
condition. Note that floating-point enabled program exceptions have lower priority.

2 System call System Call (sc) instruction

3 Floating-point
unavailable

Any floating-point unavailable exception condition

4 Program A floating-point enabled exception condition (lowest-priority program exception)

5 DSI DSI exception due to eciwx , ecowx with EAR[E] = 0 (DSISR[11]). Lower priority
DSI exception conditions are shown below.

6 Alignment Any alignment exception condition, prioritized as follows:
1 Floating-point access not word-aligned
2 lmw , stmw , lwarx , stwcx. not word-aligned
3 eciwx or ecowx not word-aligned
4 Multiple or string access with MSR[LE] set
5 dcbz or dcbz_l to write-through or cache-inhibited page or cache is disabled

7 DSI BAT page protection violation

8 DSI Any access except cache operations to a segment where SR[T] = 1 (DSISR[5]) or
an access crosses from a T = 0 segment to one where T = 1 (DSISR[5])

9 DSI TLB page protection violation

10 DSI DABR address match

Post-Instruction Execution Exceptions

IBM Confidential

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-7

System reset and machine check exceptions may occur at any time and are not delayed even if an
exception is being handled. As a result, state information for an interrupted exception may be lost;
therefore, these exceptions are typically nonrecoverable. An exception may not be taken
immediately when it is recognized.

4.3 Exception Processing
When an exception is taken, the processor uses SRR0 and SRR1 to save the contents of the MSR
for the current context and to identify where instruction execution should resume after the
exception is handled.
When an exception occurs, the address saved in SRR0 helps determine where instruction
processing should resume when the exception handler returns control to the interrupted process.
Depending on the exception, this may be the address in SRR0 or at the next address in the program
flow. All instructions in the program flow preceding this one will have completed execution and no
subsequent instruction will have begun execution. This may be the address of the instruction that
caused the exception or the next one (as in the case of a system call, trace, or trap exception). The
SRR0 register is shown in Figure 4-1.

Figure 4-1. Machine Status Save/Restore Register 0 (SRR0)

SRR1 is used to save machine status (selected MSR bits and possibly other status bits as well) on
exceptions and to restore those values when anrfi instruction is executed. SRR1 is shown in
Figure 4-2.

Figure 4-2. Machine Status Save/Restore Register 1 (SRR1)

For most exceptions, bits 2–4 and 10–12 of SRR1 are loaded with exception-specific information
and MSR[5–9, 16–31] are placed into the corresponding bit positions of SRR1.
Gekko’s MSR is shown in Figure 4-3.

Figure 4-3. Machine State Register (MSR)

11 Trace MSR[SE] = 1 (or MSR[BE] = 1 for branches)

Table 4-3. PowerPC Gekko Exception Priorities (Continued)

Priority Exception Cause

SRR0 (Holds EA for Instruction in Interrupted Program Flow)

0 31

Exception-Specific Information and MSR Bit Values

0 31

ILE EE PR SEFE0 BE IP IR

0 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PM0

Reserved

LERIDR0FE1MEFP0POW0 000000000000

IBM Confidential

Page 4-8 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

The MSR bits are defined in Table 4-4.

Table 4-4. MSR Bit Settings

Bit(s) Name Description

0 — Reserved. Full function.1

1–4 — Reserved. Partial function.1

5–9 — Reserved. Full function.1

10–12 — Reserved. Partial function.1

13 POW Power management enable
0 Power management disabled (normal operation mode).
1 Power management enabled (reduced power mode).
Power management functions are implementation-dependent. See Chapter 10, "Power and Thermal
Management" in this manual

14 — Reserved. Implementation-specific

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to select
the endian mode for the context established by the exception.

16 EE External interrupt enable
0 The processor delays recognition of external interrupts and decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18 FP Floating-point available
0 The processor prevents dispatch of floating-point instructions, including floating-point loads,

stores, and moves.
1 The processor can execute floating-point instructions and can take floating-point enabled

program exceptions.

19 ME Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20 FE0 IEEE floating-point exception mode 0 (see Table 4-5).

21 SE Single-step trace enable
0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful execution of every

instruction except rfi , isync , and sc . Successful execution means that the instruction caused
no other exception.

22 BE Branch trace enable
0 The processor executes branch instructions normally.
1 The processor generates a branch type trace exception when a branch instruction executes

successfully.

23 FE1 IEEE floating-point exception mode 1 (see Table 4-5).

24 — Reserved. This bit corresponds to the AL bit of the POWER architecture.

IBM Confidential

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-9

The IEEE floating-point exception mode bits (FE0 and FE1) together define whether floating-point
exceptions are handled precisely, imprecisely, or whether they are taken at all. As shown in
Table 4-5, if either FE0 or FE1 are set, Gekko treats exceptions as precise. MSR bits are guaranteed
to be written to SRR1 when the first instruction of the exception handler is encountered. For further
details, see Chapter 6, “Exceptions” of thePowerPC Microprocessor Family: The Programming
Environments manual.

25 IP Exception prefix. The setting of this bit specifies whether an exception vector offset is prepended
with Fs or 0s. In the following description, nnnnn is the offset of the exception.
0 Exceptions are vectored to the physical address 0x000n_nnnn.
1 Exceptions are vectored to the physical address 0xFFFn_nnnn.

26 IR Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information see Chapter 5, "Memory Management" in this manual.

27 DR Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information see Chapter 5, "Memory Management" in this manual.

28 — Reserved. Full function1

29 PM Performance monitor marked mode
0 Process is not a marked process.
1 Process is a marked process.
Gekko–specific; defined as reserved by the PowerPC architecture. For more information about the
performance monitor, see Section 4.5.13, “Performance Monitor Interrupt (0x00F00)" on Page 4-20.

30 RI Indicates whether system reset or machine check exception is recoverable.
0 Exception is not recoverable.
1 Exception is recoverable.
The RI bit indicates whether from the perspective of the processor, it is safe to continue (that is,
processor state data such as that saved to SRR0 is valid), but it does not guarantee that the
interrupted process is recoverable.

31 LE Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

Note: Full function reserved bits are saved in SRR1 when an exception occurs; partial function reserved bits
are not saved.

Table 4-5. IEEE Floating-Point Exception Mode Bits

FE0 FE1 Mode

0 0 Floating-point exceptions disabled

0 1 Imprecise nonrecoverable. For this setting, Gekko operates in floating-point precise mode.

1 0 Imprecise recoverable. For this setting, Gekko operates in floating-point precise mode.

Table 4-4. MSR Bit Settings (Continued)

Bit(s) Name Description

IBM Confidential

Page 4-10 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

4.3.1 Enabling and Disabling Exceptions
When a condition exists that may cause an exception to be generated, it must be determined whether
the exception is enabled for that condition.

• IEEE floating-point enabled exceptions (a type of program exception) are ignored when both
MSR[FE0] and MSR[FE1] are cleared. If either bit is set, all IEEE enabled floating-point
exceptions are taken and cause a program exception.

• Asynchronous, maskable exceptions (such as the external and decrementer interrupts) are
enabled by setting MSR[EE]. When MSR[EE] = 0, recognition of these exception conditions
is delayed. MSR[EE] is cleared automatically when an exception is taken to delay recognition
of conditions causing those exceptions.

• A machine check exception can occur only if the machine check enable bit, MSR[ME], is set.
If MSR[ME] is cleared, the processor goes directly into checkstop state when a machine
check exception condition occurs. Individual machine check exceptions can be enabled and
disabled through bits in the HID0 register, which is described in Table 4-9.

• System reset exceptions cannot be masked.

4.3.2 Steps for Exception Processing
After it is determined that the exception can be taken (by confirming that any instruction-caused
exceptions occurring earlier in the instruction stream have been handled, and by confirming that the
exception is enabled for the exception condition), the processor does the following:

1. SRR0 is loaded with an instruction address that depends on the type of exception. See
the individual exception description for details about how this register is used for
specific exceptions.

2. SRR1[1–4, 10–15] are loaded with information specific to the exception type.

3. SRR1[5–9, 16–31] are loaded with a copy of the corresponding MSR bits. Depending
on the implementation, reserved bits may not be copied.

4. The MSR is set as described in Table 4-4. The new values take effect as the first
instruction of the exception-handler routine is fetched.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address translation is disabled for both instruction fetches and data accesses beginning
with the first instruction of the exception-handler routine.

5. Instruction fetch and execution resumes, using the new MSR value, at a location
specific to the exception type. The location is determined by adding the exception's
vector (see Table 4-2 on Page 4-3) to the base address determined by MSR[IP]. If IP
is cleared, exceptions are vectored to the physical address 0x000n_nnnn. If IP is set,
exceptions are vectored to the physical address 0xFFFn_nnnn. For a machine check
exception that occurs when MSR[ME] = 0 (machine check exceptions are disabled),
the checkstop state is entered (the machine stops executing instructions). See .”

1 1 Floating-point precise mode

Table 4-5. IEEE Floating-Point Exception Mode Bits (Continued)

FE0 FE1 Mode

IBM Confidential

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-11

4.3.3 Setting MSR[RI]
An operating system may handle MSR[RI] as follows:

• In the machine check and system reset exceptions—If MSR[RI] is cleared, the exception is
not recoverable. If it is set, the exception is recoverable with respect to the processor.

• In each exception handler—When enough state information has been saved that a machine
check or system reset exception can reconstruct the previous state, set MSR[RI].

• In each exception handler—Clear MSR[RI], set SRR0 and SRR1 appropriately, and then
executerfi .

• Note that the RI bit being set indicates that, with respect to the processor, enough processor
state data remains valid for the processor to continue, but it does not guarantee that the
interrupted process can resume.

4.3.4 Returning from an Exception Handler
The Return from Interrupt (rfi) instruction performs context synchronization by allowing
previously-issued instructions to complete before returning to the interrupted process. In general,
execution of therfi instruction ensures the following:

• All previous instructions have completed to a point where they can no longer cause an
exception. If a previous instruction causes a direct-store interface error exception, the
results must be determined before this instruction is executed.

• Previous instructions complete execution in the context (privilege, protection, and address
translation) under which they were issued.

• Therfi instruction copies SRR1 bits back into the MSR.

• Instructions fetched after this instruction execute in the context established by this
instruction.

• Program execution resumes at the instruction indicated by SRR0
For a complete description of context synchronization, refer to Chapter 6, “Exceptions” of the
PowerPC Microprocessor Family: The Programming Environments manual.

4.4 Process Switching
The following instructions are useful for restoring proper context during process switching:

• Thesyncinstruction orders the effects of instruction execution. All instructions previously
initiated appear to have completed before thesync instruction completes, and no
subsequent instructions appear to be initiated until thesync instruction completes. For an
example showing use ofsync, see Chapter 2, “PowerPC Register Set” of thePowerPC
Microprocessor Family: The Programming Environments manual.

• The isync instruction waits for all previous instructions to complete and then discards any
fetched instructions, causing subsequent instructions to be fetched (or refetched) from
memory and to execute in the context (privilege, translation, and protection) established by
the previous instructions.

• Thestwcx. instruction clears any outstanding reservations, ensuring that anlwarx
instruction in an old process is not paired with anstwcx. instruction in a new one.

The operating system should set MSR[RI] as described in 4.3.3.”

IBM Confidential

Page 4-12 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

4.5 Exception Definitions
Table 4-6 shows all the types of exceptions that can occur with Gekko and MSR settings when the
processor goes into supervisor mode due to an exception. Depending on the exception, certain of
these bits are stored in SRR1 when an exception is taken.

The setting of the exception prefix bit (IP) determines how exceptions are vectored. If the bit is
cleared, exceptions are vectored to the physical address 0x000n_nnnn(wherennnnnis the vector
offset); if IP is set, exceptions are vectored to physical address 0xFFFn_nnnn. Table 4-2 on Page 4-3
shows the exception vector offset of the first instruction of the exception handler routine for each
exception type.

4.5.1 System Reset Exception (0x00100)
Gekko implements the system reset exception as defined in the PowerPC architecture (OEA). The
system reset exception is a nonmaskable, asynchronous exception signaled to the processor through
the assertion of system-defined signals. In Gekko, the exception is signaled by the assertion of either
the soft reset (SRESET) or hard reset (HRESET) inputs, described more fully in Chapter 7, "Signal
Descriptions" in this manual
Gekko implements HID0[NHR], which helps software distinguish a hard reset from a soft reset.
Because this bit is cleared by a hard reset, but not by a soft reset, software can set this bit after a hard
reset and tell whether a subsequent reset is a hard or soft reset by examining whether this bit is still set.

Table 4-6. MSR Setting Due to Exception

Exception Type
MSR Bit 1

POW ILE EE PR FP ME FE0 SE BE FE1 IP IR DR PM RI LE

System reset 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Machine check 0 — 0 0 0 0 0 0 0 0 — 0 0 0 0 ILE

DSI 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

ISI 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

External interrupt 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Alignment 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Program 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Floating-point unavailable 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Decrementer interrupt 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

System call 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Trace exception 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Performance monitor 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Thermal management 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Note:
1. 0 Bit is cleared.

ILEBit is copied from the MSR[ILE].
— Bit is not altered
Reserved bits are read as if written as 0.

IBM Confidential

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-13

The first bus operation following the negation ofHRESET or the assertion of SRESET will be a
single-beat instruction fetch (caching will be inhibited) to x00100.
Table 4-7 lists register settings when a system reset exception is taken.

4.5.1.1 Soft Reset
If SRESET is asserted, the processor is first put in a recoverable state. To do this, Gekko allows any
instruction at the point of completion to either complete or take an exception, blocks completion
of any following instructions, and allows the completion queue to drain. The state before the
exception occurred is then saved as specified in the PowerPC architecture and instruction fetching
begins at the system reset interrupt vector offset, 0x00100. The vector address on a soft reset
depends on the setting of MSR[IP] (either 0x0000_0100 or 0xFFF0_0100). Soft resets are third in
priority, after hard reset and machine check. This exception is recoverable provided attaining a
recoverable state does not generate a machine check.
SRESET is an effectively edge-sensitive signal that can be asserted and deasserted asynchronously,
provided the minimum pulse width specified in the hardware specifications is met. Asserting
SRESET causes Gekko to take a system reset exception. This exception modifies the MSR, SRR0,
and SRR1, as described in thePowerPC Microprocessor Family: The Programming Environments
manual. Unlike hard reset, soft reset does not directly affect the states of output signals. Attempts
to use SRESET during a hard reset sequence or while the JTAG logic is non-idle cause
unpredictable results (see Section 7.2.9.5.2, “Soft Reset (SRESET)—Input" on Page 7-17 for more
information on soft reset).
SRESET can be asserted duringHRESET assertion (see Figure 4-4). In all three cases shown in
Figure 4-4, theSRESET assertion and deassertion have no effect on the operation or state of the
machine.SRESET asserted coincident to, or after the assertion of,HRESET will also have no
effect on the operation or state of the machine.

Table 4-7. System Reset Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1–4 Cleared
5–9 Loaded with equivalent MSR bits
10–15 Cleared
16–31 Loaded with equivalent MSR bits
Note that if the processor state is corrupted to the extent that execution cannot resume reliably,
MSR[RI] (SRR1[30]) is cleared.

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
PM 0
RI 0
LE Set to value of ILE

IBM Confidential

Page 4-14 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Figure 4-4. SRESET Asserted During HRESET

4.5.1.2 Hard Reset
A hard reset is initiated by assertingHRESET. Hard reset is used primarily for power-on reset (POR)
(in which caseTRST must also be asserted), but it can also be used to restart a running processor. The
HRESET signal must be asserted during power up and must remain asserted for a period that allows
the PLL to achieve lock and the internal logic to be reset. This period is specified in the hardware
specifications. Gekko tri-states all IO drivers within five clocks ofHRESET assertion. Gekko’s
internal state after the hard reset interval is defined in Table 4-8. IfHRESET is asserted for less than
this amount of time, the results are not predictable. IfHRESET is asserted during normal operation,
all operations cease, and the machine state is lost (see Section 7.2.9.5.1, “Hard Reset
(HRESET)—Input" on Page 7-17 for more information on a hard reset).
The hard reset exception is a nonrecoverable, nonmaskable asynchronous exception. WhenHRESET
is asserted or at power-on reset (POR), Gekko immediately branches to 0xFFF0_0100 without
attempting to reach a recoverable state. A hard reset has the highest priority of any exception. It is
always nonrecoverable. Table 4-8 shows the state of the machine just before it fetches the first
instruction of the system reset handler after a hard reset. In Table 4-8, the term “Unknown” means
that the content may have been disordered. These facilities must be properly initialized before use.
The FPRs, BATs, and TLBs may have been disordered. To initialize the BATs, first set them all to
zero, then to the correct values before any address translation occurs.

Table 4-8. Settings Caused by Hard Reset

Register Setting Register Setting

GPRs Unknown PVR see the PowerPCGekko
Microprocessor Data Sheet

FPRs Unknown HID0 00000000

FPSCR 00000000 HID1 00000000

CR All 0s HID2 00000000

SRs Unknown GQRn 00000000

MSR 00000040 (only IP set) WPAR 00000000

XER 00000000 IABR All 0s (break point disabled)

HRESET
SRESET

HRESET
SRESET

HRESET
SRESET

OK

OK

OK

IBM Confidential

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-15

The following is also true after a hard reset operation:
• External checkstops are enabled.

• The on-chip test interface has given control of the I/Os to the rest of the chip for functional
use.

• Since the reset exception has data and instruction translation disabled (MSR[DR] and
MSR[IR] both cleared), the chip operates in direct address translation mode (referred to as
the real addressing mode in the architecture specification).

• Time from HRESET deassertion until Gekko asserts the firstTS (bus parked on Gekko) or
BG is 8 to 12 bus clocks (SYSCLK).

TBU 00000000 DSISR 00000000

TBL 00000000 DAR 00000000

LR 00000000 DEC FFFFFFFF

CTR 00000000 DMAU 00000000

SDR1 00000000 DMAL 00000000

SRR0 00000000 TLBs Unknown

SRR1 00000000 Reservation
Address

Unknown (reservation flag
-cleared)

SPRGs 00000000 BATs Unknown

Tag directory,
Icache, and
Dcache

All entries are marked invalid,
all LRU bits are set to 0, and
caches are disabled.

Cache, Icache,
and Dcache

All blocks are unchanged from
before HRESET.

DABR Breakpoint is disabled.
Address is unknown.

L2CR 00000000

MMCRn 00000000

THRMn 00000000

UMMCRn 00000000

UPMCn 00000000

USIA 00000000

XER 00000000

PMCn Unknown

ICTC 00000000

Table 4-8. Settings Caused by Hard Reset (Continued)

Register Setting Register Setting

IBM Confidential

Page 4-16 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

4.5.2 Machine Check Exception (0x00200)
Gekko implements the machine check exception as defined in the PowerPC architecture (OEA). It
conditionally initiates a machine check exception after an address or data parity error occurred on the
bus or in either the L1 or L2 cache, after receiving a qualified transfer error acknowledge (TEA)
indication on Gekko bus, after DMA look-up missed the locked cache, after adcbz_lhit in the normal
cache, or after the machine check interrupt (MCP) signal had been asserted. As defined in the OEA,
the exception is not taken if MSR[ME] is cleared, in which case the processor enters checkstop state.
Certain machine check conditions can be enabled and disabled using HID0 bits, as described in
Table 4-9.

A TEA indication on the bus can result from any load or store operation initiated by the processor. In
general,TEA is expected to be used by a memory controller to indicate that a memory parity error or
an uncorrectable memory ECC error has occurred. Note that the resulting machine check exception
is imprecise and unordered with respect to the instruction that originated the bus operation.
If MSR[ME] and the appropriate HID0 bits are set, the exception is recognized and handled;
otherwise, the processor generates an internal checkstop condition. When the exception is
recognized, all incomplete stores are discarded. The bus protocol operates normally.
A machine check exception may result from referencing a nonexistent physical address, either
directly (with MSR[DR] = 0) or through an invalid translation. If adcbz instruction introduces a
block into the cache associated with a nonexistent physical address, a machine check exception can
be delayed until an attempt is made to store that block to main memory. Not all PowerPC processors
provide the same level of error checking. Checkstop sources are implementation-dependent.

Table 4-9. HID0 Machine Check Enable Bits

Bit Name Function

0 EMCP Enable MCP. The primary purpose of this bit is to mask out further machine check exceptions caused
by assertion of MCP, similar to how MSR[EE] can mask external interrupts.
0 Masks MCP. Asserting MCP does not generate a machine check exception or a checkstop.
1 Asserting MCP causes a checkstop if MSR[ME] = 0 or a machine check exception if MSR[ME] = 1.

1 DBP Enable/disable 60x bus address and data parity generation.
0 If address or data parity is not used by the system and the respective parity checking is disabled

(HID0[EBA] or HID0[EBD] = 0), input receivers for those signals are disabled, do not require pull-up
resistors, and therefore should be left unconnected. If all parity generation is disabled, all parity
checking should also be disabled and parity signals need not be connected.

1 Parity generation is enabled.

2 EBA Enable/disable 60x bus address parity checking.
0 Prevents address parity checking.
1 Allows a address parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if

MSR[ME] = 1.
EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

3 EBD Enable 60x bus data parity checking
0 Parity checking is disabled.
1 Allows a data parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if

MSR[ME] = 1.
EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

15 NHR Not hard reset (software use only)
0 A hard reset occurred if software had previously set this bit
1 A hard reset has not occurred.

IBM Confidential

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-17

Machine check exceptions are enabled when MSR[ME] = 1; this is described in the next section..
If MSR[ME] = 0 and a machine check occurs, the processor enters the checkstop state.
Checkstop state is described in Section 4.5.2.2, “Checkstop State (MSR[ME] = 0)" on Page 4-17.

4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
Machine check exceptions are enabled when MSR[ME] = 1. When a machine check exception is
taken, registers are updated as shown in Table 4-10.

The machine check exception is usually unrecoverable in the sense that execution cannot resume
in the context that existed before the exception. If the condition that caused the machine check does
not otherwise prevent continued execution, MSR[ME] is set to allow the processor to continue
execution at the machine check exception vector address. Typically, earlier processes cannot
resume; however, operating systems can use the machine check exception handler to try to identify
and log the cause of the machine check condition.
When a machine check exception is taken, instruction fetching resumes at offset 0x00200 from the
physical base address indicated by MSR[IP].

4.5.2.2 Checkstop State (MSR[ME] = 0)
If MSR[ME] = 0 and a machine check occurs, the processor enters the checkstop state. In addition,
the assertion ofCKSTP_IN to Gekko causes checkstop.
When a processor is in checkstop state, instruction processing is suspended and generally cannot
resume without the processor being reset. The contents of all latches are frozen within two cycles
upon entering checkstop state.

4.5.3 DSI Exception (0x00300)
A DSI exception occurs when no higher priority exception exists and an error condition related to
a data memory access occurs. The DSI exception is implemented as it is defined in the PowerPC

Table 4-10. Machine Check Exception—Register Settings

Register Setting Description

SRR0 On a best-effort basis Gekko can set this to an EA of some instruction that was executing or about to be
executing when the machine check condition occurred.

SRR1 0–9 Cleared
10 Set when a DMA or locked cache error happens.
11 Set when an L2 data cache double bit error is detected, otherwise zero
12 Set when MCP signal is asserted, otherwise zero
13 Set when TEA signal is asserted, otherwise zero
14 Set when a data bus parity error is detected, otherwise zero
15 Set when an address bus parity error is detected, otherwise zero
16–31 MSR[16–31]

POW 0
ILE —
EE 0
PR 0

FP 0
ME 0
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
PM 0
RI 0
LE Set to value of ILE

To handle another machine check exception, the exception handler should set MSR[ME] as soon
as it is practical after a machine check exception is taken. Otherwise, subsequent machine check
exceptions cause the processor to enter the checkstop state.

IBM Confidential

Page 4-18 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

architecture (OEA). In case of a TLB miss for a load, store, or cache operation, a DSI exception is
taken if the resulting hardware table search causes a page fault.

On Gekko, a DSI exception is taken when a load or store is attempted to a direct-store segment
(SR[T] = 1). In Gekko, a floating-point load or store to a direct-store segment causes a DSI exception
rather than an alignment exception, as specified by the PowerPC architecture.

Gekko also implements the data address breakpoint facility, which is defined as optional in the
PowerPC architecture and is supported by the optional data address breakpoint register (DABR).
Although the architecture does not strictly prescribe how this facility must be implemented, Gekko
follows the recommendations provided by the architecture and described in the Chapter 2,
"Programming Model" in this manual and Chapter 6, “Exceptions” in thePowerPC Microprocessor
Family: The Programming Environments manual.

4.5.4 ISI Exception (0x00400)
An ISI exception occurs when no higher priority exception exists and an attempt to fetch the next
instruction fails. This exception is implemented as it is defined by the PowerPC architecture (OEA),
and is taken for the following conditions:

• The effective address cannot be translated.

• The fetch access is to a no-execute segment (SR[N] = 1).

• The fetch access is to guarded storage and MSR[IR] = 1.

• The fetch access is to a segment for which SR[T] is set.

• The fetch access violates memory protection.
When an ISI exception is taken, instruction fetching resumes at offset 0x00400 from the physical base
address indicated by MSR[IP].

4.5.5 External Interrupt Exception (0x00500)
An external interrupt is signaled to the processor by the assertion of the external interrupt signal
(INT). The INT signal is expected to remain asserted until Gekko takes the external interrupt
exception. IfINT is negated early, recognition of the interrupt request is not guaranteed. After Gekko
begins execution of the external interrupt handler, the system can safely negate theINT. When Gekko
detects assertion ofINT, it stops dispatching and waits for all pending instructions to complete. This
allows any instructions in progress that need to take an exception to do so before the external interrupt
is taken. After all instructions have vacated the completion buffer, Gekko takes the external interrupt
exception as defined in the PowerPC architecture (OEA).
An external interrupt may be delayed by other higher priority exceptions or if MSR[EE] is cleared
when the exception occurs. Register settings for this exception are described in Chapter 6,
“Exceptions” in thePowerPC Microprocessor Family: The Programming Environments manual.
When an external interrupt exception is taken, instruction fetching resumes at offset 0x00500 from
the physical base address indicated by MSR[IP].

IBM Confidential

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-19

4.5.6 Alignment Exception (0x00600)
Gekko implements the alignment exception as defined by the PowerPC architecture (OEA). An
alignment exception is initiated when any of the following occurs:

• The operand of a floating-point load or store is not word-aligned.

• The operand oflmw, stmw, lwarx , orstwcx. is not word-aligned.

• The operand ofdcbz or dcbz_l is in a page which is write-through or cache-inhibited.

• An attempt is made to executedcbz or dcbz_lwhen the data cache is disabled.

• An eciwx or ecowx is not word-aligned.

• A multiple or string access is attempted with MSR[LE] set.
NOTE: In Gekko, the paired-single quantization load or store will generate an alignment

exception when the corresponding GQRn[LD_TYPE] or GQRn[ST_TYPE] are 0 and
will not generate an alignment exception when the corresponding GQRn[LD_TYPE]
or GQRn[ST_TYPE] are 4, 5, 6 or 7. Also, a floating-point load or store to a direct-store
segment causes a DSI exception rather than an alignment exception, as specified by the
PowerPC architecture. For more information, see Section 4.5.3, “DSI Exception
(0x00300)" on Page 4-17.

4.5.7 Program Exception (0x00700)
Gekko implements the program exception as it is defined by the PowerPC architecture (OEA). A
program exception occurs when no higher priority exception exists and one or more of the
exception conditions defined in the OEA occur.

Gekko invokes the system illegal instruction program exception when it detects any instruction
from the illegal instruction class. Gekko fully decodes the SPR field of the instruction. If an
undefined SPR is specified, a program exception is taken.
The UISA definesmtspr andmfspr with the record bit (Rc) set as causing a program exception or
giving a boundedly-undefined result. In Gekko, the appropriate condition register (CR) should be
treated as undefined. Likewise, the PowerPC architecture states that the Floating Compared
Unordered (fcmpu) or Floating Compared Ordered (fcmpo) instruction with the record bit set can
either cause a program exception or provide a boundedly-undefined result. In Gekko, an the BF
field in an instruction encoding for these cases is considered undefined.
Gekko does not support either of the two floating-point imprecise modes supported by the
PowerPC architecture. Unless exceptions are disabled (MSR[FE0] = MSR[FE1] = 0), all
floating-point exceptions are treated as precise.
When a program exception is taken, instruction fetching resumes at offset 0x00700 from the
physical base address indicated by MSR[IP]. Chapter 6, “Exceptions” in thePowerPC
Microprocessor Family: The Programming Environmentsmanual describes register settings for
this exception.

4.5.8 Floating-Point Unavailable Exception (0x00800)
The floating-point unavailable exception is implemented as defined in the PowerPC architecture.
A floating-point unavailable exception occurs when no higher priority exception exists, an attempt
is made to execute a floating-point instruction (including floating-point load, store, or move
instructions), and the floating-point available bit in the MSR is disabled, (MSR[FP] = 0). Register
settings for this exception are described in Chapter 6, “Exceptions” in thePowerPC
Microprocessor Family: The Programming Environments manual.
When a floating-point unavailable exception is taken, instruction fetching resumes at offset
0x00800 from the physical base address indicated by MSR[IP].

IBM Confidential

Page 4-20 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

4.5.9 Decrementer Exception (0x00900)
The decrementer exception is implemented in Gekko as it is defined by the PowerPC architecture.
The decrementer exception occurs when no higher priority exception exists, a decrementer exception
condition occurs (for example, the decrementer register has completed decrementing), and MSR[EE]
= 1. In Gekko, the decrementer register is decremented at one fourth the bus clock rate. Register
settings for this exception are described in Chapter 6, “Exceptions” in thePowerPC Microprocessor
Family: The Programming Environments manual.
When a decrementer exception is taken, instruction fetching resumes at offset 0x00900 from the
physical base address indicated by MSR[IP].

4.5.10 System Call Exception (0x00C00)
A system call exception occurs when a System Call (sc) instruction is executed. In Gekko, the system
call exception is implemented as it is defined in the PowerPC architecture. Register settings for this
exception are described in Chapter 6, “Exceptions” in thePowerPC Microprocessor Family: The
Programming Environments manual.
When a system call exception is taken, instruction fetching resumes at offset 0x00C00 from the
physical base address indicated by MSR[IP].

4.5.11 Trace Exception (0x00D00)
The trace exception is taken if MSR[SE] = 1 or if MSR[BE] = 1 and the currently completing
instruction is a branch. Each instruction considered during trace mode completes before a trace
exception is taken.
Implementation Note—Gekko processor diverges from the PowerPC architecture in that it does not
take trace exceptions on theisync instruction.
When a trace exception is taken, instruction fetching resumes as offset 0x00D00 from the base
address indicated by MSR[IP].

4.5.12 Floating-Point Assist Exception (0x00E00)
The optional floating-point assist exception defined by the PowerPC architecture is not implemented
in Gekko.

4.5.13 Performance Monitor Interrupt (0x00F00)
Gekko microprocessor provides a performance monitor facility to monitor and count predefined
events such as processor clocks, misses in either the instruction cache or the data cache, instructions
dispatched to a particular execution unit, mispredicted branches, and other occurrences. The count of
such events can be used to trigger the performance monitor exception. The performance monitor
facility is not defined by the PowerPC architecture.
The performance monitor can be used for the following:

• To increase system performance with efficient software, especially in a multiprocessing
system. Memory hierarchy behavior must be monitored and studied to develop algorithms that
schedule tasks (and perhaps partition them) and that structure and distribute data optimally.

• To help system developers bring up and debug their systems.
The performance monitor uses the following SPRs:

• The performance monitor counter registers (PMC1–PMC4) are used to record the number of
times a certain event has occurred. UPMC1–UPMC4 provide user-level read access to these
registers.

• The monitor mode control registers (MMCR0–MMCR1) are used to enable various
performance monitor interrupt functions. UMMCR0–UMMCR1 provide user-level read
access to these registers.

IBM Confidential

Chapter 4. Exceptions IBM Confidential 5/25/00 Page 4-21

• The sampled instruction address register (SIA) contains the effective address of an
instruction executing at or around the time that the processor signals the performance
monitor interrupt condition. The USIA register provides user-level read access to the SIA.

Table 4-11 lists register settings when a performance monitor interrupt exception is taken.

As with other PowerPC exceptions, the performance monitor interrupt follows the normal
PowerPC exception model with a defined exception vector offset (0x00F00). The priority of the
performance monitor interrupt lies between the external interrupt and the decrementer interrupt
(see Table 4-3). The contents of the SIA are described in 2.1.2.4, “Hardware
Implementation-Dependent Register 2.” The performance monitor is described in Chapter 11,
"Performance Monitor" in this manual.

4.5.14 Instruction Address Breakpoint Exception (0x01300)
An instruction address breakpoint interrupt occurs when the following conditions are met:

• The instruction breakpoint address IABR[0–29] matches EA[0–29] of the next instruction
to complete in program order. The instruction that triggers the instruction address
breakpoint exception is not executed before the exception handler is invoked.

• The translation enable bit (IABR[TE]) matches MSR[IR].

• The breakpoint enable bit (IABR[BE]) is set. The address match is also reported to the
JTAG/COP block, which may subsequently generate a soft or hard reset. The instruction
tagged with the match does not complete before the breakpoint exception is taken.

Table 4-12 lists register settings when an instruction address breakpoint exception is taken.

Table 4-11. Performance Monitor Interrupt Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1–4 Cleared
5–9 Loaded with equivalent MSR bits
10–15 Cleared
16–31 Loaded with equivalent MSR bits

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
PM 0
RI 0
LE Set to value of ILE

Table 4-12. Instruction Address Breakpoint Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1–4 Cleared
5–9 Loaded with equivalent MSR bits
10–15 Cleared
16–31 Loaded with equivalent MSR bits

IBM Confidential

Page 4-22 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Gekko requires that anmtspr to the IABR be followed by a context-synchronizing instruction. Gekko
cannot generate a breakpoint response for that context-synchronizing instruction if the breakpoint is
enabled by themtspr(IABR) immediately preceding it. Gekko also cannot block a breakpoint
response on the context-synchronizing instruction if the breakpoint was disabled by the
mtspr(IABR) instruction immediately preceding it. The format of the IABR register is shown in
2.1.2.1.”
When an instruction address breakpoint exception is taken, instruction fetching resumes as offset
0x01300 from the base address indicated by MSR[IP].

4.5.15 Thermal Management Interrupt Exception (0x01700)
A thermal management interrupt is generated when the junction temperature crosses a threshold
programmed in either THRM1 or THRM2. The exception is enabled by the TIE bit of either THRM1
or THRM2, and can be masked by setting MSR[EE].
Table 4-13 lists register settings when a thermal management interrupt exception is taken.

The thermal management interrupt is similar to the system management and external interrupts.
Gekko requires the next instruction in program order to complete or take an exception, blocks
completion of any following instructions, and allows the completed store queue to drain. Any
exceptions encountered in this process are taken first and the thermal management interrupt exception
is delayed until a recoverable halt is achieved, at which point Gekko saves the machine state, as shown
in Table 4-13. When a thermal management interrupt exception is taken, instruction fetching resumes
as offset 0x01700 from the base address indicated by MSR[IP].
Chapter 10, "Power and Thermal Management" in this manual gives the details about thermal
management.

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
PM 0
RI 0
LE Set to value of ILE

Table 4-13. Thermal Management Interrupt Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1–4 Cleared
5–9 Loaded with equivalent MSR bits
10–15 Cleared
16–31 Loaded with equivalent MSR bits

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
PM 0
RI 0
LE Set to value of ILE

Table 4-12. Instruction Address Breakpoint Exception—Register Settings (Contin-

IBM Confidential

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-1

Chapter 5 Memory Management
50
50

This chapter describes Gekko microprocessor’s implementation of the memory management unit
(MMU) specifications provided by the operating environment architecture (OEA) for PowerPC
processors. The primary function of the MMU in a PowerPC processor is the translation of logical
(effective) addresses to physical addresses (referred to as real addresses in the architecture
specification) for memory accesses and I/O accesses (I/O accesses are assumed to be
memory-mapped). In addition, the MMU provides access protection on a segment, block, or page
basis. This chapter describes the specific hardware used to implement the MMU model of the OEA
in Gekko. Refer to Chapter 7, “Memory Management,” in thePowerPC Microprocessor Family:
The Programming Environmentsmanual for a complete description of the conceptual model. Note
that Gekko does not implement the optional direct-store facility and it is not likely to be supported
in future devices.
Two general types of memory accesses generated by PowerPC processors require address
translation—instruction accesses and data accesses generated by load and store instructions.
Generally, the address translation mechanism is defined in terms of the segment descriptors and
page tables PowerPC processors use to locate the effective-to-physical address mapping for
memory accesses. The segment information translates the effective address to an interim virtual
address, and the page table information translates the interim virtual address to a physical address.
The segment descriptors, used to generate the interim virtual addresses, are stored as on-chip
segment registers on 32-bit implementations (such as Gekko). In addition, two translation
lookaside buffers (TLBs) are implemented on Gekko to keep recently-used page address
translations on-chip. Although the PowerPC OEA describes one MMU (conceptually), Gekko
hardware maintains separate TLBs and table search resources for instruction and data accesses that
can be performed independently (and simultaneously). Therefore, Gekko is described as having
two MMUs, one for instruction accesses (IMMU) and one for data accesses (DMMU).
The block address translation (BAT) mechanism is a software-controlled array that stores the
available block address translations on-chip. BAT array entries are implemented as pairs of BAT
registers that are accessible as supervisor special-purpose registers (SPRs). There are separate
instruction and data BAT mechanisms, and in Gekko, they reside in the instruction and data MMUs,
respectively.
The MMUs, together with the exception processing mechanism, provide the necessary support for
the operating system to implement a paged virtual memory environment and for enforcing
protection of designated memory areas.
Exception processing is described in Chapter 4, "Exceptions" specifically, Section 4.3 on Page 4-7
describes the MSR, which controls some of the critical functionality of the MMUs.

5.1 MMU Overview
Gekko implements the memory management specification of the PowerPC OEA for 32-bit
implementations. Thus, it provides 4 Gbytes of effective address space accessible to supervisor and
user programs, with a 4-Kbyte page size and 256-Mbyte segment size. In addition, the MMUs of
32-bit PowerPC processors use an interim virtual address (52 bits) and hashed page tables in the
generation of 32-bit physical addresses. PowerPC processors also have a BAT mechanism for
mapping large blocks of memory. Block sizes range from 128 Kbyte to 256 Mbyte and are
software-programmable.

IBM Confidential

Page 5-2 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Basic features of Gekko MMU implementation defined by the OEA are as follows:

• Support for real addressing mode—Effective-to-physical address translation can be disabled
separately for data and instruction accesses.

• Block address translation—Each of the BAT array entries (four IBAT entries and four DBAT
entries) provides a mechanism for translating blocks as large as 256 Mbytes from the 32-bit
effective address space into the physical memory space. This can be used for translating large
address ranges whose mappings do not change frequently.

• Segmented address translation—The 32-bit effective address is extended to a 52-bit
virtual address by substituting 24 bits of upper address bits from the segment register,
for the 4 upper bits of the EA, which are used as an index into the segment register file.
This 52-bit virtual address space is divided into 4-Kbyte pages, each of which can be
mapped to a physical page.

Gekko also provides the following features that are not required by the PowerPC architecture:

• Separate translation lookaside buffers (TLBs)—The 128-entry, two-way set-associative
ITLBs and DTLBs keep recently-used page address translations on-chip.

• Table search operations performed in hardware—The 52-bit virtual address is formed and the
MMU attempts to fetch the PTE, which contains the physical address, from the appropriate
TLB on-chip. If the translation is not found in a TLB (that is, a TLB miss occurs), the
hardware performs a table search operation (using a hashing function) to search for the PTE.

• TLB invalidation—Gekko implements the optional TLB Invalidate Entry (tlbie) and
TLB Synchronize (tlbsync) instructions, which can be used to invalidate TLB entries.
For more information on thetlbie andtlbsync instructions, see 5.4.3.2.”

Table 5-1 summarizes Gekko MMU features, including those defined by the PowerPC architecture
(OEA) for 32-bit processors and those specific to Gekko.

Table 5-1. MMU Feature Summary

Feature Category
Architecturally Defined/

Gekko-Specific
Feature

Address ranges Architecturally defined 232 bytes of effective address

252 bytes of virtual address

232 bytes of physical address

Page size Architecturally defined 4 Kbytes

Segment size Architecturally defined 256 Mbytes

Block address
translation

Architecturally defined Range of 128 Kbyte–256 Mbyte sizes

Implemented with IBAT and DBAT registers in BAT array

Memory protection Architecturally defined Segments selectable as no-execute

Pages selectable as user/supervisor and read-only or guarded

Blocks selectable as user/supervisor and read-only or guarded

Page history Architecturally defined Referenced and changed bits defined and maintained

IBM Confidential

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-3

5.1.1 Memory Addressing
A program references memory using the effective (logical) address computed by the processor
when it executes a load, store, branch, or cache instruction, and when it fetches the next instruction.
The effective address is translated to a physical address according to the procedures described in
Chapter 7, “Memory Management” in thePowerPC Microprocessor Family: The Programming
Environmentsmanual, augmented with information in this chapter. The memory subsystem uses
the physical address for the access.
For a complete discussion of effective address calculation, see Section 2.3.2.3 on Page 2-35.

5.1.2 MMU Organization
Figure 5-1 shows the conceptual organization of a PowerPC MMU in a 32-bit implementation;
note that it does not describe the specific hardware used to implement the memory management
function for a particular processor. Processors may optionally implement on-chip TLBs, hardware
support for the automatic search of the page tables for PTEs, and other hardware features (invisible
to the system software) not shown.
Gekko maintains two on-chip TLBs with the following characteristics:

• 128 entries, two-way set associative (64 x 2), LRU replacement

• Data TLB supports the DMMU; instruction TLB supports the IMMU

• Hardware TLB update

• Hardware update of referenced (R) and changed (C) bits in the translation table

In the event of a TLB miss, the hardware attempts to load the TLB based on the results of a
translation table search operation.

Figure 5-2 and Figure 5-3 show the conceptual organization of Gekko’s instruction and data
MMUs, respectively. The instruction addresses shown in Figure 5-2 are generated by the processor
for sequential instruction fetches and addresses that correspond to a change of program flow. Data
addresses shown in Figure 5-3 are generated by load, store, and cache instructions.
As shown in the figures, after an address is generated, the high-order bits of the effective address,
EA[0–19] (or a smaller set of address bits, EA[0–n], in the cases of blocks), are translated into
physical address bits PA[0–19]. The low-order address bits, A[20–31], are untranslated and are

Page address
translation

Architecturally defined Translations stored as PTEs in hashed page tables in memory

Page table size determined by mask in SDR1 register

TLBs Architecturally defined Instructions for maintaining TLBs (tlbie and tlbsync
instructions in Gekko)

Gekko-specific 128-entry, two-way set associative ITLB
128-entry, two-way set associative DTLB
LRU replacement algorithm

Segment descriptors Architecturally defined Stored as segment registers on-chip (two identical copies
maintained)

Page table search
support

Gekko-specific Gekko performs the table search operation in hardware.

Table 5-1. MMU Feature Summary (Continued)

Feature Category
Architecturally Defined/

Gekko-Specific
Feature

IBM Confidential

Page 5-4 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

therefore identical for both effective and physical addresses. After translating the address, the MMUs
pass the resulting 32-bit physical address to the memory subsystem. The MMUs record whether the
translation is for an instruction or data access, whether the processor is in user or supervisor mode
and, for data accesses, whether the access is a load or a store operation.
The MMUs use this information to appropriately direct the address translation and to enforce the
protection hierarchy programmed by the operating system. Section 4.3 on Page 4-7 describes the
MSR, which controls some of the critical functionality of the MMUs.
The figures show how address bits A[20–26] index into the on-chip instruction and data caches to
select a cache set. The remaining physical address bits are then compared with the tag fields
(comprised of bits PA[0–19]) of the two selected cache blocks to determine if a cache hit has
occurred. In the case of a cache miss on Gekko, the instruction or data access is then forwarded to the
L2 tags to check for an L2 cache hit. In case of a miss the access is forwarded to the bus interface unit
which initiates an external memory access.

IBM Confidential

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-5

Figure 5-1. MMU Conceptual Block Diagram

Optional

Instruction
Accesses

Data
Accesses

EA[0–19]

Segment Registers

•
•
•

On-Chip
TLBs

(Optional)

Page Table
Search Logic

(Optional)

SDR1 SPR 25

PA[0–14]

X

PA[0–19]

PA[15–19]

PA[0–31]

A[20–31]

IBAT0U
IBAT0L

IBAT3U
IBAT3L

•
•

DBAT0U
DBAT0L

DBAT3U
DBAT3L

•
•

EA[0–14]

EA[15–19]

EA[0–14]

EA[15–19]

A[20–31]

BAT
Hit

Upper 24-Bits
of Virtual Address

0

15

MMU
(32-Bit)

EA[0–3]

EA[4–19]

EA[0–19]

X

X

X

IBM Confidential

Page 5-6 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Figure 5-2. PowerPC Gekko Microprocessor IMMU Block Diagram

BPU

ITLB

IBAT Array

0

63

127

Tag

PA[0–19]

I Cache

Select

I Cache

Compare

CompareCompare
0

7

Instruction
Unit A[20–31]

Hit/Miss

Segment Registers

•
•
•

0

15

IBAT0U
IBAT0L

IBAT3U
IBAT3L

•
•

X

PA[0–31]

SDR1 SPR25

EA[0–14]

EA[0–3]

Select

EA[4–19]

EA[0–19]

Page Table
Search Logic

EA[0–19]

A[20–26]

PA[0–19]

IMMU

7

0

IBM Confidential

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-7

Figure 5-3. Gekko Microprocessor DMMU Block Diagram

5.1.3 Address Translation Mechanisms
PowerPC processors support the following three types of address translation:

• Page address translation—translates the page frame address for a 4-Kbyte page size

• Block address translation—translates the block number for blocks that range in size from
128 Kbytes to 256 Mbytes.

• Real addressing mode address translation—when address translation is disabled, the
physical address is identical to the effective address.

DTLB

DBAT Array

0

63

127

Tag

PA[0–19]

D Cache

Select

D Cache

Compare

CompareCompare
0

7

A[20–31]

Hit/Miss

Segment Registers

•
•
•

0

15

DBAT0U
DBAT0L

DBAT3U
DBAT3L

•
•

X

PA[0–31]

SDR1 SPR 25

EA[0–14]

EA[0–3]

Select

EA[4–19]

EA[0–19]

Page Table
Search Logic

EA[0–19]

A[20–26]

PA[0–19]

DMMU

Load/Store
Unit

7

0

IBM Confidential

Page 5-8 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Figure 5-4 shows the three address translation mechanisms provided by the MMUs. The segment
descriptors shown in the figure control the page address translation mechanism. When an access uses
page address translation, the appropriate segment descriptor is required. In 32-bit implementations,
the appropriate segment descriptor is selected from the 16 on-chip segment registers by the four
highest-order effective address bits.
A control bit in the corresponding segment descriptor then determines if the access is to memory
(memory-mapped) or to the direct-store interface space. Note that the direct-store interface was
present in the architecture only for compatibility with existing I/O devices that used this interface.
However, it is being removed from the architecture, and Gekko does not support it. When an access
is determined to be to the direct-store interface space, Gekko takes a DSI exception if it is a data
access (see Section 4.5.3 on Page 4-17), and takes an ISI exception if it is an instruction access (see
Section 4.5.4 on Page 4-18).
For memory accesses translated by a segment descriptor, the interim virtual address is generated
using the information in the segment descriptor. Page address translation corresponds to the
conversion of this virtual address into the 32-bit physical address used by the memory subsystem. In
most cases, the physical address for the page resides in an on-chip TLB and is available for quick
access. However, if the page address translation misses in the on-chip TLB, the MMU causes a search
of the page tables in memory (using the virtual address information and a hashing function) to locate
the required physical address.
Because blocks are larger than pages, there are fewer upper-order effective address bits to be
translated into physical address bits (more low-order address bits (at least 17) are untranslated to form
the offset into a block) for block address translation. Also, instead of segment descriptors and a TLB,
block address translations use the on-chip BAT registers as a BAT array. If an effective address
matches the corresponding field of a BAT register, the information in the BAT register is used to
generate the physical address; in this case, the results of the page translation (occurring in parallel)
are ignored.

IBM Confidential

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-9

Figure 5-4. Address Translation Types

When the processor generates an access, and the corresponding address translation enable bit in
MSR is cleared, the resulting physical address is identical to the effective address and all other
translation mechanisms are ignored. Instruction address translation and data address translation are
enabled by setting MSR[IR] and MSR[DR], respectively.

(T = 1)

0 31
Physical Address

0 31

Physical Address

0 31

Physical Address

(T = 0)

0 31

Effective Address

0 51

Virtual Address

Segment Descriptor
Located

Match with BAT
Registers

Look Up in
Page Table

Address Translation Dis-

Page Address
Translation

Direct-Store Interface
Translation

(MSR[IR] = 0, or MSR[DR] = 0)

Real Addressing Mode
Effective Address = Physical Address

(See Section 5.2 on Page 5-17)

Block Address
Translation

(See Section 5.3 on Page 5-18)

DSI/ISI Exception

IBM Confidential

Page 5-10 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

5.1.4 Memory Protection Facilities
In addition to the translation of effective addresses to physical addresses, the MMUs provide access
protection of supervisor areas from user access and can designate areas of memory as read-only as
well as no-execute or guarded. Table 5-2 shows the protection options supported by the MMUs for
pages.

The no-execute option provided in the segment register lets the operating system program determine
whether instructions can be fetched from an area of memory. The remaining options are enforced
based on a combination of information in the segment descriptor and the page table entry. Thus, the
supervisor-only option allows only read and write operations generated while the processor is
operating in supervisor mode (MSR[PR] = 0) to access the page. User accesses that map into a
supervisor-only page cause an exception.
Finally, a facility in the VEA and OEA allows pages or blocks to be designated as guarded, preventing
out-of-order accesses that may cause undesired side effects. For example, areas of the memory map
used to control I/O devices can be marked as guarded so accesses do not occur unless they are
explicitly required by the program.
For more information on memory protection, see “Memory Protection Facilities,” in Chapter 7,
“Memory Management,” in thePowerPC Microprocessor Family: The Programming Environments
manual.

Table 5-2. Access Protection Options for Pages

Option
User Read

User
Write

Supervisor Read
Supervisor

Write
I-Fetch Data I-Fetch Data

Supervisor-only — — —

Supervisor-only-no-execute — — — —

Supervisor-write-only —

Supervisor-write-only-no-execute — — —

Both (user/supervisor)

Both (user-/supervisor) no-execute — —

Both (user-/supervisor) read-only — —

Both (user/supervisor)
read-only-no-execute

— — — —

 Access permitted
 — Protection violation

IBM Confidential

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-11

5.1.5 Page History Information
The MMUs of PowerPC processors also define referenced (R) and changed (C) bits in the page
address translation mechanism that can be used as history information relevant to the page. The
operating system can use these bits to determine which areas of memory to write back to disk when
new pages must be allocated in main memory. While these bits are initially programmed by the
operating system into the page table, the architecture specifies that they can be maintained either
by the processor hardware (automatically) or by some software-assist mechanism.
Implementation Note—When loading the TLB, Gekko checks the state of the changed and
referenced bits for the matched PTE. If the referenced bit is not set and the table search operation
is initially caused by a load operation or by an instruction fetch, Gekko automatically sets the
referenced bit in the translation table. Similarly, if the table search operation is caused by a store
operation and either the referenced bit or the changed bit is not set, the hardware automatically sets
both bits in the translation table. In addition, when the address translation of a store operation hits
in the DTLB, Gekko checks the state of the changed bit. If the bit is not already set, the hardware
automatically updates the DTLB and the translation table in memory to set the changed bit. For
more information, see Section 5.4.1 on Page 5-18.

5.1.6 General Flow of MMU Address Translation
The following sections describe the general flow used by PowerPC processors to translate effective
addresses to virtual and then physical addresses.

5.1.6.1 Real Addressing Mode and Block Address Translation Selection
When an instruction or data access is generated and the corresponding instruction or data
translation is disabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing mode is used (physical
address equals effective address) and the access continues to the memory subsystem as described
in Section 5.2 on Page 5-17.
Figure 5-5 shows the flow the MMUs use in determining whether to select real addressing mode,
block address translation, or the segment descriptor to select page address translation.

IBM Confidential

Page 5-12 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Figure 5-5. General Flow of Address Translation (Real Addressing Mode and Block)

NOTE: If the BAT array search results in a hit, the access is qualified with the appropriate
protection bits. If the access violates the protection mechanism, an exception (either ISI
or DSI) is generated.

5.1.6.2 Page Address Translation Selection
If address translation is enabled and the effective address information does not match a BAT array
entry, the segment descriptor must be located. When the segment descriptor is located, the T bit in the
segment descriptor selects whether the translation is to a page or to a direct-store segment as shown
in Figure 5-6 on Page 5-13.
For 32-bit implementations, the segment descriptor for an access is contained in one of 16 on-chip
segment registers; effective address bits EA[0–3] select one of the 16 segment registers.
Note that Gekko does not implement the direct-store interface, and accesses to these segments cause
a DSI or ISI exception. In addition, Figure 5-6 also shows the way in which the no-execute protection
is enforced; if the N bit in the segment descriptor is set and the access is an instruction fetch, the
access is faulted as described in Chapter 7, “Memory Management,” in thePowerPC Microprocessor
Family: The Programming Environmentsmanual. Note that the figure shows the flow for these cases
as described by the PowerPC OEA, and so the TLB references are shown as optional. Because Gekko

Perform Address
Translation with Segment

Descriptor

Access Faulted

Compare Address with
Instruction or Data BAT Array

(As Appropriate)

Translate Address

Perform Real
Addressing Mode

Translation

Effective Address
Generated

Continue Access
to Memory
Subsystem

(See The Programming
Environments Manual)

(See Figure 5-6 on
Page 5-13)

Instruction
Translation Disabled

(MSR[IR] = 0)

BAT Array
Miss

I-Access

Access
Protected

Access
Permitted

Instruction
Translation Enabled

(MSR[IR] = 1)

Data
Translation Enabled

(MSR[DR] = 1)

Data
Translation Disabled

(MSR[DR] = 0)

D-Access

BAT Array
Hit

Perform Real
Addressing Mode

Translation

IBM Confidential

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-13

implements TLBs, these branches are valid and are described in more detail throughout this
chapter.

Figure 5-6. General Flow of Page and Direct-Store Interface Address Translation

Address Translation
with

Access Faulted

Access Faulted

Perform Page Table
Search Operation

Continue Access to
Memory Subsystem

Translate Address

*In the case of
instruction accesses,
causes ISI exception

Load TLB Entry

(See Figure 5-8 on Page 5-25)

(See Figure 5-9 on Page 5-27)

Otherwise

Check T-Bit in
Segment Descriptor

Use EA[0–3] to
Select One of 16 On-Chip

Segment Registers

Page Address
Translation

(T = 0)

Direct-Store
Segment Address

(T = 1)*

I-Fetch with N-Bit Set in
Segment Descriptor

 (No-Execute)

PTE Not
Found PTE Found

Access
ProtectedAccess

Permitted

Optional to the PowerPC architecture. Implemented in Gekko.

DSI/ISI Exception

Compare Virtual Address with
TLB Entries

Generate 52-Bit Virtual Address
from Segment Descriptor

TLB
Hit

TLB
Miss

IBM Confidential

Page 5-14 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

If SR[T] = 0, page address translation is selected. The information in the segment descriptor is then
used to generate the 52-bit virtual address. The virtual address is then used to identify the page
address translation information (stored as page table entries (PTEs) in a page table in memory). For
increased performance, Gekko has two on-chip TLBs to cache recently-used translations on-chip.
If an access hits in the appropriate TLB, page translation succeeds and the physical address bits are
forwarded to the memory subsystem. If the required translation is not resident, the MMU performs a
search of the page table. If the required PTE is found, a TLB entry is allocated and the page translation
is attempted again. This time, the TLB is guaranteed to hit. When the translation is located, the access
is qualified with the appropriate protection bits. If the access causes a protection violation, either an
ISI or DSI exception is generated.
If the PTE is not found by the table search operation, a page fault condition exists, and an ISI or DSI
exception occurs so software can handle the page fault.

5.1.7 MMU Exceptions Summary
To complete any memory access, the effective address must be translated to a physical address. As
specified by the architecture, an MMU exception condition occurs if this translation fails for one of
the following reasons:

• Page fault—there is no valid entry in the page table for the page specified by the effective
address (and segment descriptor) and there is no valid BAT translation.

• An address translation is found but the access is not allowed by the memory protection
mechanism.

The translation exception conditions defined by the OEA for 32-bit implementations cause either the
ISI or the DSI exception to be taken as shown in Table 5-3.I

Table 5-3. Translation Exception Conditions

Condition Description Exception

Page fault (no PTE found) No matching PTE found in page tables (and
no matching BAT array entry)

I access: ISI exception
SRR1[1] = 1

D access: DSI exception
DSISR[1] =1

Block protection violation Conditions described for block in “Block
Memory Protection” in Chapter 7, “Memory
Management,” in the PowerPC
Microprocessor Family: The Programming
Environments manual.“

I access: ISI exception
SRR1[4] = 1

D access: DSI exception
DSISR[4] =1

Page protection violation Conditions described for page in “Page
Memory Protection” in Chapter 7, “Memory
Management,” in the PowerPC
Microprocessor Family: The Programming
Environments manual.

I access: ISI exception
SRR1[4] = 1

D access: DSI exception
DSISR[4] =1

No-execute protection violation Attempt to fetch instruction when SR[N] = 1 ISI exception
SRR1[3] = 1

Instruction fetch from
direct-store segment

Attempt to fetch instruction when SR[T] = 1 ISI exception
SRR1[3] =1

IBM Confidential

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-15

The state saved by the processor for each of these exceptions contains information that identifies
the address of the failing instruction. Refer to Chapter 4, "Exceptions" in this manual for a more
detailed description of exception processing.
In addition to the translation exceptions, there are other MMU-related conditions (some of them
defined as implementation-specific, and therefore not required by the architecture) that can cause
an exception to occur.
These exception conditions map to processor exceptions as shown in Table 5-4 on Page 5-15. The
only MMU exception conditions that occur when MSR[DR] = 0 are those that cause an alignment
exception for data accesses. For more detailed information about the conditions that cause an
alignment exception (in particular for string/multiple instructions), see Section 4.5.6 on Page 4-19.
NOTE: Some exception conditions depend upon whether the memory area is set up as

write-though (W = 1) or cache-inhibited (I = 1).
These bits are described fully in “Memory/Cache Access Attributes,” in Chapter 5,
“Cache Model and Memory Coherency,” of thePowerPC Microprocessor Family: The
Programming Environments manual.
Also refer to Chapter 4, "Exceptions" in this manual and to Chapter 6, “Exceptions,”
in thePowerPC Microprocessor Family: The Programming Environmentsmanual for a
complete description of the SRR1 and DSISR bit settings for these exceptions.

Data access to direct-store
segment (including
floating-point accesses)

Attempt to perform load or store (including FP
load or store) when SR[T] = 1

DSI exception
DSISR[5] =1

Instruction fetch from guarded
memory

Attempt to fetch instruction when MSR[IR] = 1
and either matching xBAT[G] = 1, or no
matching BAT entry and PTE[G] = 1

ISI exception
SRR1[3] =1

Table 5-4. Other MMU Exception Conditions for the Gekko Processor

Condition Description Exception

dcbz or dcbz_l with W = 1 or I = 1 dcbz or dcbz_l instruction to write-through or
cache-inhibited segment or block

Alignment exception (not
required by architecture for
this condition)

lwarx or stwcx. with W = 1 Reservation instruction to write-through
segment or block

DSI exception
DSISR[5] =1

lwarx , stwcx. , eciwx , or ecowx
instruction to direct-store segment

Reservation instruction or external control
instruction when SR[T] =1

DSI exception
DSISR[5] =1

Floating-point load or store to
direct-store segment

FP memory access when SR[T] =1 See data access to
direct-store segment in
Table 5-4 on Page 5-15.

Load or store that results in a
direct-store error

Does not occur in 750 Does not apply

eciwx or ecowx attempted when
external control facility disabled

eciwx or ecowx attempted with EAR[E] = 0 DSI exception
DSISR[11] = 1

Table 5-3. Translation Exception Conditions (Continued)

Condition Description Exception

IBM Confidential

Page 5-16 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

5.1.8 MMU Instructions and Register Summary
The MMU instructions and registers allow the operating system to set up the block address translation
areas and the page tables in memory.
NOTE: Because the implementation of TLBs is optional, the instructions that refer to these

structures are also optional. However, as these structures serve as caches of the page table,
the architecture specifies a software protocol for maintaining coherency between these
caches and the tables in memory whenever the tables in memory are modified. When the
tables in memory are changed, the operating system purges these caches of the
corresponding entries, allowing the translation caching mechanism to refetch from the
tables when the corresponding entries are required.
Also note that Gekko implements all TLB-related instructions excepttlbia , which is
treated as an illegal instruction.

Because the MMU specification for PowerPC processors is so flexible, it is recommended that the
software that uses these instructions and registers be encapsulated into subroutines to minimize the
impact of migrating across the family of implementations.
Table 5-5 summarizes Gekko’s instructions that specifically control the MMU. For more detailed
information about the instructions, refer to Chapter 2, "Programming Model" in this manual and
Chapter 8, “Instruction Set,” in thePowerPC Microprocessor Family: The Programming
Environments manual.

lmw , stmw , lswi , lswx , stswi , or
stswx instruction attempted in
little-endian mode

lmw , stmw , lswi , lswx , stswi , or stswx
instruction attempted while MSR[LE] = 1

Alignment exception

Operand misalignment Translation enabled and a floating-point
load/store, stmw , stwcx. , lmw , lwarx , eciwx ,
or ecowx instruction operand is not
word-aligned

Alignment exception (some
of these cases are
implementation-specific)

Table 5-5. Gekko Microprocessor Instruction Summary—Control MMUs

Instruction Description

mtsr SR,rS Move to Segment Register
SR[SR#]← rS

mtsrin r S,rB Move to Segment Register Indirect
SR[rB[0–3]]←rS

mfsr r D,SR Move from Segment Register
rD←SR[SR#]

mfsrin r D,rB Move from Segment Register Indirect
rD←SR[rB[0–3]]

Table 5-4. Other MMU Exception Conditions for the Gekko Processor

Condition Description Exception

IBM Confidential

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-17

Table 5-6 summarizes the registers that the operating system uses to program Gekko’s MMUs.
These registers are accessible to supervisor-level software only.
These registers are described in Chapter 2, "Programming Model" in this manual.

5.2 Real Addressing Mode
If address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular access, the
effective address is treated as the physical address and is passed directly to the memory subsystem
as described in Chapter 7, “Memory Management,” in thePowerPC Microprocessor Family: The
Programming Environments manual.
Note that the default WIMG bits (0b0011) cause data accesses to be considered cacheable (I = 0)
and thus load and store accesses are weakly ordered. This is the case even if the data cache is
disabled in the HID0 register (as it is out of hard reset). If I/O devices require load and store
accesses to occur in strict program order (strongly ordered), translation must be enabled so that the
corresponding I bit can be set. Note also, that the G bit must be set to ensure that the accesses are
strongly ordered. For instruction accesses, the default memory access mode bits (WIMG) are also

tlbie rB* TLB Invalidate Entry
For effective address specified by rB, TLB[V]←0
The tlbie instruction invalidates all TLB entries indexed by the EA, and operates on both the
instruction and data TLBs simultaneously invalidating four TLB entries. The index corresponds to
bits 14–19 of the EA.
Software must ensure that instruction fetches or memory references to the virtual pages specified
by the tlbie instruction have been completed prior to executing the tlbie instruction.

tlbsync* TLB Synchronize
Synchronizes the execution of all other tlbie instructions in the system. In Gekko, when the
TLBISYNC signal is negated, instruction execution may continue or resume after the completion
of a tlbsync instruction. When the TLBISYNC signal is asserted, instruction execution stops after
the completion of a tlbsync instruction.

*These instructions are defined by the PowerPC architecture, but are optional.

Table 5-6. Gekko Microprocessor MMU Registers

Register Description

Segment registers
(SR0–SR15)

The sixteen 32-bit segment registers are present only in 32-bit implementations of
the PowerPC architecture. The fields in the segment register are interpreted
differently depending on the value of bit 0. The segment registers are accessed by
the mtsr , mtsrin , mfsr , and mfsrin instructions.

BAT registers
(IBAT0U–IBAT3U,
IBAT0L–IBAT3L,
DBAT0U–DBAT3U, and
DBAT0L–DBAT3L)

There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBAT0U–IBAT3U paired with IBAT0L–IBAT3L) and four pairs of data BAT registers
(DBAT0U–DBAT3U paired with DBAT0L–DBAT3L). The BAT registers are defined as
32-bit registers in 32-bit implementations. These are special-purpose registers that
are accessed by the mtspr and mfspr instructions.

SDR1 The SDR1 register specifies the variables used in accessing the page tables in
memory. SDR1 is defined as a 32-bit register for 32-bit implementations. This
special-purpose register is accessed by the mtspr and mfspr instructions.

Table 5-5. Gekko Microprocessor Instruction Summary—Control MMUs

Instruction Description

IBM Confidential

Page 5-18 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

0b0011. That is, instruction accesses are considered cacheable (I = 0), and the memory is guarded.
Again, instruction accesses are considered cacheable even if the instruction cache is disabled in the
HID0 register (as it is out of hard reset). The W and M bits have no effect on the instruction cache.
For information on the synchronization requirements for changes to MSR[IR] and MSR[DR], refer
to Section 2.3.2.4 on Page 2-36 in this manual and the section “Synchronization Requirements for
Special Registers and for Lookaside Buffers” in Chapter 2 of thePowerPC Microprocessor Family:
The Programming Environments manual.

5.3 Block Address Translation
The block address translation (BAT) mechanism in the OEA provides a way to map ranges of
effective addresses larger than a single page into contiguous areas of physical memory. Such areas
can be used for data that is not subject to normal virtual memory handling (paging), such as a
memory-mapped display buffer or an extremely large array of numerical data.
Block address translation in Gekko is described in Chapter 7, “Memory Management,” in the
PowerPC Microprocessor Family: The Programming Environmentsmanual for 32-bit
implementations.
Implementation Note—Gekko’s BAT registers are not initialized by the hardware after the power-up
or reset sequence. Consequently, all valid bits in both instruction and data BATs must be cleared
before setting any BAT for the first time. This is true regardless of whether address translation is
enabled. Also, software must avoid overlapping blocks while updating a BAT or areas.Even if
translation is disabled, multiple BAT hits are treated as programming errors and can corrupt
the BAT registers and produce unpredictable results. Always re-zero during the reset ISR.
After zeroing all BATs, set them (in order) to the desired values.HRESET disorders the BATs.
SRESET does not.

5.4 Memory Segment Model
Gekko adheres to the memory segment model as defined in Chapter 7, “Memory Management,” in
the PowerPC Microprocessor Family: The Programming Environmentsmanual for 32-bit
implementations. Memory in the PowerPC OEA is divided into 256-Mbyte segments. This
segmented memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte
pages in physical memory (page address translation), while providing the programming flexibility
afforded by a large virtual address space (52 bits).
The segment/page address translation mechanism may be superseded by the block address translation
(BAT) mechanism described Section 5.3. If not, the translation proceeds in the following two steps:

1. from effective address to the virtual address (which never exists as a specific entity but can be
considered to be the concatenation of the virtual page number and the byte offset within a
page), and

2. from virtual address to physical address.

This section highlights those areas of the memory segment model defined by the OEA that are specific
to Gekko.

5.4.1 Page History Recording
Referenced (R) and changed (C) bits in each PTE keep history information about the page. They are
maintained by a combination of Gekko’s table search hardware and the system software. The
operating system uses this information to determine which areas of memory to write back to disk
when new pages must be allocated in main memory. Referenced and changed recording is performed

IBM Confidential

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-19

only for accesses made with page address translation and not for translations made with the BAT
mechanism or for accesses that correspond to direct-store (T = 1) segments. Furthermore, R and C
bits are maintained only for accesses made while address translation is enabled (MSR[IR] = 1 or
MSR[DR] = 1).

In Gekko, the referenced and changed bits are updated as follows:

• For TLB hits, the C bit is updated according to Table 5-7.

• For TLB misses, when a table search operation is in progress to locate a PTE. The
R and C bits are updated (set, if required) to reflect the status of the page based on
this access.

The table shows that the status of the C bit in the TLB entry (in the case of a TLB hit) is what causes
the processor to update the C bit in the PTE (the R bit is assumed to be set in the page tables if there
is a TLB hit). Therefore, when software clears the R and C bits in the page tables in memory, it
must invalidate the TLB entries associated with the pages whose referenced and changed bits were
cleared.
Thedcbt anddcbtst instructions can execute if there is a TLB/BAT hit or if the processor is in real
addressing mode. In case of a TLB or BAT miss, these instructions are treated as no-ops; they do
not initiate a table search operation and they do not set either the R or C bits.
As defined by the PowerPC architecture, the referenced and changed bits are updated as if address
translation were disabled (real addressing mode). If these update accesses hit in the data cache, they
are not seen on the external bus. If they miss in the data cache, they are performed as typical cache
line fill accesses on bus (assuming the data cache is enabled).

5.4.1.1 Referenced Bit
The referenced (R) bit of a page is located in the PTE in the page table. Every time a page is
referenced (with a read or write access) and the R bit is zero, Gekko sets the R bit in the page table.
The OEA specifies that the referenced bit may be set immediately, or the setting may be delayed
until the memory access is determined to be successful. Because the reference to a page is what
causes a PTE to be loaded into the TLB, the referenced bit in all TLB entries is effectively always
set. The processor never automatically clears the referenced bit.
The referenced bit is only a hint to the operating system about the activity of a page. At times, the
referenced bit may be set although the access was not logically required by the program or even if
the access was prevented by memory protection. Examples of this in PowerPC systems include the
following:

• Fetching of instructions not subsequently executed

• A memory reference caused by a speculatively executed instruction that is mispredicted

Table 5-7. Table Search Operations to Update History Bits—TLB Hit Case

R and C bits
in TLB Entry

Processor Action

00 Combination doesn’t occur

01 Combination doesn’t occur

10 Read: No special action
Write: Gekko initiates a table search operation to update C.

11 No special action for read or write

IBM Confidential

Page 5-20 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

• Accesses generated by anlswx or stswx instruction with a zero length

• Accesses generated by anstwcx.instruction when no store is performed because a reservation
does not exist

• Accesses that cause exceptions and are not completed

5.4.1.2 Changed Bit
The changed bit of a page is located both in the PTE in the page table and in the copy of the PTE
loaded into the TLB (if a TLB is implemented, as in Gekko). Whenever a data store instruction is
executed successfully, if the TLB search (for page address translation) results in a hit, the changed bit
in the matching TLB entry is checked. If it is already set, it is not updated. If the TLB changed bit is
0, Gekko initiates the table search operation to set the C bit in the corresponding PTE in the page
table. Gekko then reloads the TLB (with the C bit set).
The changed bit (in both the TLB and the PTE in the page tables) is set only when a store operation
is allowed by the page memory protection mechanism and the store is guaranteed to be in the
execution path (unless an exception, other than those caused by thesc, rfi , or trap instructions,
occurs). Furthermore, the following conditions may cause the C bit to be set:

• The execution of anstwcx. instruction is allowed by the memory protection mechanism but a
store operation is not performed.

• The execution of anstswx instruction is allowed by the memory protection mechanism but a
store operation is not performed because the specified length is zero.

• The store operation is not performed because an exception occurs before the store is
performed.

Again, note that although the execution of thedcbt anddcbtst instructions may cause the R bit to be
set, they never cause the C bit to be set.

5.4.1.3 Scenarios for Referenced and Changed Bit Recording
This section provides a summary of the model (defined by the OEA) that is used by PowerPC
processors for maintaining the referenced and changed bits. In some scenarios, the bits are guaranteed
to be set by the processor, in some scenarios, the architecture allows that the bits may be set (not
absolutely required), and in some scenarios, the bits are guaranteed to not be set. Note that when
Gekko updates the R and C bits in memory, the accesses are performed as if MSR[DR] = 0 and G =
0 (that is, as nonguarded cacheable operations in which coherency is required).
Table 5-8 defines a prioritized list of the R and C bit settings for all scenarios. The entries in the table
are prioritized from top to bottom, such that a matching scenario occurring closer to the top of the
table takes precedence over a matching scenario closer to the bottom of the table. For example, if an
stwcx. instruction causes a protection violation and there is no reservation, the C bit is not altered, as
shown for the protection violation case. Note that in the table, load operations include those generated
by load instructions, by theeciwx instruction, and by the cache management instructions that are
treated as a load with respect to address translation. Similarly, store operations include those
operations generated by store instructions, by theecowxinstruction, and by the cache management

IBM Confidential

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-21

instructions that are treated as a store with respect to address translation.

For more information, see “Page History Recording” in Chapter 7, “Memory Management,” of the
PowerPC Microprocessor Family: The Programming Environments manual.

5.4.2 Page Memory Protection
Gekko implements page memory protection as it is defined in Chapter 7, “Memory Management,”
in thePowerPC Microprocessor Family: The Programming Environments manual.

5.4.3 TLB Description
Gekko implements separate 128-entry data and instruction TLBs to maximize performance. This
section describes the hardware resources provided in Gekko to facilitate page address translation.
Note that the hardware implementation of the MMU is not specified by the architecture, and while
this description applies to Gekko, it does not necessarily apply to other PowerPC processors.

Table 5-8. Model for Guaranteed R and C Bit Settings

Priority Scenario
Causes Setting of R Bit Causes Setting of C Bit

OEA Gekko OEA Gekko

1 No-execute protection violation No No No No

2 Page protection violation Maybe Yes No No

3 Out-of-order instruction fetch or load operation Maybe No No No

4 Out-of-order store operation. Would be required
by the sequential execution model in the absence
of system-caused or imprecise exceptions, or of
floating-point assist exception for instructions that
would cause no other kind of precise exception.

Maybe1 No No No

5 All other out-of-order store operations Maybe1 No Maybe1 No

6 Zero-length load (lswx) Maybe No No No

7 Zero-length store (stswx) Maybe1 No Maybe1 No

8 Store conditional (stwcx.) that does not store Maybe1 Yes Maybe1 Yes

9 In-order instruction fetch Yes Yes No No

10 Load instruction or eciwx Yes Yes No No

11 Store instruction, ecowx, dcbz_l or dcbz
instruction

Yes Yes Yes Yes

12 icbi , dcbt , or dcbtst instruction Maybe No No No

13 dcbst or dcbf instruction Maybe Yes No No

14 dcbi instruction Maybe1 Yes Maybe1 Yes

Notes :
1 If C is set, R is guaranteed to be set also.

IBM Confidential

Page 5-22 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

5.4.3.1 TLB Organization
Because Gekko has two MMUs (IMMU and DMMU) that operate in parallel, some of the MMU
resources are shared, and some are actually duplicated (shadowed) in each MMU to maximize
performance. For example, although the architecture defines a single set of segment registers for the
MMU, Gekko maintains two identical sets of segment registers, one for the IMMU and one for the
DMMU; when an instruction that updates the segment register executes, Gekko automatically
updates both sets.
Each TLB contains 128 entries organized as a two-way set-associative array with 64 sets as shown in
Figure 5-7 for the DTLB (the ITLB organization is the same). When an address is being translated, a
set of two TLB entries is indexed in parallel with the access to a segment register. If the address in
one of the two TLB entries is valid and matches the 40-bit virtual page number, that TLB entry
contains the translation. If no match is found, a TLB miss occurs.

Figure 5-7. Segment Register and DTLB Organization

T

0 7 8 31

0

15 T VSID

Segment Registers

V
DTLB

0

63

V

EA[0–31]

EA[0–3]

EA[14–19]

VSID

Select

Compare

Compare

EA[4–13]

Line 1

Line 0

MUX

RPN
Line1/Line 0 Hit

PA[0–19]

IBM Confidential

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-23

Unless the access is the result of an out-of-order access, a hardware table search operation begins
if there is a TLB miss. If the access is out of order, the table search operation is postponed until the
access is required, at which point the access is no longer out of order. When the matching PTE is
found in memory, it is loaded into the TLB entry selected by the least-recently-used (LRU)
replacement algorithm, and the translation process begins again, this time with a TLB hit.
To uniquely identify a TLB entry as the required PTE, the TLB entry also contains four more bits
of the page index, EA[10–13] (in addition to the API bits in of the PTE).
Software cannot access the TLB arrays directly, except to invalidate an entry with thetlbie
instruction. Each set of TLB entries has one associated LRU bit. The LRU bit for a set is updated
any time either entry is used, even if the access is speculative. Invalid entries are always the first to
be replaced.
Although both MMUs can be accessed simultaneously (both sets of segment registers and TLBs
can be accessed in the same clock), only one exception condition can be reported at a time. ITLB
miss exception conditions are reported when there are no more instructions to be dispatched or
retired (the pipeline is empty), and DTLB miss conditions are reported when the load or store
instruction is ready to be retired. Refer to Chapter 6, "Instruction Timing" in this manual for more
detailed information about the internal pipelines and the reporting of exceptions.
When an instruction or data access occurs, the effective address is routed to the appropriate MMU.
EA0–EA3 select one of the 16 segment registers and the remaining effective address bits and the
VSID field from the segment register is passed to the TLB. EA[14–19] then select two entries in
the TLB; the valid bits are checked and the 40-bit virtual page number (24-bit VSID and
EA4–EA19]) must match the VSID, EAPI, and API fields of the TLB entries. If one of the entries
hits, the PP bits are checked for a protection violation. If these bits don’t cause an exception, the C
bit is checked and a table search operation is initiated if C must be updated. If C does not require
updating, the RPN value is passed to the memory subsystem and the WIMG bits are then used as
attributes for the access.
Although address translation is disabled on a reset condition, the valid bits of TLB entries are not
automatically cleared. Thus, TLB entries must be explicitly cleared by the system software (with
the tlbie instruction) before the valid entries are loaded and address translation is enabled. Also,
note that the segment registers do not have a valid bit, and so they should also be initialized before
translation is enabled.

IBM Confidential

Page 5-24 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

5.4.3.2 TLB Invalidation
Gekko implements the optionaltlbie and tlbsync instructions, which are used to invalidate TLB
entries. The execution of thetlbie instruction always invalidates four entries—both the ITLB and
DTLB entries indexed by EA[14–19].
The architecture allowstlbie to optionally enable a TLB invalidate signaling mechanism in hardware
so that other processors also invalidate their resident copies of the matching PTE. Gekko does not
signal the TLB invalidation to other processors nor does it perform any action when a TLB
invalidation is performed by another processor.
The tlbsync instruction causes instruction execution to stop if theTLBISYNC signal is asserted. If
TLBISYNC is negated, instruction execution may continue or resume after the completion of a
tlbsync instruction. Section 8.9.2 on Page 8-38 describes the TLB synchronization mechanism in
further detail.
The tlbia instruction is not implemented on Gekko and when its opcode is encountered, an illegal
instruction program exception is generated. To invalidate all entries of both TLBs, 64tlbie
instructions must be executed, incrementing the value in EA14–EA19 by one each time.
(See Chapter 8, "Instruction Set" in the thePowerPC Microprocessor Family: The Programming
Environments manual for detailed information about this instruction.)
Software must ensure that instruction fetches or memory references to the virtual pages specified by
thetlbie have been completed prior to executing thetlbie instruction.
Other than the possible TLB miss on the next instruction prefetch, thetlbie instruction does not affect
the instruction fetch operation—that is, the prefetch buffer is not purged and does not cause these
instructions to be refetched.

5.4.4 Page Address Translation Summary
Figure 5-8 on Page 5-25 provides the detailed flow for the page address translation mechanism.
The figure includes the checking of the N bit in the segment descriptor and then expands on the ‘TLB
Hit’ branch of Figure 5-6 on Page 5-13.
The detailed flow for the ‘TLB Miss’ branch of Figure 5-6 is described in Section 5.4.5 on Page 5-26.
NOTE: As in the case of block address translation, if an attempt is made to execute adcbz or

dcbz_l instruction to a page marked either write-through or caching-inhibited (W = 1 or
I = 1), an alignment exception is generated. The checking of memory protection violation
conditions is described in Chapter 7, “Memory Management” in thePowerPC
Microprocessor Family: The Programming Environments manual.

IBM Confidential

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-25

Figure 5-8. Page Address Translation Flow—TLB Hit

(See The
Programming
Environments

Manual)

(See Figure 5-9 on Page 5-27)

(See The Programming
Environments Manual)

TLB Hit Case

Alignment Exception

Effective Address
Generated

Continue Access to Memory Sub-
system with WIMG-Bits from PTE

Page Table
Search Operation

PA[0–31]←RPN||A[20–31]

Page Address
Translation

Check Page Memory
 Protection Violation Conditions

Instruction Fetch with N-Bit
Set in Segment Descriptor

 (No-Execute)

Page Memory
Protection Violation

Access Permitted

Otherwise
Store Access with

PTE [C] = 0

Otherwise
dcbz Instruction
with W or I = 1

Otherwise

(See Figure 5-6 on Page 5-13)

Generate 52-Bit Virtual Address
from Segment Descriptor

Compare Virtual Address
with TLB Entries

Access Prohibited

IBM Confidential

Page 5-26 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

5.4.5 Page Table Search Operation
If the translation is not found in the TLBs (a TLB miss), Gekko initiates a table search operation
which is described in this section. Formats for the PTE are given in “PTE Format for 32-Bit
Implementations,” in Chapter 7, “Memory Management” of thePowerPC Microprocessor Family:
The Programming Environments manual.

The following is a summary of the page table search process performed by Gekko:
1. The 32-bit physical address of the primary PTEG is generated as described in “Page Table

Addresses” in Chapter 7, “Memory Management” of thePowerPC Microprocessor Family:
The Programming Environments manual.

2. The first PTE (PTE0) in the primary PTEG is read from memory. PTE reads occur with an
implied WIM memory/cache mode control bit setting of 0b001. Therefore, they are
considered cacheable and read (burst) from memory and placed in the cache.

3. The PTE in the selected PTEG is tested for a match with the virtual page number (VPN) of
the access. The VPN is the VSID concatenated with the page index field of the virtual address.
For a match to occur, the following must be true:
— PTE[H] = 0
— PTE[V] = 1
— PTE[VSID] = VA[0–23]
— PTE[API] = VA[24–29]

4. If a match is not found, step 3 is repeated for each of the other seven PTEs in the primary
PTEG. If a match is found, the table search process continues as described in step 8. If a match
is not found within the 8 PTEs of the primary PTEG, the address of the secondary PTEG is
generated.

5. The first PTE (PTE0) in the secondary PTEG is read from memory. Again, because PTE reads
have a WIM bit combination of 0b001, an entire cache line is read into the on-chip cache.

6. The PTE in the selected secondary PTEG is tested for a match with the virtual page number
(VPN) of the access. For a match to occur, the following must be true:
— PTE[H] = 1
— PTE[V] = 1
— PTE[VSID] = VA[0–23]
— PTE[API] = VA[24–29]

7. If a match is not found, step 6 is repeated for each of the other seven PTEs in the secondary
PTEG. If it is never found, an exception is taken (step 9).

8. If a match is found, the PTE is written into the on-chip TLB and the R bit is updated in the
PTE in memory (if necessary). If there is no memory protection violation, the C bit is also
updated in memory (if the access is a write operation) and the table search is complete.

9. If a match is not found within the 8 PTEs of the secondary PTEG, the search fails, and
a page fault exception condition occurs (either an ISI exception or a DSI exception).

Figure 5-9 and Figure 5-10 show how the conceptual model for the primary and secondary page table
search operations, described in thePowerPC Microprocessor Family: The Programming
Environmentsmanual, are realized in Gekko.Figure 5-9 shows the case of adcbz or dcbz_l
instruction that is executed withW = 1 or I = 1, andthat the R bit may be updated in memory (if
required) before the operation is performed or the alignment exception occurs. The R bit may also be
updated if memory protection is violated.

IBM Confidential

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-27

Figure 5-9. Primary Page Table Search

(From Figure 5-10
on Page 5-28)

Fetch PTE from PTEG

Otherwise

Perform Secondary
Page Table Search

Alignment Exception
TLB[PTE[C]] ← 1

Generate PA Using Primary Hash Function
PA ← Base PA of PTEG

PA ← PA+ 8
(Fetch Next PTE in PTEG)

Fetch PTE (64-Bits)
from PA

PTE [VSID, API, H, V] =
Segment Descriptor [VSID], EA[API], 0, 1

PTE[C] ←1
(Update PTE[C] in Memory)

Also Update PTE[R]
in Memory if R_Flag = 1

PTE[R] ←1
(Update PTE[R] in

Memory)

Last PTE in PTEG PTE[R] = 0

R_Flag = 1

Store Operation
with PTE[C] = 0

Otherwise

R_Flag = 1

PTE[R] ←1 (Update
PTE[R] in Memory)

Primary Page
Table Search

Write PTE into
TLB

Otherwise

Secondary Page Table
Search Hit

PTE[R] = 1

dcbz Instruction
with W or I = 1

Check Memory Protection
Violation Conditions

R_Flag = 1

PTE[R] ←1
(Update PTE[R]

in Memory)

Otherwise

PTE[R] ← 1
R_Flag ← 1

Memory Protection
Violation

Page Table
Search Complete

Page Table
Search Complete

OtherwiseOtherwise

Access Permitted
Access Prohibited

Otherwise

IBM Confidential

Page 5-28 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Figure 5-10. Secondary Page Table Search Flow

The LSU initiates out-of-order accesses without knowledge of whether it is legal to do so. Therefore,
the MMU does not perform hardware table search due to TLB misses until the request is required by
the program flow. In these out-of-order cases, the MMU does detect protection violations and whether
adcbz or dcbz_linstruction specifies a page marked as write-through or cache-inhibited. The MMU
also detects alignment exceptions caused by thedcbzor dcbz_l instruction and prevents the changed
bit in the PTE from being updated erroneously in these cases.
If an MMU register is being accessed by an instruction in the instruction stream, the IMMU stalls for
one translation cycle to perform that operation. The sequencer serializes instructions to ensure the
data correctness. For updating the IBATs and SRs, the sequencer classifies those operations as fetch
serializing. After such an instruction is dispatched, the instruction buffer is flushed and the fetch stalls
until the instruction completes. However, for reading from the IBATs, the operation is classified as
execution serializing. As long as the LSU ensures that all previous instructions can be executed,
subsequent instructions can be fetched and dispatched.

Page Fault (See Figure 5-10
on Page 5-28)

Fetch PTE from PTEG

Otherwise

Generate PA Using Primary Hash Function
PA ← Base PA of PTEG

PA ← PA+ 8
(Fetch Next PTE in PTEG)

Fetch PTE (64-Bits)
from PA

PTE [VSID, API, H, V] =
Segment Descriptor [VSID], EA[API], 1, 1

Last PTE in PTEG

Secondary Page
Table Search

Otherwise

Secondary Page Table
Search Hit

ISI Exception DSI Exception

Set SRR1[1] = 1 Set DSISR[1] = 1

Instruction Access Data Access

IBM Confidential

Chapter 5. Memory Management IBM Confidential 5/25/00 Page 5-29

5.4.6 Page Table Updates
When TLBs are implemented (as in Gekko) they are defined as noncoherent caches of the page
tables. TLB entries must be flushed explicitly with the TLB invalidate entry instruction (tlbie)
whenever the corresponding PTE is modified. As Gekko is intended primarily for uniprocessor
environments, it does not provide coherency of TLBs between multiple processors. If Gekko is
used in a multiprocessor environment where TLB coherency is required, all synchronization must
be implemented in software.
Processors may write referenced and changed bits with unsynchronized, atomic byte store
operations. Note that the V, R, and C bits each reside in a distinct byte of a PTE. Therefore, extreme
care must be taken to use byte writes when updating only one of these bits.
Explicitly altering certain MSR bits (using themtmsr instruction), or explicitly altering PTEs, or
certain system registers, may have the side effect of changing the effective or physical addresses
from which the current instruction stream is being fetched. This kind of side effect is defined as an
implicit branch. Implicit branches are not supported and an attempt to perform one causes
boundedly-undefined results. Therefore, PTEs must not be changed in a manner that causes an
implicit branch.
Chapter 2, “PowerPC Register Set” in thePowerPC Microprocessor Family: The Programming
Environmentsmanual, lists the possible implicit branch conditions that can occur when system
registers and MSR bits are changed.

5.4.7 Segment Register Updates
Synchronization requirements for using the move to segment register instructions are described in
“Synchronization Requirements for Special Registers and for Lookaside Buffers” in Chapter 2,
“PowerPC Register Set” in thePowerPC Microprocessor Family: The Programming Environments
manual.

IBM Confidential

Page 5-30 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

IBM Confidential

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-1

Chapter 6 Instruction Timing
60
60

This chapter describes how the PowerPC Gekko microprocessor fetches, dispatches, and executes
instructions and how it reports the results of instruction execution. It gives detailed descriptions of
how Gekko’s execution units work, and how those units interact with other parts of the processor,
such as the instruction fetching mechanism, register files, and caches. It gives examples of
instruction sequences, showing potential bottlenecks and how to minimize their effects. Finally, it
includes tables that identify the unit that executes each instruction implemented on Gekko, the
latency for each instruction, and other information that is useful for the assembly language
programmer.

6.1 Terminology and Conventions
This section provides an alphabetical glossary of terms used in this chapter. These definitions are
provided as a review of commonly used terms and as a way to point out specific ways these terms
are used in this chapter.

• Branch prediction—The process of guessing whether a branch will be taken. Such
predictions can be correct or incorrect; the term ‘predicted’ as it is used here does not imply
that the prediction is correct (successful). The PowerPC architecture defines a means for
static branch prediction as part of the instruction encoding.

• Branch resolution—The determination of whether a branch is taken or not taken. A branch
is said to be resolved when the processor can determine which instruction path to take. If
the branch is resolved as predicted, the instructions following the predicted branch that may
have been speculatively executed can complete (see completion). If the branch is not
resolved as predicted, instructions on the mispredicted path, and any results of speculative
execution, are purged from the pipeline and fetching continues from the nonpredicted path.

• Completion—Completion occurs when an instruction has finished executing, written back
any results, and is removed from the completion queue. When an instruction completes, it
is guaranteed that this instruction and all previous instructions can cause no exceptions.

• Fall-through (branch fall-through)—A not-taken branch. On Gekko, fall-through branch
instructions are removed from the instruction stream at dispatch. That is, these instructions
are allowed to fall through the instruction queue via the dispatch mechanism, without either
being passed to an execution unit and or given a position in the completion queue.

• Fetch—The process of bringing instructions from memory (such as a cache or system
memory) into the instruction queue.

• Folding (branch folding)—The replacement with target instructions of a branch instruction
and any instructions along the not-taken path when a branch is either taken or predicted as
taken.

• Finish—Finishing occurs in the last cycle of execution. In this cycle, the completion queue
entry is updated to indicate that the instruction has finished executing.

• Latency— The number of clock cycles necessary to execute an instruction and make ready
the results of that execution for a subsequent instruction.

• Pipeline—In the context of instruction timing, the term ‘pipeline’ refers to the
interconnection of the stages. The events necessary to process an instruction are broken into
several cycle-length tasks to allow work to be performed on several instructions

IBM Confidential

Page 6-2 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

simultaneously—analogous to an assembly line. As an instruction is processed, it passes from
one stage to the next. When it does, the stage becomes available for the next instruction.
Although an individual instruction may take many cycles to complete (the number of
cycles is called instruction latency), pipelining makes it possible to overlap the
processing so that the throughput (number of instructions completed per cycle) is
greater than if pipelining were not implemented.

• Program order—The order of instructions in an executing program. More specifically, this
term is used to refer to the original order in which program instructions are fetched into the
instruction queue from the cache.

• Rename register—Temporary buffers used by instructions that have finished execution but
have not completed.

• Reservation station—A buffer between the dispatch and execute stages that allows
instructions to be dispatched even though the results of instructions on which the dispatched
instruction may depend are not available.

• Retirement—Removal of the completed instruction from the completion queue.
• Stage—The term ‘stage’ is used in two different senses, depending on whether the pipeline is

being discussed as a physical entity or a sequence of events. In the latter case, a stage is an
element in the pipeline during which certain actions are performed, such as decoding the
instruction, performing an arithmetic operation, or writing back the results. A stage is
typically described as taking a processor clock cycle to perform its operation; however, some
events (such as dispatch and write-back) happen instantaneously, and may be thought to occur
at the end of the stage.
An instruction can spend multiple cycles in one stage. An integer multiply, for
example, takes multiple cycles in the execute stage. When this occurs, subsequent
instructions may stall.
In some cases, an instruction may also occupy more than one stage simultaneously,
especially in the sense that a stage can be seen as a physical resource—for example,
when instructions are dispatched they are assigned a place in the completion queue at
the same time they are passed to the execute stage. They can be said to occupy both the
complete and execute stages in the same clock cycle.

• Stall—An occurrence when an instruction cannot proceed to the next stage.
• Superscalar—A superscalar processor is one that can issue multiple instructions concurrently

from a conventional linear instruction stream. In a superscalar implementation, multiple
instructions can be in the execute stage at the same time.

• Throughput—A measure of the number of instructions that are processed per cycle. For
example, a series of double-precision floating-point multiply instructions has a throughput of
one instruction per clock cycle.

• Write-back—Write-back (in the context of instruction handling) occurs when a result is
written into the architectural registers (typically the GPRs and FPRs). Results are written back
at completion time. Results in the write-back buffer cannot be flushed. If an exception occurs,
these buffers must write back before the exception is taken.

IBM Confidential

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-3

6.2 Instruction Timing Overview
Gekko design minimizes average instruction execution latency, the number of clock cycles it takes
to fetch, decode, dispatch, and execute instructions and make the results available for a subsequent
instruction. Some instructions, such as loads and stores, access memory and require additional
clock cycles between the execute phase and the write-back phase. These latencies vary depending
on whether the access is to cacheable or noncacheable memory, whether it hits in the L1 or L2
cache, whether the cache access generates a write-back to memory, whether the access causes a
snoop hit from another device that generates additional activity, and other conditions that affect
memory accesses.
Gekko implements many features to improve throughput, such as pipelining, superscalar
instruction issue, branch folding, removal of fall-through branches, two-level speculative branch
handling, and multiple execution units that operate independently and in parallel.
As an instruction passes from stage to stage in a pipelined system, the following instruction can
follow through the stages as the former instruction vacates them, allowing several instructions to
be processed simultaneously. While it may take several cycles for an instruction to pass through all
the stages, when the pipeline has been filled, one instruction can complete its work on every clock
cycle.
The entire path that instructions take through the fetch, decode/dispatch, execute, complete, and
write-back stages is considered Gekko’s master pipeline, and two of the Gekko’s execution units
(the FPU and LSU) are also multiple-stage pipelines.
Gekko contains the following execution units that operate independently and in parallel:

• Branch processing unit (BPU)

• Integer unit 1 (IU1)—executes all integer instructions

• Integer unit 2 (IU2)—executes all integer instructions except multiplies and divides

• 64-bit floating-point unit (FPU)

• Load/store unit (LSU)

• System register unit (SRU)

Figure 6-1 represents a generic pipelined execution unit.

Figure 6-1. Pipelined Execution Unit

Gekko can retire two instructions on every clock cycle. In general, the Gekko processes
instructions in four stages—fetch, decode/dispatch, execute, and complete as shown in Figure 6-2.

Clock 0

Clock 1

Clock 2

Clock 3

Instruction A — —

Instruction B

Instruction C

Instruction D

Instruction A

Instruction B

Instruction C

—

Instruction A

Instruction B

Stage 1 Stage 2 Stage 3

IBM Confidential

Page 6-4 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Note that the example of a pipelined execution unit in Figure 6-1 is similar to the three-stage FPU
pipeline in Figure 6-2.

Figure 6-2. Superscalar/Pipeline Diagram

The instruction pipeline stages are described as follows:

• The instruction fetch stage includes the clock cycles necessary to request instructions from the
memory system and the time the memory system takes to respond to the request. Instruction
fetch timing depends on many variables, such as whether the instruction is in the branch target
instruction cache, the on-chip instruction cache, or the L2 cache. Those factors increase when
it is necessary to fetch instructions from system memory, and include the processor-to-bus
clock ratio, the amount of bus traffic, and whether any cache coherency operations are
required.

Because there are so many variables, unless otherwise specified, the instruction timing
examples below assume optimal performance, that the instructions are available in the
instruction queue in the same clock cycle that they are requested. The fetch stage ends
when the instruction is dispatched.

• The decode/dispatch stage consists of the time it takes to fully decode the instruction and
dispatch it from the instruction queue to the appropriate execution unit. Instruction dispatch
requires the following:

— Instructions can be dispatched only from the two lowest instruction queue entries, IQ0 and
IQ1.

— A maximum of two instructions can be dispatched per clock cycle (although an additional
branch instruction can be handled by the BPU).

— Only one instruction can be dispatched to each execution unit per clock cycle.
— There must be a vacancy in the specified execution unit.

Fetch

Complete (Write-back)

Decode/Dispatch

Execute Stage

FPU3SRU IU2IU1

Maximum three-instruction dispatch
per clock cycle (includes one branch
instruction)

Maximum two -instruction
completion per clock cycle

FPU2

FPU1

LSU1

Maximum four-instruction fetch
per clock cycle

LSU2

BPU

IBM Confidential

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-5

— A rename register must be available for each destination operand specified by the
instruction.

— For an instruction to dispatch, the appropriate execution unit must be available and there
must be an open position in the completion queue. If no entry is available, the
instruction remains in the IQ.

• The execute stage consists of the time between dispatch to the execution unit (or reservation
station) and the point at which the instruction vacates the execution unit.

Most integer instructions have a one-cycle latency; results of these instructions can
be used in the clock cycle after an instruction enters the execution unit. However,
integer multiply and divide instructions take multiple clock cycles to complete. The
IU1 can process all integer instructions; the IU2 can process all integer instructions
except multiply and divide instructions.

The LSU and FPU are pipelined (as shown in Figure 6-2).

• The complete (complete/write-back) pipeline stage maintains the correct architectural
machine state and commits it to the architectural registers at the proper time. If the
completion logic detects an instruction containing an exception status, all following
instructions are cancelled, their execution results in rename registers are discarded, and the
correct instruction stream is fetched.

The complete stage ends when the instruction is retired. Two instructions can be
retired per cycle. Instructions are retired only from the two lowest completion queue
entries, CQ0 and CQ1.

The notation conventions used in the instruction timing examples are as follows:

Fetch—The fetch stage includes the time between when an instruction is requested
and when it is brought into the instruction queue. This latency can be very variable, depending upon
whether the instruction is in the BTIC, the on-chip cache, the L2 cache, or system memory (in
which case latency can be affected by bus speed and traffic on the system bus, and address
translation issues). Therefore, in the examples in this chapters, the fetch stage is usually idealized,
that is, an instruction is usually shown to be in the fetch stage when it is a valid instruction in the
instruction queue. The instruction queue has six entries, IQ0–IQ5.

In dispatch entry (IQ0/IQ1)—Instructions can be dispatched from IQ0 and IQ1.
Because dispatch is instantaneous, it is perhaps more useful to describe it as an event that marks
the point in time between the last cycle in the fetch stage and the first cycle in the execute stage.

Execute—The operations specified by an instruction are being performed by the
appropriate execution unit. The black stripe is a reminder that the instruction occupies an entry in
the completion queue, described in Figure 6-3.

Complete—The instruction is in the completion queue. In the final stage, the results
of the executed instruction are written back and the instruction is retired. The completion queue
has six entries, CQ0–CQ5.

In retirement entry—Completed instructions can be retired from CQ0 and CQ1. Like
dispatch, retirement is an event that in this case occurs at the end of the final cycle of the complete
stage.
Figure 6-3 shows the stages of Gekko’s execution units.

IBM Confidential

Page 6-6 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

6.3 Timing Considerations
Gekko is a superscalar processor; as many as three instructions can be issued to the execution units
(one branch instruction to the branch processing unit, and two instructions issued from the dispatch
queue to the other execution units) during each clock cycle. Only one instruction can be dispatched
to each execution unit.
Although instructions appear to the programmer to execute in program order, Gekko improves
performance by executing multiple instructions at a time, using hardware to manage dependencies.
When an instruction is dispatched, the register file provides the source data to the execution unit. The
register files and rename register have sufficient bandwidth to allow dispatch of two instructions per
clock under most conditions.

Figure 6-3. PowerPC Gekko Microprocessor Pipeline Stages

Fetch In Dispatch Execute1 Complete/Retire

Fetch In Dispatch Complete/RetireEA

Fetch In Dispatch Complete/Retire

IU1/IU2/SRU Instructions

LSU Instructions

FPU Instructions

NormalizeMultiply Add Round/

1 Several integer instructions, such as multiply and divide instructions, require multiple cycles in

Execute

Execute

Calculation
Cache Align

Entry

Entry

Entry

the execute stage.

BPU Instructions

Fetch Fetch
Predict

Complete/Retire2In Dispatch
Entry

In Completion
Queue2

2 Only those branch instructions that update the LR or CTR take an entry in the completion queue.

IBM Confidential

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-7

Gekko’s BPU decodes and executes branches immediately after they are fetched. When a
conditional branch cannot be resolved due to a CR data dependency, the branch direction is
predicted and execution continues from the predicted path. If the prediction is incorrect, the
following steps are taken:

1. The instruction queue is purged and fetching continues from the correct path.

2. Any instructions ahead of the predicted branch in the completion queue are allowed to
complete.

3. Instructions after the mispredicted branch are purged.

4. Dispatching resumes from the correct path.

After an execution unit finishes executing an instruction, it places resulting data into the
appropriate GPR or FPR rename register. The results are then stored into the correct GPR or FPR
during the write-back stage. If a subsequent instruction needs the result as a source operand, it is
made available simultaneously to the appropriate execution unit, which allows a data-dependent
instruction to be decoded and dispatched without waiting to read the data from the register file.
Branch instructions that update either the LR or CTR write back their results in a similar fashion.
The following section describes this process in greater detail.

6.3.1 General Instruction Flow
As many as four instructions can be fetched into the instruction queue (IQ) in a single clock cycle.
Instructions enter the IQ and are issued to the various execution units from the dispatch queue.
Gekko tries to keep the IQ full at all times, unless instruction cache throttling is operating.
The number of instructions requested in a clock cycle is determined by the number of vacant spaces
in the IQ during the previous clock cycle. This is shown in the examples in this chapter. Although
the instruction queue can accept as many as four new instructions in a single clock cycle, if only
one IQ entry is vacant, only one instruction is fetched. Typically instructions are fetched from the
on-chip instruction cache, but they may also be fetched from the branch target instruction cache
(BTIC). If the instruction request hits in the BTIC, it can usually present the first two instructions
of the new instruction stream in the next clock cycle, giving enough time for the next pair of
instructions to be fetched from the instruction cache with no idle cycles. If instructions are not in
the BTIC or the on-chip instruction cache, they are fetched from the L2 cache or from system
memory.
Gekko’s instruction cache throttling feature, managed through the instruction cache throttling
control (ICTC) register, can lower the processor’s overall junction temperature by slowing the
instruction fetch rate. See Chapter 10, "Power and Thermal Management" for more information.
Branch instructions are identified by the fetcher, and forwarded to the BPU directly, bypassing the
dispatch queue. If the branch is unconditional or if the specified conditions are already known, the
branch can be resolved immediately. That is, the branch direction is known and instruction fetching
can continue from the correct location. Otherwise, the branch direction must be predicted. Gekko
offers several resources to aid in quick resolution of branch instructions and for improving the
accuracy of branch predictions. These include the following:

• Branch target instruction cache—The 64-entry (four-way-associative) branch target
instruction cache (BTIC) holds branch target instructions so when a branch is encountered
in a repeated loop, usually the first two instructions in the target stream can be fetched into
the instruction queue on the next clock cycle. The BTIC can be disabled and invalidated
through bits in HID0.

IBM Confidential

Page 6-8 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

• Dynamic branch prediction—The 512-entry branch history table (BHT) is implemented with
two bits per entry for four degrees of prediction—not-taken, strongly not-taken, taken,
strongly taken. Whether a branch instruction is taken or not-taken can change the strength of
the next prediction. This dynamic branch prediction is not defined by the PowerPC
architecture.

To reduce aliasing, only predicted branches update the BHT entries. Dynamic branch
prediction is enabled by setting HID0[BHT]; otherwise, static branch prediction is
used.

• Static branch prediction—Static branch prediction is defined by the PowerPC architecture and
involves encoding the branch instructions. See 6.4.1.3.1.”

Branch instructions that do not update the LR or CTR are removed from the instruction stream either
by branch folding or removal of fall-through branch instructions, as described in 6.4.1.1.” Branch
instructions that update the LR or CTR are treated as if they require dispatch (even through they are
not issued to an execution unit in the process). They are assigned a position in the completion queue
to ensure that the CTR and LR are updated sequentially.
All other instructions are issued from the IQ0 and IQ1. The dispatch rate depends upon the
availability of resources such as the execution units, rename registers, and completion queue entries,
and upon the serializing behavior of some instructions. Instructions are dispatched in program order;
an instruction in IQ1 cannot be dispatched ahead of one in IQ0.

6.3.2 Instruction Fetch Timing
Instruction fetch latency depends on whether the fetch hits the BTIC, the on-chip instruction cache,
or the L2 cache. If no cache hit occurs, a memory transaction is required in which case fetch latency
is affected by bus traffic, bus clock speed, and memory translation. These issues are discussed further
in the following sections.

6.3.2.1 Cache Arbitration
When the instruction fetcher requests instructions from the instruction cache, two things may happen.
If the instruction cache is idle and the requested instructions are present, they are provided on the next
clock cycle. However, if the instruction cache is busy due to a cache-line-reload operation,
instructions cannot be fetched until that operation completes.

6.3.2.2 Cache Hit
If the instruction fetch hits the instruction cache, it takes only one clock cycle after the request for as
many as four instructions to enter the instruction queue. Note that the cache is not blocked to internal
accesses during a cache reload completes (hits under misses). The critical double word is written
simultaneously to the cache and forwarded to the requesting unit, minimizing stalls due to load
delays.

IBM Confidential

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-9

Figure 6-4 shows the paths taken by instructions.

Figure 6-4. Instruction Flow Diagram

SRUIU2

FPU

Complete (Retire)

Fetch

LSU

DispatchBranch

Instruction Queue

Completion Queue

Completion Queue

IU1

Store Queue

Processing Unit

(In program order)

Assignment

(In program order)

CQ5 CQ4 CQ3 CQ2 CQ1 CQ0

IQ5 IQ4 IQ3 IQ2 IQ1 IQ0

(Maximum 2 instructions per clock cycle; 1 instruction per unit)

(Maximum four instructions per clock cycle)

Reservation
Stations

IBM Confidential

Page 6-10 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Figure 6-5 shows a simple example of instruction fetching that hits in the on-chip cache. This
example uses a series of integer add and double-precision floating-point add instructions to show how
the number of instructions to be fetched is determined, how program order is maintained by the
instruction and completion queues, how instructions are dispatched and retired in pairs (maximum),
and how the FPU, IU1, and IU2 pipelines function. The following instruction sequence is examined:
0 add
1 fadd
2 add
3 fadd
4 br 6
5 fsub
6 fadd
7 fadd
8 add
9 add
10 add
11 add
12 fadd
13 add
14 fadd
15 .
16 .
17 .

IBM Confidential

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-11

Figure 6-5. Instruction Timing—Cache Hit

The instruction timing for this example is described cycle-by-cycle as follows:

0. In cycle 0, instructions 0–3 are fetched from the instruction cache. Instructions 0 and 1 are
placed in the two entries in the instruction queue from which they can be dispatched on the
next clock cycle.

6 fadd

1 fadd

0 add

10 11

8 add

1 2 3 4 5 6 7 80

Fetch (in IQ)

In dispatch entry (IQ0/IQ1)

Execute
2 add

3 fadd

9 add

4 b

10 add

11 add

12 fadd

9

7 fadd

•••

Complete (In CQ)

13 add

14 fadd

3

2

1

0

7

6

11

10

9

8

7

12

11

10

9

14

13

12

11

10

9

14

13

12

11

(16)

(15)

14

13

12

(17)

(16)

(15)

14

13

(18)

(17)

(16)

(15)

5

4

3

2

3

2

1

0

6

3

2

1

8

7

6

3

2

1

8

7

6

3

10

9

8

7

6

11

10

9

8

7

12

11

10

9

14

13

12

11

14

13

12

14

13

12

1

0

struction
ueue

ompletion
ueue

5 fsub

In retirement entry (CQ0/CQ1)

IBM Confidential

Page 6-12 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

1. In cycle 1, instructions 0 and 1 are dispatched to the IU2 and FPU, respectively. Notice that
for instructions to be dispatched they must be assigned positions in the completion queue. In
this case, since the completion queue was empty, instructions 0 and 1 take the two lowest
entries in the completion queue. Instructions 2 and 3 drop into the two dispatch positions in
the instruction queue. Because there were two positions available in the instruction queue in
clock cycle 0, two instructions (4 and 5) are fetched into the instruction queue. Instruction 4
is a branch unconditional instruction, which resolves immediately as taken. Because the
branch is taken, it can therefore be folded from the instruction queue.

2. In cycle 2, assume a BTIC hit occurs and target instructions 6 and 7 are fetched into the
instruction queue, replacing the foldedb instruction (4) and instruction 5. Instruction 0
completes, writes back its results and vacates the completion queue by the end of the clock
cycle. Instruction 1 enters the second FPU execute stage, instruction 2 is dispatched to the
IU2, and instruction 3 is dispatched into the first FPU execute stage. Because the taken branch
instruction (4) does not update either CTR or LR, it does not require a position in the
completion queue and can be folded.

3. In cycle 3, target instructions (6 and 7) are fetched, replacing instructions 4 and 5 in IQ0 and
IQ1. This replacement on taken branches is called branch folding. Instruction 1 proceeds
through the last of the three FPU execute stages. Instruction 2 has executed but must remain
in the completion queue until instruction 1 completes. Instruction 3 replaces instruction 1 in
the second stage of the FPU, and instruction 6 replaces instruction 3 in the first stage.

Because there were four vacancies in the instruction queue in the previous clock cycle,
instructions 8–11 are fetched in this clock cycle.

4. Instruction 1 completes in cycle 4, allowing instruction 2 to complete. Instructions 3 and 6
continue through the FPU pipeline. Because there were two openings in the completion queue
in the previous cycle, instructions 7 and 8 are dispatched to the FPU and IU2, respectively,
filling the completion queue. Similarly, because there was one opening in the instruction
queue in clock cycle 3, one instruction is fetched.

5. In cycle 5, instruction 3 completes, and instructions 13 and 14 are fetched. Instructions 6 and
7 continue through the FPU pipeline. No instructions are dispatched in this clock cycle
because there were no vacant CQ entries in cycle 4.

6. In cycle 6, instruction 6 completes, instruction 7 is in stage 3 of the FPU execute stage, and
although instruction 8 has executed, it must wait for instruction 7 to complete. The two integer
instructions, 9 and 10, are dispatched to the IU2 and IU1, respectively. No instructions are
fetched because the instruction queue was full on the previous cycle.

7. In cycle 7, instruction 7 completes, allowing instruction 8 to complete as well. Instructions 9
and 10 remain in the completion stage, since at most two instructions can complete in a cycle.
Because there was one opening in the completion queue in cycle 6, instructions 11 is
dispatched to the IU2. Two more instructions (15 and 16, which are shown only in the
instruction queue) are fetched.

8. In cycle 8, instructions 9–11 are through executing. Instructions 9 and 10 complete, write
back, and vacate the completion queue. Instruction 11 must wait to complete on the following
cycle. Because the completion queue had one opening in the previous cycle, instruction 12
can be dispatched to the FPU. Similarly, the instruction queue had one opening in the previous
cycle, so one additional instruction, 17, can be fetched.

IBM Confidential

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-13

9. In cycle 9, instruction 11 completes, instruction 12 continues through the FPU pipeline, and
instructions 13 and 14 are dispatched. One new instruction, 18, can be fetched on this cycle
because the instruction queue had one opening on the previous clock cycle.

6.3.2.3 Cache Miss
Figure 6-6 shows an instruction fetch that misses both the on-chip cache and L2 cache. A
processor/bus clock ratio is 1:2 is used. The same instruction sequence is used as in 6.3.2.2,”
however in this example, the branch target instruction is not in either the L1 or L2 cache. Because
the target instruction is not in the L1 cache, it cannot be in the BTIC.
A cache miss, extends the latency of the fetch stage, so in this example, the fetch stage shown
represents not only the time the instruction spends in the IQ, but the time required for the
instruction to be loaded from system memory, beginning in clock cycle 2.
During clock cycle 3, the target instruction for theb instruction is not in the BTIC, the instruction
cache or the L2 cache; therefore, a memory access must occur. During clock cycle 5, the address
of the block of instructions is sent to the system bus. During clock cycle 7, two instructions (64
bits) are returned from memory on the first beat and are forwarded both to the cache and the
instruction fetcher.

IBM Confidential

Page 6-14 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Figure 6-6. Instruction Timing—Cache Miss

6 fadd *

7 fadd *

1 fadd

0 add

10 11

8 add *

1 2 3 4 5 6 7 80

2 add

3 fadd

9 add *

4 b

10 add *

11 add *

12 fadd *

9

•••

3

2

1

0 7

9

8

5

4

3

2

3

2

1

0

3

2

1

3

2

1 3 6

7

6

9

8

7

6

1

0

Instruction
Queue

Completion
Queue

5 fsub
Address

Data

Fetch *

In dispatch entry (IQ0/IQ1)

Execute

Complete (In CQ)

In retirement entry (CQ0/CQ1)

7

6

13 fadd *

* Instructions 5 and 6 are not in the IQ in clock cycle 5. Here, the fetch stage shows cache latency.

IBM Confidential

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-15

6.3.2.4 L2 Cache Access Timing Considerations
If an instruction fetch misses both the BTIC and the on-chip instruction cache, the Gekko next
looks in the L2 cache. If the requested instructions are there, they are burst into the Gekko in much
the same way as shown in Figure 6-6. The formula for the L2 cache latency for instruction accesses
is as follows:
1 processor clock + 3 L2 clocks + 1 processor clock

Therefore, since the L2 is operating in 1:1 mode, the instruction fetch takes 5 processor clock
cycles.

6.3.2.5 Instruction Dispatch and Completion Considerations
Several factors affect Gekko’s ability to dispatch instructions at a peak rate of two per cycle—the
availability of the execution unit, destination rename registers, and completion queue, as well as
the handling of completion-serialized instructions. Several of these limiting factors are illustrated
in the previous instruction timing examples.
To reduce dispatch unit stalls due to instruction data dependencies, Gekko provides a single-entry
reservation station for the FPU, SRU, and each IU, and a two-entry reservation station for the LSU.
If a data dependency keeps an instruction from starting execution, that instruction is dispatched to
the reservation station associated with its execution unit (and the rename registers are assigned),
thereby freeing the positions in the instruction queue so instructions can be dispatched to other
execution units. Execution begins during the same clock cycle that the rename buffer is updated
with the data the instruction is dependent on.
If both instructions in IQ0 and IQ1 require the same execution unit, the instruction in IQ1 cannot
be dispatched until the first instruction proceeds through the pipeline and provides the subsequent
instruction with a vacancy in the requested execution unit.
The completion unit maintains program order after instructions are dispatched from the instruction
queue, guaranteeing in-order completion and a precise exception model. Completing an instruction
implies committing execution results to the architected destination registers. In-order completion
ensures the correct architectural state when Gekko must recover from a mispredicted branch or an
exception.
Instruction state and all information required for completion is kept in the six-entry, first-in/first-out
completion queue. An completion queue entry is allocated for each instruction when it is
dispatched to an execute unit; if no entry is available, the dispatch unit stalls. A maximum of two
instructions per cycle may be completed and retired from the completion queue, and the flow of
instructions can stall when a longer-latency instruction reaches the last position in the completion
queue. Subsequent instructions cannot be completed and retired until that longer-latency
instruction completes and retires. Examples of this are shown in 6.3.2.2,” and 6.3.2.3.”
Gekko can execute instructions out-of-order, but in-order completion by the completion unit
ensures a precise exception mechanism. Program-related exceptions are signaled when the
instruction causing the exception reaches the last position in the completion queue. Prior
instructions are allowed to complete before the exception is taken.

IBM Confidential

Page 6-16 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

6.3.2.6 Rename Register Operation
To avoid contention for a given register file location in the course of out-of-order execution, Gekko
provides rename registers for holding instruction results before the completion commits them to the
architected register. There are six GPR rename registers, six FPR rename registers, and one each for
the CR, LR, and CTR.
When the dispatch unit dispatches an instruction to its execution unit, it allocates a rename register
(or registers) for the results of that instruction. If an instruction is dispatched to a reservation station
associated with an execution unit due to a data dependency, the dispatcher also provides a tag to the
execution unit identifying the rename register that forwards the required data at completion. When
the source data reaches the rename register, execution can begin.
Instruction results are transferred from the rename registers to the architected registers by the
completion unit when an instruction is retired from the completion queue without exceptions and after
any predicted branch conditions preceding it in the completion queue have been resolved correctly. If
a branch prediction was incorrect, the instructions following the branch are flushed from the
completion queue, and any results of those instructions are flushed from the rename registers.

6.3.2.7 Instruction Serialization
Although Gekko can dispatch and complete two instructions per cycle, so-called serializing
instructions limit dispatch and completion to one instruction per cycle. There are three types of
instruction serialization:

• Execution serialization—Execution-serialized instructions are dispatched, held in the
functional unit and do not execute until all prior instructions have completed. A functional
unit holding an execution-serialized instruction will not accept further instructions from the
dispatcher. For example, execution serialization is used for instructions that modify
nonrenamed resources. Results from these instructions are generally not available or
forwarded to subsequent instructions until the instruction completes (usingmtspr to write to
LR or CTR does provide forwarding to branch instructions).

• Completion serialization (also referred to as post-dispatch or tail
serialization)—Completion-serialized instructions inhibit dispatching of subsequent
instructions until the serialized instruction completes. Completion serialization is used for
instructions that bypass the normal rename mechanism.

• Refetch serialization (flush serialization)—Refetch-serialized instructions inhibit dispatch of
subsequent instructions and force refetching of subsequent instructions after completion.

IBM Confidential

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-17

6.4 Execution Unit Timings
The following sections describe instruction timing considerations within each of the respective
execution units in Gekko.

6.4.1 Branch Processing Unit Execution Timing
Flow control operations (conditional branches, unconditional branches, and traps) are typically
expensive to execute in most machines because they disrupt normal flow in the instruction stream.
When a change in program flow occurs, the IQ must be reloaded with the target instruction stream.
Previously issued instructions will continue to execute while the new instruction stream makes its
way into the IQ, but depending on whether the target instruction is in the BTIC, instruction cache,
L2 cache, or in system memory, some opportunities may be missed to execute instructions, as the
example in 6.3.2.3,” shows.
Performance features such as the branch folding, removal of fall-through branch instructions,
BTIC, dynamic branch prediction (implemented in the BHT), two-level branch prediction, and the
implementation of nonblocking caches minimize the penalties associated with flow control
operations on Gekko. The timing for branch instruction execution is determined by many factors
including the following:

• Whether the branch is taken

• Whether instructions in the target stream, typically the first two instructions in the target
stream, are in the branch target instruction cache (BTIC)

• Whether the target instruction stream is in the on-chip cache

• Whether the branch is predicted

• Whether the prediction is correct

6.4.1.1 Branch Folding and Removal of Fall-Through Branch
Instructions

When a branch instruction is encountered by the fetcher, the BPU immediately begins to decode it
and tries to resolve it. All branch instructions except those that update either the LR or CTR are
removed from the instruction flow before they would take a position in the completion queue.
Branch folding occurs either when a branch is taken or is predicted as taken (as is the case with
unconditional branches). When the BPU folds the branch instruction out of the instruction stream,
the target instruction stream that is fetched into the instruction queue overwrites the branch
instruction.
Figure 6-7 shows branch folding. Here abr instruction is encountered in a series ofadd
instructions. The branch is resolved as taken. What happens on the next clock cycle depends on
whether the target instruction stream is in the BTIC, the instruction cache, or if it must be fetched
from the L2 cache or from system memory.
Figure 6-7 shows cases where there is a BTIC hit, and when there is a BTIC miss (and instruction
cache hit).
If there is a BTIC hit on the next clock cycle theb instruction is replaced by the target instruction,
and1, that was found in the BTIC; the secondand instruction is also fetched from the BTIC. On
the next clock cycle, the next fourand instructions from the target stream are fetched from the
instruction cache.
If the target instruction is not in the BTIC, there is an idle cycle while the fetcher attempts to fetch
the first four instructions from the instruction cache (on the next clock cycle). In the example in
Figure 6-7, the first four target instruction are fetched on the next clock.
If it misses in the caches, an L2 cache or memory access is required, the latency of which is

IBM Confidential

Page 6-18 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

dependent on several factors, such as processor/bus clock ratios. In most cases, new instructions
arrive in the IQ before the execution units become idle.

Figure 6-7. Branch Folding

Figure 6-8 shows the removal of fall-through branch instructions, which occurs when a branch is not
taken or is predicted as not taken.

Figure 6-8. Removal of Fall-Through Branch Instruction

In this case the branch instruction remains in the instruction queue and is removed from the
instruction stream as if it were dispatched. However, it is not dispatched to an execution unit and is
not assigned an entry in the completion queue.
When a branch instruction is detected before it reaches a dispatch position, and if the branch is
correctly predicted as taken, folding the branch instruction (and any instructions from the incorrect
path) reduces the latency required for flow control to zero; instruction execution proceeds as though
the branch was never there.
The advantage of removing the fall-through branch instructions at dispatch is only marginally less
than that of branch folding. Because the branch is not taken, only the branch instruction needs to be
discarded. The only cost of expelling the branch instruction from one of the dispatch entries rather
than folding it is missing a chance to dispatch an executable instruction from that position.

6.4.1.2 Branch Instructions and Completion
As described in the previous section, instructions that do not update either the LR or CTR are removed
from the instruction stream before they reach the completion queue, either by branch folding (in the
case of taken branches) or by removing fall-through branch instructions at dispatch (in the case of
non-taken branches). However, branch instructions that update the architected LR and CTR must do

IQ5 add5
IQ4 add4
IQ3 add3
IQ2 b
IQ1 add2
IQ0 add1

and2
and1

and6
and5
and4
and3

Branch Folding
(Taken Branch/BTIC Hit)

IQ5 add5
IQ4 add4
IQ3 add3
IQ2 b
IQ1 add2
IQ0 add1

and4
and3
and2
and1

Branch Folding
(Taken Branch/BTIC Miss)

Clock 0 Clock 1 Clock 2 Clock 0 Clock 1 Clock 2

IQ5 add5
IQ4 add4
IQ3 add3
IQ2 b
IQ1 add2
IQ0 add1

add5
add4
add3

b

add7
add6
add5
add4

Branch Fall-Through
(Not-Taken Branch)

Clock 0 Clock 1 Clock 2

IBM Confidential

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-19

so in program order and therefore must perform write-back in the completion stage, like the
instructions that update the FPRs and GPRs.
Branch instructions that update the CTR or LR pass through the instruction queue like nonbranch
instructions. At the point of dispatch, however, they are not sent to an execution unit, but rather are
assigned a slot in the completion queue, as shown in Figure 6-9.

Figure 6-9. Branch Completion

In this example, thebc instruction is encoded to decrement the CTR. It is predicted as not-taken in
clock cycle 0. In clock cycle 2,bc andadd3 are both dispatched. In clock cycle 3, the architected
CTR is updated and thebc instruction is retired from the completion queue.

6.4.1.3 Branch Prediction and Resolution
Gekko supports the following two types of branch prediction:

• Static branch prediction—This is defined by the PowerPC architecture as part of the
encoding of branch instructions.

• Dynamic branch prediction—This is a processor-specific mechanism implemented in
hardware (in particular the branch history table, or BHT) that monitors branch instruction
behavior and maintains a record from which the next occurrence of the branch instruction
is predicted.

When a conditional branch cannot be resolved due to a CR data dependency, the BPU predicts
whether it will be taken, and instruction fetching proceeds down the predicted path. If the branch
prediction resolves as incorrect, the instruction queue and all subsequently executed instructions
are purged, instructions executed prior to the predicted branch are allowed to complete, and
instruction fetching resumes down the correct path.
Gekko executes through two levels of prediction. Instructions from the first unresolved branch can
execute, but they cannot complete until the branch is resolved. If a second branch instruction is
encountered in the predicted instruction stream, it can be predicted and instructions can be fetched,
but not executed, from the second branch. No action can be taken for a third branch instruction until
at least one of the two previous branch instructions is resolved.

IQ5 add5
IQ4 add4
IQ3 add3
IQ2 bc
IQ1 add2
IQ0 add1

add5
add4
add3

bc

Branch Completion
(LR/CTR Write-Back)

CQ5
CQ4
CQ3
CQ2
CQ1
CQ0

add2
add1

Clock 0 Clock 1

add7
add6
add5
add4

add3
bc

Clock 2

add9
add8
add7
add6

add5
add4

Clock 3

IBM Confidential

Page 6-20 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

The number of instructions that can be executed after the issue of a predicted branch instruction is
limited by the fact that no instruction executed after a predicted branch may actually update the
register files or memory until the branch is completed. That is, instructions may be issued and
executed, but cannot reach the write-back stage in the completion unit. When an instruction following
a predicted branch completes execution, it does not write back its results to the architected registers,
instead, it stalls in the completion queue. Of course, when the completion queue is full, no additional
instructions can be dispatched, even if an execution unit is idle.
In the case of a misprediction, Gekko can easily redirect its machine state because the programming
model has not been updated. When a branch is mispredicted, all instructions that were dispatched
after the predicted branch instruction are flushed from the completion queue and any results are
flushed from the rename registers.
The BTIC is a cache of recently used branch target instructions. If the search for the branch target hits
in the cache, the first one or two branch instructions is available in the instruction queue on the next
cycle (shown in Figure 6-5). Two instructions are fetched on a BTIC hit, unless the branch target is
the last instruction in a cache block, in which case one instruction is fetched.
In some situations, an instruction sequence creates dependencies that keep a branch instruction from
being resolved immediately, thereby delaying execution of the subsequent instruction stream based
on the predicted outcome of the branch instruction. The instruction sequences and the resulting action
of the branch instruction are described as follows:

• An mtspr(LK) followed by abclr—Fetching stops and the branch waits for themtspr to
execute.

• An mtspr(CTR) followed by abcctr—Fetching stops and the branch waits for themtspr to
execute.

• An mtspr(CTR) followed by abc (CTR decrement)—Fetching stops and the branch waits for
themtspr to execute.

• A third bc(based-on-CR) is encountered while there are two unresolvedbc(based-on-CR).
The thirdbc(based-on-CR) is not executed and fetching stops until one of the previous
bc(based-on-CR) is resolved. (Note that branch conditions can be a function of the CTR and
the CR; if the CTR condition is sufficient to resolve the branch, then a CR-dependency is
ignored.)

6.4.1.3.1 Static Branch Prediction
The PowerPC architecture provides a field in branch instructions (the BO field) to allow software to
hint whether a branch is likely to be taken. Rather than delaying instruction processing until the
condition is known, Gekko uses the instruction encoding to predict whether the branch is likely to be
taken and begins fetching and executing along that path. When the branch condition is known, the
prediction is evaluated. If the prediction was correct, program flow continues along that path;
otherwise, the processor flushes any instructions and their results from the mispredicted path, and
program flow resumes along the correct path.
Static branch prediction is used when HID0[BHT] is cleared. That is, the branch history table, which
is used for dynamic branch prediction, is disabled.
For information about static branch prediction, see “Conditional Branch Control,” in Chapter 4,
“Addressing Modes and Instruction Set Summary” in thePowerPC Microprocessor Family: The
Programming Environments manual.

IBM Confidential

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-21

6.4.1.3.2 Predicted Branch Timing Examples
Figure 6-10 shows cases where branch instructions are predicted. It shows how both taken and
not-taken branches are handled and how Gekko handles both correct and incorrect predictions. The
example shows the timing for the following instruction sequence:
0 add
1 add
2 bc
3 mulhw
4 bc T0
5 fadd
6 and
add
T7 add
T8 add
T9 add
T10 add
T11 or

IBM Confidential

Page 6-22 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Figure 6-10. Branch Instruction Timing

0. During clock cycle 0, instructions 0 and 1 are dispatched to their respective execution units.
Instruction 2 is a branch instruction that updates the CTR. It is predicted as not taken in clock
cycle 0. Instruction 3 is amulhw instruction on which instruction 4 depends.

1. In clock cycle 1, instructions 2 and 3 enter the dispatch entries in the IQ. Instruction 4 (a
secondbc instruction) and 5 are fetched. The secondbc instruction is predicted as taken. It
can be folded, but it cannot be resolved until instruction 3 writes back.

5 fadd

T3 add

4 bc

1 2 3 4 5 6 7 80 9 10

•••

•••

Fetch

In dispatch entry (IQ0/IQ1)

Predict

Execute

Complete (In CQ)

In retirement entry (CQ0/CQ1)

1 add

T2 add

3

2 (bc)

1

0

T1

T0

T5

T4

T3

T2

T5

T4

T3

T2

(8)

(7)

6

5

5

4

3

2

3

2

1

0

T1

T0

3

2

T1

T0

3

6

5

(8)

(7)

6

5

(8)

(7)

6

5

(8)

(7)

6

5

1

0

Instruction
Queue

Completion
Queue

0 add

T1 add

T0 add

2 bc

3 mulhw

T5 or

T4 and

5 fadd *

6 and*

* Instructions 5 and 6 are not in the IQ in clock cycle 5. Here, the fetch stage shows cache latency.

IBM Confidential

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-23

2. In clock cycle 2, instruction 4 has been folded and instruction 5 has been flushed from the
IQ. The two target instructions, T0 and T1, are both in the BTIC, so they are fetched in this
cycle. Note that even though the firstbc instruction may not have resolved by this point (we
can assume it has), Gekko allows fetching from a second predicted branch stream.
However, these instructions could not be dispatched until the previous branch has resolved.

3. In clock cycle 3, target instructions T2–T5 are fetched as T0 and T1 are dispatched.

4. In clock cycle 4, instruction 3, on which the second branch instruction depended,
writes back and the branch prediction is proven incorrect. Even though T0 is in CQ1,
from which it could be written back, it is not written back because the branch
prediction was incorrect. All target instructions are flushed from their positions in
the pipeline at the end of this clock cycle, as are any results in the rename registers.

After one clock cycle required to refetch the original instruction stream, instruction 5, the same
instruction that was fetched in clock cycle 1, is brought back into the IQ from the instruction cache,
along with three others (not all of which are shown).

6.4.2 Integer Unit Execution Timing
Gekko has two integer units. The IU1 can execute all integer instructions; and the IU2 can execute
all integer instructions except multiply and divide instructions. As shown in Figure 6-2, each
integer unit has one execute pipeline stage, thus when a multicycle integer instruction is being
executed, no other integer instructions can begin to execute. Table 6-6 lists integer instruction
latencies.
Most integer instructions have an execution latency of one clock cycle.

6.4.3 Floating-Point Unit Execution Timing
The floating-point unit on Gekko executes all floating-point instructions. Execution of most
floating-point instructions is pipelined within the FPU, allowing up to three instructions to be
executing in the FPU concurrently. While most floating-point instructions execute with three- or
four-cycle latency, and one- or two-cycle throughput, two instructions (fdivs andfdiv) execute with
latencies of 11 to 33 cycles. Thefdivs, fdiv, mtfsb0, mtfsb1, mtfsfi, mffs, andmtfsf instructions
block the floating-point unit pipeline until they complete execution, and thereby inhibit the
dispatch of additional floating-point instructions. See Table 6-7 for floating-point instruction
execution timing.

6.4.4 Effect of Floating-Point Exceptions on Performance
For the fastest and most predictable floating-point performance, all exceptions should be disabled
in the FPSCR and MSR.

6.4.5 Load/Store Unit Execution Timing
The execution of most load and store instructions is pipelined. The LSU has two pipeline stages.
The first is for effective address calculation and MMU translation and the second is for accessing
data in the cache. Load and store instructions have a two-cycle latency and one-cycle throughput.
For instructions that store FPR values (stfd, stfs, psq_st, and their variations), the data to be stored
is prefetched from the source register during the first pipeline stage. In cases where this register is
updated that same cycle, the instruction will stall to get the correct data, resulting in one additional
cycle of latency.
If operands are misaligned, additional latency may be required either for an alignment exception
to be taken or for additional bus accesses. Load instructions that miss in the cache block subsequent
cache accesses during the cache line refill. Table 6-8 gives load and store instruction execution
latencies.

IBM Confidential

Page 6-24 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

6.4.6 Effect of Operand Placement on Performance
The PowerPC VEA states that the placement (location and alignment) of operands in memory may
affect the relative performance of memory accesses, and in some cases affect it significantly. The
effects memory operand placement has on performance are shown in Table 6-1.
The best performance is guaranteed if memory operands are aligned on natural boundaries. For the
best performance across the widest range of implementations, the programmer should assume the
performance model described in Chapter 3, “Operand Conventions” in thePowerPC Microprocessor
Family: The Programming Environments manual.
The effect of misalignment on memory access latency is the same for big- and little-endian addressing
modes except for multiple and string operations that cause an alignment exception in little-endian
mode.

Table 6-1. Performance Effects of Memory Operand Placement

Operand Boundary Crossing

Size Byte Alignment None 8 Byte Cache Block Protection Boundary

Integer

4 byte 4 Optimal1

1 Optimal means one EA calculation occurs.

— — —

< 4 Optimal Good Good Good

2 byte 2 Optimal — — —

< 2 Optimal Good Good Good

1 byte 1 Optimal — — —

lmw ,
stmw 2

2 Not supported in little-endian mode, causes an alignment exception.

4 Good 3

3 Good means multiple EA calculations occur that may cause additional bus activities with multiple bus transfers.

Good Good Good

< 4 Poor 4

4 Poor means that an alignment exception occurs.

Poor Poor Poor

String 2 — Good Good Good Good

Floating-Point

8 byte 8 Optimal — — —

4 — Good Good Good

< 4 — Poor Poor Poor

4 byte 4 Optimal — — —

< 4 Poor Poor Poor Poor

Notes :

IBM Confidential

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-25

6.4.7 Integer Store Gathering
The Gekko performs store gathering for write-through operations to nonguarded space. It performs
cache-inhibited stores to nonguarded space for 4-byte, word-aligned stores. These stores are
combined in the LSU to form a double word and are sent out on the 60x bus as a single-beat
operation. However, stores are gathered only if the successive stores meet the criteria and are
queued and pending. Store gathering occurs regardless of the address order of the stores. Store
gathering is enabled by setting HID0[SGE]. Stores can be gathered in both endian modes.

Store gathering is not done for the following:

• Cacheable store operations

• Stores to guarded cache-inhibited or write-through space

• Byte-reverse store operations

• stwcx. instructions

• ecowx instructions

• A store that occurs during a table search operation

• Floating-point store operations

If store gathering is enabled and the stores do not fall under the above categories, aneieioor sync
instruction must be used to prevent two stores from being gathered.

6.4.8 System Register Unit Execution Timing
Most instructions executed by the SRU either directly access renamed registers or access or modify
nonrenamed registers. They generally execute in a serial manner. Results from these instructions
are not available to subsequent instructions until the instruction completes and is retired. See
6.3.2.7,” for more information on serializing instructions executed by the SRU, and refer to
Table 6-4 and Table 6-5 for SRU instruction execution timings.

6.5 Memory Performance Considerations
Because Gekko can have a maximum instruction throughput of three instructions per clock cycle,
lack of memory bandwidth can affect performance. For the Gekko to maximize performance, it
must be able to read and write data efficiently. If a system has multiple bus devices, one of them
may experience long memory latencies while another bus master (for example, a direct-memory
access controller) is using the external bus.

6.5.1 Caching and Memory Coherency
To minimize the effect of bus contention, the PowerPC architecture defines WIM bits that are used
to configure memory regions as caching-enforced or caching-inhibited. Accesses to such memory
locations never update the on-chip cache. If a cache-inhibited access hits the on-chip cache, the
cache block is invalidated. If the cache block is marked modified, it is copied back to memory
before being invalidated. Where caching is permitted, memory is configured as either write-back
or write-through, which are described as follows:

• Write-back— Configuring a memory region as write-back lets a processor modify data in
the cache without updating system memory. For such locations, memory updates occur
only on modified cache block replacements, cache flushes, or when one processor needs
data that is modified in another’s cache. Therefore, configuring memory as write-back can
help when bus traffic could cause bottlenecks, especially for multiprocessor systems and
for regions in which data, such as local variables, is used often and is coupled closely to a
processor.

IBM Confidential

Page 6-26 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

If multiple devices use data in a memory region marked write-through, snooping must
be enabled to allow the copy-back and cache invalidation operations necessary to
ensure cache coherency. Gekko’s snooping hardware keeps other devices from
accessing invalid data. For example, when snooping is enabled, Gekko monitors
transactions of other bus devices. For example, if another device needs data that is
modified on Gekko’s cache, the access is delayed so Gekko can copy the modified data
to memory.

• Write-through—Store operations to memory marked write-through always update both
system memory and the on-chip cache on cache hits. Because valid cache contents always
match system memory marked write-through, cache hits from other devices do not cause
modified data to be copied back as they do for locations marked write-back. However, all
write operations are passed to the bus, which can limit performance. Load operations that miss
the on-chip cache must wait for the external store operation.

Write-through configuration is useful when cached data must agree with external
memory (for example, video memory), when shared (global) data may be needed
often, or when it is undesirable to allocate a cache block on a cache miss.

Chapter 3, "Gekko Instruction and Data Cache Operation" describes the caches, memory
configuration, and snooping in detail.

6.5.2 Effect of TLB Miss
If a page address translation is not in a TLB, Gekko hardware searches the page tables and updates
the TLB when a translation is found. Table 6-2 shows the estimated latency for the hardware TLB
load for different cache configurations and conditions.

The PTE table search assumes a hit in the first entry of the primary PTEG.

Table 6-2. TLB Miss Latencies

L1 Condition
(Instruction and Data)

L2 Condition
Processor/System Bus

Clock Ratio
Estimated Latency

(Cycles)

100% cache hit — — 7

100% cache miss 100% cache hit — 13

100% cache miss 100% cache miss 2.5:1 (6:3:3:3 memory) 62

100% cache miss 100% cache miss 4:1 (5:2:2:2 memory) 77

IBM Confidential

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-27

6.6 Instruction Scheduling Guidelines
The performance of Gekko can be improved by avoiding resource conflicts and scheduling
instructions to take fullest advantage of the parallel execution units. Instruction scheduling on
Gekko can be improved by observing the following guidelines:

• To reduce mispredictions, separate the instruction that sets CR bits from the branch
instruction that evaluates them. Because there can be no more than 12 instructions in the
processor (with the instruction that sets CR in CQ0 and the dependent branch instruction in
IQ5), there is no advantage to having more than 10 instructions between them.

• Likewise, when branching to a location specified by the CTR or LR, separate themtspr
instruction that initializes the CTR or LR from the dependent branch instruction. This
ensures the register values are immediately available to the branch instruction.

• Schedule instructions such that two can be dispatched at a time.

• Schedule instructions to minimize stalls due to execution units being busy.

• Avoid scheduling high-latency instructions close together. Interspersing single-cycle
latency instructions between longer-latency instructions minimizes the effect that
instructions such as integer divide and multiply can have on throughput.

• Avoid using serializing instructions.

• Schedule instructions to avoid dispatch stalls:

— Six instructions can be tracked in the completion queue; therefore, only six instructions
can be in the execute stages at any one time

— There are six GPR rename registers; therefore only six GPRs can be specified as
destination operands at any time. If no rename registers are available, instructions
cannot enter the execute stage and remain in the reservation station or instruction queue
until they become available.
NOTE: Load with update address instructions use two destination registers

— Similarly, there are six FPR rename registers, so only six FPR destination
operands can be in the execute and complete stages at any time.

6.6.1 Branch, Dispatch, and Completion Unit Resource Requirements
This section describes the specific resources required to avoid stalls during branch resolution,
instruction dispatching, and instruction completion.

6.6.1.1 Branch Resolution Resource Requirements
The following is a list of branch instructions and the resources required to avoid stalling the fetch
unit in the course of branch resolution:

• Thebclr instruction requires LR availability.

• Thebcctr instruction requires CTR availability.

• Branch and link instructions require shadow LR availability.

• The “branch conditional on counter decrement and the CR” condition requires CTR
availability or the CR condition must be false, and Gekko cannot execute instructions after
an unresolved predicted branch when the BPU encounters a branch.

• A branch conditional on CR condition cannot be executed following an unresolved
predicted branch instruction.

IBM Confidential

Page 6-28 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

6.6.1.2 Dispatch Unit Resource Requirements
The following is a list of resources required to avoid stalls in the dispatch unit. IQ[0] and IQ[1] are
the two dispatch entries in the instruction queue:

• Requirements for dispatching from IQ[0] are as follows:

— Needed execution unit available
— Needed GPR rename registers available
— Needed FPR rename registers available
— Completion queue is not full.
— A completion-serialized instruction is not being executed.

• Requirements for dispatching from IQ[1] are as follows:

— Instruction in IQ[0] must dispatch.
— Instruction dispatched by IQ[0] is not completion- or refetch-serialized.
— Needed execution unit is available (after dispatch from IQ[0]).
— Needed GPR rename registers are available (after dispatch from IQ[0]).
— Needed FPR rename register is available (after dispatch from IQ[0]).
— Completion queue is not full (after dispatch from IQ[0]).

6.6.1.3 Completion Unit Resource Requirements
The following is a list of resources required to avoid stalls in the completion unit; note that the two
completion entries are described as CQ[0] and CQ[1], where CQ[0] is the completion queue located
at the end of the completion queue (see Figure 6-4).

• Requirements for completing an instruction from CQ[0] are as follows:

— Instruction in CQ[0] must be finished.
— Instruction in CQ[0] must not follow an unresolved predicted branch.
— Instruction in CQ[0] must not cause an exception.

• Requirements for completing an instruction from CQ[1] are as follows:

— Instruction in CQ[0] must complete in same cycle.
— Instruction in CQ[1] must be finished.
— Instruction in CQ[1] must not follow an unresolved predicted branch.
— Instruction in CQ[1] must not cause an exception.
— Instruction in CQ[1] must be an integer or load instruction.
— Number of CR updates from both CQ[0] and CQ[1] must not exceed two.
— Number of GPR updates from both CQ[0] and CQ[1] must not exceed two.
— Number of FPR updates from both CQ[0] and CQ[1] must not exceed two.

IBM Confidential

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-29

6.7 Instruction Latency Summary
Table 6-3 through Table 6-8 on Page 6-34 list the latencies associated with instructions executed
by each execution unit. Table 6-3 describes branch instruction latencies.

Table 6-4 lists system register instruction latencies.

Table 6-3. Branch Instructions

Mnemonic Primary Extended Latency

b[l][a] 18 — Unless these instructions update either the CTR or the LR, branch
operations are folded if they are either taken or predicted as taken. They fall
through if they are not taken or predicted as not taken.bc [l][a] 16 —

bcctr [l] 19 528

bclr [l] 19 16

Table 6-4. System Register Instructions

Mnemonic Primary Extended Unit Cycles Serialization

eieio 31 854 SRU 1 —

isync 19 150 SRU 2 Completion, refetch

mfmsr 31 83 SRU 1 —

mfspr (DBATs) 31 339 SRU 3 Execution

mfspr (IBATs) 31 339 SRU 3 —

mfspr (not I/DBATs) 31 339 SRU 1 Execution

mfsr 31 595 SRU 3 —

mfsrin 31 659 SRU 3 Execution

mftb 31 371 SRU 1 —

mtmsr 31 146 SRU 1 Execution

mtspr (DBATs) 31 467 SRU 2 Execution

mtspr (IBATs) 31 467 SRU 2 Execution

mtspr (not I/DBATs) 31 467 SRU 2 Execution

mtsr 31 210 SRU 2 Execution

mtsrin 31 242 SRU 2 Execution

mttb 31 467 SRU 1 Execution

rfi 19 50 SRU 2 Completion, refetch

sc 17 - -1 SRU 2 Completion, refetch

sync 31 598 SRU 31 —

tlbsync 2 31 566 — —

Notes:

IBM Confidential

Page 6-30 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Table 6-5 lists condition register logical instruction latencies.

Table 6-6 shows integer instruction latencies. Note that the IU1 executes all integer arithmetic
instructions—multiply, divide, shift, rotate, add, subtract, and compare. The IU2 executes all integer
instructions except multiply and divide (that is, shift, rotate, add, subtract, and compare).

1 This assumes no pending stores in the store queue. If there are, the sync completes after they complete to memory.
If broadcast is enabled on the 60x bus, sync completes only after a successful broadcast.

2 tlbsync is dispatched only to the completion buffer (not to any execution unit) and is marked finished as it is
dispatched. Upon retirement, it waits for an external TLBISYNC signal to be asserted. In most systems TLBISYNC
is always asserted so the instruction is a no-op.

Table 6-5. Condition Register Logical Instructions

Mnemonic Primary Extended Unit Cycles Serialization

crand 19 257 SRU 1 Execution

crandc 19 129 SRU 1 Execution

creqv 19 289 SRU 1 Execution

crnand 19 225 SRU 1 Execution

crnor 19 33 SRU 1 Execution

cror 19 449 SRU 1 Execution

crorc 19 417 SRU 1 Execution

crxor 19 193 SRU 1 Execution

mcrf 19 0 SRU 1 Execution

mcrxr 31 512 SRU 1 Execution

mfcr 31 19 SRU 1 Execution

mtcrf 31 144 SRU 1 Execution

Table 6-6. Integer Instructions

Mnemonic Primary Extended Unit Cycles Serialization

addc [o][.] 31 10 IU1/IU2 1 —

adde [o][.] 31 138 IU1/IU2 1 Execution

addi 14 — IU1/IU2 1 —

addic 12 — IU1/IU2 1 —

addic. 13 — IU1/IU2 1 —

addis 15 — IU1/IU2 1 —

addme [o][.] 31 234 IU1/IU2 1 Execution

addze [o][.] 31 202 IU1/IU2 1 Execution

IBM Confidential

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-31

add [o][.] 31 266 IU1/IU2 1 —

andc [.] 31 60 IU1/IU2 1 —

andi. 28 — IU1/IU2 1 —

andis. 29 — IU1/IU2 1 —

and [.] 31 28 IU1/IU2 1 —

cmp 31 0 IU1/IU2 1 —

cmpi 11 — IU1/IU2 1 —

cmpl 31 32 IU1/IU2 1 —

cmpli 10 — IU1/IU2 1 —

cntlzw [.] 31 26 IU1/IU2 1 —

divwu [o][.] 31 459 IU1 19 —

divw [o][.] 31 491 IU1 19 —

eqv [.] 31 284 IU1/IU2 1 —

extsb [.] 31 954 IU1/IU2 1 —

extsh [.] 31 922 IU1/IU2 1 —

mulhwu [.] 31 11 IU1/IU2 2,3,4,5,6 —

mulhw [.] 31 75 IU1/IU2 2,3,4,5 —

mulli 7 — IU1 2,3 —

mull [o][.] 31 235 IU1 2,3,4,5 —

nand [.] 31 476 IU1/IU2 1 —

neg [o][.] 31 104 IU1/IU2 1 —

nor [.] 31 124 IU1/IU2 1 —

orc [.] 31 412 IU1/IU2 1 —

ori 24 — IU1/IU2 1 —

oris 25 — IU1/IU2 1 —

or [.] 31 444 IU1/IU2 1 —

rlwimi [.] 20 — IU1/IU2 1 —

rlwinm [.] 21 — IU1/IU2 1 —

rlwnm [.] 23 — IU1/IU2 1 —

slw [.] 31 24 IU1/IU2 1 —

srawi [.] 31 824 IU1/IU2 1 —

sraw [.] 31 792 IU1/IU2 1 —

Table 6-6. Integer Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization

IBM Confidential

Page 6-32 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Table 6-7 shows latencies for floating-point instructions. Pipelined floating-point instructions are
shown with number of clocks in each pipeline stage separated by dashes. Floating-point instructions
with a single entry in the cycles column are not pipelined; when the FPU executes these nonpipelined
instructions, it remains busy for the full duration of the instruction execution and is not available for
subsequent instructions.

srw [.] 31 536 IU1/IU2 1 —

subfc [o][.] 31 8 IU1/IU2 1 —

subfe [o][.] 31 136 IU1/IU2 1 Execution

subfic 8 — IU1/IU2 1 —

subfme [o][.] 31 232 IU1/IU2 1 Execution

subfze [o][.] 31 200 IU1/IU2 1 Execution

subf [.] 31 40 IU1/IU2 1 —

tw 31 4 IU1/IU2 2 —

twi 3 — IU1/IU2 2 —

xori 26 — IU1/IU2 1 —

xoris 27 — IU1/IU2 1 —

xor [.] 31 316 IU1/IU2 1 —

Table 6-7. Floating-Point Instructions

Mnemonic Primary Extended Unit Cycles Serialization

fabs [.] 63 264 FPU 1-1-1 —

fadds [.] 59 21 FPU 1-1-1 —

fadd [.] 63 21 FPU 1-1-1 —

fcmpo 63 32 FPU 1-1-1 —

fcmpu 63 0 FPU 1-1-1 —

fctiwz [.] 63 15 FPU 1-1-1 —

fctiw [.] 63 14 FPU 1-1-1 —

fdivs [.] 59 18 FPU 17 —

fdiv [.] 63 18 FPU 31 —

fmadds [.] 59 29 FPU 1-1-1 —

fmadd [.] 63 29 FPU 2-1-1 —

fmr [.] 63 72 FPU 1-1-1 —

Table 6-6. Integer Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization

IBM Confidential

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-33

fmsubs [.] 59 28 FPU 1-1-1 —

fmsub [.] 63 28 FPU 2-1-1 —

fmuls [.] 59 25 FPU 1-1-1 —

fmul [.] 63 25 FPU 2-1-1 —

fnabs [.] 63 136 FPU 1-1-1 —

fneg [.] 63 40 FPU 1-1-1 —

fnmadds [.] 59 31 FPU 1-1-1 —

fnmadd [.] 63 31 FPU 2-1-1 —

fnmsubs [.] 59 30 FPU 1-1-1 —

fnmsub [.] 63 30 FPU 2-1-1 —

fres [.] 59 24 FPU 2-1-1 —

frsp [.] 63 12 FPU 1-1-1 —

frsqrte [.] 63 26 FPU 2-1-1 —

fsel [.] 63 23 FPU 1-1-1 —

fsubs [.] 59 20 FPU 1-1-1 —

ps_abs[.] 4 264 FPU 1-1-1 —

ps_add[.] 4 21 FPU 1-1-1 —

ps_cmpo0 4 32 FPU 1-1-1 —

ps_cmpo1 4 96 FPU 1-1-1 —

ps_cmpu0 0 0 FPU 1-1-1 —

ps_cmpu1 4 64 FPU 1-1-1 —

ps_div[.] 4 18 FPU 17 —

ps_madd[.] 4 29 FPU 1-1-1 —

ps_madds0[.] 4 14 FPU 1-1-1 —

ps_madds1[.] 4 15 FPU 1-1-1 —

ps_merge00[.] 4 528 FPU 1-1-1 —

ps_merge01[.] 4 560 FPU 1-1-1 —

ps_merge10[.] 4 592 FPU 1-1-1 —

ps_merge_11[.] 4 624 FPU 1-1-1 —

ps_mr[.] 4 72 FPU 1-1-1 —

ps_msub[.] 4 28 FPU 1-1-1 —

ps_mul[.] 4 25 FPU 1-1-1 —

Table 6-7. Floating-Point Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization

IBM Confidential

Page 6-34 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Table 6-8 shows load and store instruction latencies. Pipelined load/store instructions are shown with
cycles of total latency and throughput cycles separated by a colon.

ps_muls0[.] 4 12 FPU 1-1-1 —

ps_muls1[.] 4 13 FPU 1-1-1 —

ps_nabs[.] 4 136 FPU 1-1-1 —

ps_neg[.] 4 40 FPU 1-1-1 —

ps_nmadd[.] 4 31 FPU 1-1-1 —

ps_nmsub[.] 4 30 FPU 1-1-1 —

ps_res[.] 4 24 FPU 2-1-1 —

ps_rsqrte[.] 4 26 FPU 2-1-1 —

ps_sel[.] 4 23 FPU 1-1-1 —

ps_sub[.] 4 20 FPU 1-1-1 —

ps_sum0[.] 4 10 FPU 1-1-1 —

ps_sum1[.] 4 11 FPU 1-1-1 —

fsub [.] 63 20 FPU 1-1-1 —

mcrfs 63 64 FPU 1-1-1 Execution

mffs [.] 63 583 FPU 1-1-1 Execution

mtfsb0 [.] 63 70 FPU 3 —

mtfsb1 [.] 63 38 FPU 3 —

mtfsfi [.] 63 134 FPU 3 —

mtfsf [.] 63 711 FPU 3 —

Table 6-8. Load and Store Instructions

Mnemonic Primary Extended Unit Cycles Serialization

dcbf 31 86 LSU 3:51 Execution

dcbi 31 470 LSU 3:31 Execution

dcbst 31 54 LSU 3:51 Execution

dcbt 31 278 LSU 2:1 —

dcbtst 31 246 LSU 2:1 —

dcbz 31 1014 LSU 3:61, 2 Execution

dcbz_l 4 1014 LSU 3:61 Exceution

Table 6-7. Floating-Point Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization

IBM Confidential

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-35

eciwx 31 310 LSU 2:1 —

ecowx 31 438 LSU 2:1 —

icbi 31 982 LSU 3:41 Execution

lbz 34 — LSU 2:1 —

lbzu 35 — LSU 2:1 —

lbzux 31 119 LSU 2:1 —

lbzx 31 87 LSU 2:1 —

lfd 50 — LSU 2:1 —

lfdu 51 — LSU 2:1 —

lfdux 31 631 LSU 2:1 —

lfdx 31 599 LSU 2:1 —

lfs 48 — LSU 2:1 —

lfsu 49 — LSU 2:1 —

lfsux 31 567 LSU 2:1 —

lfsx 31 535 LSU 2:1 —

lha 42 — LSU 2:1 —

lhau 43 — LSU 2:1 —

lhaux 31 375 LSU 2:1 —

lhax 31 343 LSU 2:1 —

lhbrx 31 790 LSU 2:1 —

lhz 40 — LSU 2:1 —

lhzu 41 — LSU 2:1 —

lhzux 31 311 LSU 2:1 —

lhzx 31 279 LSU 2:1 —

lmw 46 — LSU 2 + n 3 Completion, execution

lswi 31 597 LSU 2 + n 3 Completion, execution

lswx 31 533 LSU 2 + n 3 Completion, execution

lwarx 31 20 LSU 3:1 Execution

lwbrx 31 534 LSU 2:1 —

lwz 32 — LSU 2:1 —

lwzu 33 — LSU 2:1 —

lwzux 31 55 LSU 2:1 —

Table 6-8. Load and Store Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization

IBM Confidential

Page 6-36 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

lwzx 31 23 LSU 2:1 —

psq_l 56 — LSU 3:1 —

psq_lu 57 — LSU 3:1 —

psq_lux 4 38 LSU 3:1 —

psq_lx 4 6 LSU 3:1 —

psq_st 60 — LSU 2:1 —

psq_stu 61 — LSU 2:1 —

psq_stux 4 39 LSU 2:1 —

psq_stx 4 7 LSU 2:1 —

stb 38 — LSU 2:1 —

stbu 39 — LSU 2:1 —

stbux 31 247 LSU 2:1 —

stbx 31 215 LSU 2:1 —

stfd 54 — LSU 2:1 —

stfdu 55 — LSU 2:1 —

stfdux 31 759 LSU 2:1 —

stfdx 31 727 LSU 2:1 —

stfiwx 31 983 LSU 2:1 —

stfs 52 — LSU 2:1 —

stfsu 53 — LSU 2:1 —

stfsux 31 695 LSU 2:1 —

stfsx 31 663 LSU 2:1 —

sth 44 — LSU 2:1 —

sthbrx 31 918 LSU 2:1 —

sthu 45 — LSU 2:1 —

sthux 31 439 LSU 2:1 —

sthx 31 407 LSU 2:1 —

stmw 47 — LSU 2 + n 3 Execution

stswi 31 725 LSU 2 + n 3 Execution

stswx 31 661 LSU 2 + n 3 Execution

stw 36 — LSU 2:1 —

Table 6-8. Load and Store Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization

IBM Confidential

Chapter 6. Instruction Timing IBM Confidential 5/25/00 Page 6-37

stwbrx 31 662 LSU 2:1 —

stwcx. 31 150 LSU 8:8 Execution

stwu 37 — LSU 2:1 —

stwux 31 183 LSU 2:1 —

stwx 31 151 LSU 2:1 —

tlbie 31 306 LSU 3:41 Execution

Notes :
1 For cache-ops, the first number indicates the latency in finishing a single instruction; the second indicates the

throughput for back-to-back cache-ops. Throughput may be larger than the initial latency as more cycles may be
needed to complete the instruction to the cache, which stays busy keeping subsequent cache-ops from executing.

2 The throughput number of 6 cycles for dcbz assumes it is to nonglobal (M = 0) address space. For global address
space, throughput is at least 11 cycles

3 Load/store multiple/string instruction cycles are represented as a fixed number of cycles plus a variable number of
cycles, where n is the number of words accessed by the instruction.

Table 6-8. Load and Store Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization

IBM Confidential

Page 6-38 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

IBM Confidential

Chapter 7. Signal Descriptions IBM Confidential 5/25/00 Page 7-1

Chapter 7 Signal Descriptions
70
70

This chapter describes Gekko microprocessor’s external signals. It contains a concise description
of individual signals, showing behavior when the signal is asserted and negated and when the signal
is an input and an output.

NOTE
A bar over a signal name indicates that the signal is active low—for
example,ARTRY (address retry) andTS (transfer start). Active-low
signals are referred to as asserted (active) when they are low and
negated when they are high. Signals that are not active low, such as
AP[0–3] (address bus parity signals) and TT[0–4] (transfer type
signals) are referred to as asserted when they are high and negated
when they are low.

Gekko’s signals are grouped as follows:

• Address arbitration— Gekko uses these signals to arbitrate for address bus mastership.

• Address transfer start—These signals indicate that a bus master has begun a transaction on
the address bus.

• Address transfer—These signals include the address bus and address parity signals. They
are used to transfer the address and to ensure the integrity of the transfer.

• Transfer attribute—These signals provide information about the type of transfer, such as the
transfer size and whether the transaction is bursted, write-through, or cache-inhibited.

• Address transfer termination—These signals are used to acknowledge the end of the
address phase of the transaction. They also indicate whether a condition exists that requires
the address phase to be repeated.

• Data arbitration— Gekko uses these signals to arbitrate for data bus mastership.

• Data transfer—These signals, which consist of the data bus and data parity, are used to
transfer the data and to ensure the integrity of the transfer.

• Data transfer termination—Data termination signals are required after each data beat in a
data transfer. In a single-beat transaction, the data termination signals also indicate the end
of the tenure; while in burst accesses, the data termination signals apply to individual beats
and indicate the end of the tenure only after the final data beat. They also indicate whether
a condition exists that requires the data phase to be repeated.

• Interrupts/resets—These signals include the external interrupt signal, checkstop signals,
and both soft reset and hard reset signals. They are used to interrupt and, under various
conditions, to reset the processor.

• Processor status and control—These signals are used to set the reservation coherency bit,
enable the time base, and other functions. They are also used in conjunction with such
resources as secondary caches and the time base facility.

• Clock control—These signals determine the system clock frequency. They can also be used
to synchronize multiprocessor systems.

• Test interface—The JTAG (IEEE 1149.1a-1993) interface and the common on-chip
processor (COP) unit provide a serial interface to the system for performing board-level
boundary-scan interconnect tests.

IBM Confidential

Page 7-2 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

7.1 Signal Configuration
Figure 7-1 illustrates Gekko’s signal configuration, showing how the signals are grouped. A pinout
showing pin numbers is included in Gekko hardware specifications

Figure 7-1. PowerPC Gekko Signal Groups

7.2 Signal Descriptions
This section describes individual signals on Gekko, grouped according to Figure 7-1.
NOTE: These sections summarize signal functions; Chapter 8, "Bus Interface Operation"

describes many of these signals in greater detail, both with respect to how individual
signals function and to how the groups of signals interact.

Data
Arbitration

BR

BG

TS

AP[0–3]

GBL

TSIZ[0–2]

AACK

ARTRY

SYSCLKDBG

D[0–63]

DP[0–7]

TA

DRTRY

TEA

INT

JTAG/COP

Factory Test

1

11

1

5

3

4

TBST

WT

PLL_CFG[0–3]

TT[0–4]
5

4

1
CKSTP_OUT

MCP

SRESET

TLBISYNC

HRESET

QREQ

QACK

CKSTP_IN

CLK_OUT

1

3

1

1

1

1

1

8

64

1

1

1

1

1

1
1

1

1

1

1

1

CI 1

A[0–31]
32

Address
Arbitration

Address
Bus

Address
Termination

Address
Start

Transfer
Attributes

Data
Transfer

Data
Termination

Interrupts/
Resets

Processor
Status/
Control

VDD VDD (I/O)

Clock
Control

Test
Interface

Gekko

AVDD

Data TerminationData Transfer

Processor/Status
Control

Address Bus

Interupts/Resets

Note: Items in Italics are optional items

IBM Confidential

Chapter 7. Signal Descriptions IBM Confidential 5/25/00 Page 7-3

7.2.1 Address Bus Arbitration Signals
The address arbitration signals are the input and output signals Gekko uses to request the address
bus, recognize when the request is granted, and indicate to other devices when mastership is
granted.
For a detailed description of how these signals interact, see Section 8.3.1, “Address Bus
Arbitration" on Page 8-9.

7.2.1.1 Bus Request (BR)—Output
Following are the state meaning and timing comments for theBR output signal.

State Meaning Asserted—Indicates that Gekko is requesting mastership of the address
bus. Note thatBR may be asserted for one or more cycles, and then
de-asserted due to an internal cancellation of the bus request (for example,
due to a load hit in the touch load buffer). See Section 8.3.1, “Address Bus
Arbitration" on Page 8-9.

Negated—Indicates that Gekko is not requesting the address bus. Gekko
may have no bus operation pending, it may be parked, or theARTRY input
was asserted on the previous bus clock cycle.

Timing Comments Assertion—Occurs when Gekko is not parked and a bus transaction is
needed. This may occur even if the two possible pipeline accesses have
occurred.BR will also be asserted for one cycle during the execution of a
dcbz instruction, and during the execution of a load instruction which hits
in the touch load buffer.

Negation—Occurs for at least one bus clock cycle after an accepted,
qualified bus grant (seeBG), even if another transaction is pending. It is
also negated for at least one bus clock cycle when the assertion ofARTRY
is detected on the bus.

7.2.1.2 Bus Grant (BG)—Input
Following are the state meaning and timing comments for theBG input signal.

State Meaning Asserted—Indicates that Gekko may, with proper qualification, assume
mastership of the address bus. A qualified bus grant occurs whenBG is
asserted andARTRY is not asserted the bus cycle following the assertion
of AACK. TheARTRY signal is driven by Gekko or other bus masters. If
Gekko is parked,BR need not be asserted for the qualified bus grant. See
Section 8.3.1, “Address Bus Arbitration" on Page 8-9.

Negated— Indicates that Gekko is not the next potential address bus
master.

Timing Comments Assertion—May occur at any time to indicate Gekko can use the address
bus. After Gekko assumes bus mastership, it does not check for a qualified
bus grant again until the cycle during which the address bus tenure
completes (assuming it has another transaction to run). Gekko does not
accept aBG in the cycles between the assertion of anyTS andAACK.

Negation—May occur at any time to indicate Gekko cannot use the bus.
Gekko may still assume bus mastership on the bus clock cycle of the
negation ofBG because during the previous cycleBG indicated to Gekko
that it could take mastership (if qualified).

IBM Confidential

Page 7-4 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

7.2.2 Address Transfer Start Signals
Address transfer start signals are input and output signals that indicate that an address bus transfer has
begun. The transfer start (TS) signal identifies the operation as a memory transaction.
For detailed information about howTS interacts with other signals, refer to Section 8.3.2, “Address
Transfer" on Page 8-11.

7.2.2.1 Transfer Start (TS)
TheTS signal is both an input and an output signal on Gekko.

7.2.2.1.1 Transfer Start (TS)—Output
Following are the state meaning and timing comments for theTS output signal.

State Meaning Asserted—Indicates that Gekko has begun a memory bus transaction and that
the address bus and transfer attribute signals are valid. When asserted with
the appropriate TT[0–4] signals it is also an implied data bus request for a
memory transaction (unless it is an address-only operation).

Negated—Indicates that no bus transaction is occurring during normal
operation.

Timing Comments Assertion—May occur in a bus cycle following a qualified bus grant.
Negation—Occurs one bus clock cycle afterTS is asserted.
High Impedance—Occurs the bus cycle followingAACK.

7.2.2.1.2 Transfer Start (TS)—Input
Following are the state meaning and timing comments for theTS input signal.

State Meaning Asserted—Indicates that another master has begun a bus transaction and that
the address bus and transfer attribute signals are valid for snooping (see
GBL).

Negated—Indicates that no bus transaction is occurring.

Timing Comments Assertion—May occur in a bus cycle following a qualified bus grant.
Negation—Must occur one bus clock cycle afterTS is asserted.

IBM Confidential

Chapter 7. Signal Descriptions IBM Confidential 5/25/00 Page 7-5

7.2.3 Address Transfer Signals
The address transfer signals are used to transmit the address and to generate and monitor parity for
the address transfer. For a detailed description of how these signals interact, refer to Section 8.3.2,
“Address Transfer" on Page 8-11.

7.2.3.1 Address Bus (A[0–31])
The address bus (A[0–31]) consists of 32 signals that are both input and output signals.

7.2.3.1.1 Address Bus (A[0–31])—Output
Following are the state meaning and timing comments for the A[0–31] output signals.

State Meaning Asserted/Negated—Represents the physical address (real address in the
architecture specification) of the data to be transferred. On burst transfers,
the address bus presents the double-word-aligned address containing the
critical code/data that missed the cache on a read operation, or the first
double word of the cache line on a write operation. Note that the address
output during burst operations is not incremented. See SSection 8.3.2,
“Address Transfer" on Page 8-11.

Timing Comments Assertion/Negation—Occurs on the bus clock cycle after a qualified bus
grant (coincides with assertion ofTS).

High Impedance—Occurs one bus clock cycle afterAACK is asserted.

7.2.3.1.2 Address Bus (A[0–31])—Input
Following are the state meaning and timing comments for the A[0–31] input signals.

State Meaning Asserted/Negated—Represents the physical address of a snoop operation.

Timing Comments Assertion/Negation—Must occur on the same bus clock cycle as the
assertion ofTS; is sampled by Gekko only on this cycle.

7.2.3.2 Address Bus Parity (AP[0–3]) (N/A on Gekko)
The address bus parity (AP[0–3]) signals are both input and output signals reflecting one bit of
odd-byte parity for each of the 4 bytes of address when a valid address is on the bus. Address Bus
Parity (AP[0–3])—Output
Following are the state meaning and timing comments for the AP[0–3] output signals.

State MeaningAsserted/Negated—Represents odd parity for each of the 4 bytes of the physical
address for a transaction. Odd parity means that an odd number of bits, including the parity bit, are
driven high. The signal assignments correspond to the following:

AP0 A[0–7]
AP1 A[8–15]
AP2 A[16–23]
AP3 A[24–31]

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].

7.2.3.2.1 Address Bus Parity (AP[0–3])—Input
Following are the state meaning and timing comments for the AP[0–3] input signal.

State Meaning Asserted/Negated—Represents odd parity for each of the 4 bytes of the
physical address for snooping operations. Detected even parity causes the
processor to take a machine check exception or enter the checkstop state if
address parity checking is enabled in the HID0 register; see
Section 2.1.2.2, “Hardware Implementation-Dependent Register 0" on

IBM Confidential

Page 7-6 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Page 2-8.

Timing Comments Assertion/Negation—The same as A[0–31].

7.2.4 Address Transfer Attribute Signals
The transfer attribute signals are a set of signals that further characterize the transfer—such as the size
of the transfer, whether it is a read or write operation, and whether it is a burst or single-beat transfer.
For a detailed description of how these signals interact, see Section 8.3.2, “Address Transfer" on Page
8-11.
NOTE: Some signal functions vary depending on whether the transaction is a memory access or

an I/O access.

7.2.4.1 Transfer Type (TT[0–4])
The transfer type (TT[0–4]) signals consist of five input/output signals on Gekko. For a complete
description of TT[0–4] signals and for transfer type encodings, see Table 7-1.

7.2.4.1.1 Transfer Type (TT[0–4])—Output
Following are the state meaning and timing comments for the TT[0–4] output signals on Gekko.

State Meaning Asserted/Negated—Indicates the type of transfer in progress.

Timing Comments Assertion/Negation/High Impedance—The same as A[0–31].

7.2.4.1.2 Transfer Type (TT[0–4])—Input
Following are the state meaning and timing comments for the TT[0–4] input signals on Gekko.

State Meaning Asserted/Negated—Indicates the type of transfer in progress (see Table 7-2
on Page 7-8).

Timing Comments Assertion/Negation—The same as A[0–31].

Table 7-1 describes the transfer encodings for an Gekko bus master.

Table 7-1. Transfer Type Encodings for PowerPC Gekko Bus Master

Gekko Bus
Master

Transaction

Transaction
Source

TT0 TT1 TT2 TT3 TT4
60x Bus

Specification
Command

Transaction

Address only1 dcbst 0 0 0 0 0 Clean block Address only
Address only1 dcbf 0 0 1 0 0 Flush block Address only
Address only1 sync 0 1 0 0 0 sync Address only
Address only1 dcbz or dcbi 0 1 1 0 0 Kill block Address only
Address only1 eieio 1 0 0 0 0 eieio Address only
Single-beat
write (nonGBL)

ecowx 1 0 1 0 0 External control
word write

Single-beat
write

N/A N/A 1 1 0 0 0 TLB invalidate Address only
Single-beat
read (nonGBL)

eciwx 1 1 1 0 0 External control
word read

Single-beat
read

N/A N/A 0 0 0 0 1 lwarx
reservation set

Address only

N/A N/A 0 0 1 0 1 Reserved —
N/A N/A 0 1 0 0 1 tlbsync Address only
N/A N/A 0 1 1 0 1 icbi Address only
N/A N/A 1 X X 0 1 Reserved —

IBM Confidential

Chapter 7. Signal Descriptions IBM Confidential 5/25/00 Page 7-7

Single-beat
write

Caching-inhibited
or write-through
store, DMA, or
write gather pipe

0 0 0 1 0 Write-with-flush Single-beat
write or burst

Burst
(nonGBL)

Cast-out, or
snoop copyback

0 0 1 1 0 Write-with-kill Burst

Single-beat
read

Caching-inhibited
load or instruction
fetch, or DMA

0 1 0 1 0 Read Single-beat
read or burst

Burst Load miss, store
miss, or
instruction fetch

0 1 1 1 0 Read-with-intent-to
-modify

Burst

Single-beat
write

stwcx. 1 0 0 1 0 Write-with-flush-ato
mic

Single-beat
write

N/A N/A 1 0 1 1 0 Reserved N/A
Single-beat
read

lwarx
(caching-inhibited
load)

1 1 0 1 0 Read-atomic Single-beat
read or burst

Burst lwarx
(load miss)

1 1 1 1 0 Read-with-intent-to
-modify-atomic

Burst

N/A N/A 0 0 0 1 1 Reserved —
N/A N/A 0 0 1 1 1 Reserved —
N/A DMA 0 1 0 1 1 Read-with-no-inten

t-to-cache
Single-beat
read or burst

N/A N/A 0 1 1 1 1 Reserved —
N/A N/A 1 X X 1 1 Reserved —

Note : 1Address-only transaction occurs if enabled by setting HID0[ABE] bit to 1.

Table 7-1. Transfer Type Encodings for PowerPC Gekko Bus Master (Continued)

Gekko Bus
Master

Transaction

Transaction
Source

TT0 TT1 TT2 TT3 TT4
60x Bus

Specification
Command

Transaction

IBM Confidential

Page 7-8 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Table 7-2 describes the 60x bus specification transfer encodings and Gekko bus snoop response on an
address hit.

7.2.4.2 Transfer Size (TSIZ[0–2])—Output
Following are the state meaning and timing comments for the transfer size (TSIZ[0–2]) output signals
on Gekko.
State Meaning Asserted/Negated—For memory accesses, these signals along withTBST,

indicate the data transfer size for the current bus operation, as shown in
Table 7-3.
Table 8-6 shows how the transfer size signals are used with the address
signals for aligned transfers.
Table 8-4 shows how the transfer size signals are used with the address
signals for misaligned transfers.

Table 7-2. PowerPC Gekko Snoop Hit Response

60x Bus Specification
Command

Transaction TT0 TT1 TT2 TT3 TT4
PowerPC Gekko
Bus Snooper;
Action on Hit

Clean block Address only 0 0 0 0 0 N/A
Flush block Address only 0 0 1 0 0 N/A
sync Address only 0 1 0 0 0 N/A
Kill block Address only 0 1 1 0 0 Flush, cancel

reservation
eieio Address only 1 0 0 0 0 N/A
External control word write Single-beat write 1 0 1 0 0 N/A
TLB Invalidate Address only 1 1 0 0 0 N/A
External control word read Single-beat read 1 1 1 0 0 N/A
lwarx
reservation set

Address only 0 0 0 0 1 N/A

Reserved — 0 0 1 0 1 N/A
tlbsync Address only 0 1 0 0 1 N/A
icbi Address only 0 1 1 0 1 N/A
Reserved — 1 X X 0 1 N/A
Write-with-flush Single-beat write or burst 0 0 0 1 0 Flush, cancel

reservation
Write-with-kill Single-beat write or burst 0 0 1 1 0 Kill, cancel

reservation
Read Single-beat read or burst 0 1 0 1 0 Clean or flush
Read-with-intent-to-modify Burst 0 1 1 1 0 Flush
Write-with-flush-atomic Single-beat write 1 0 0 1 0 Flush, cancel

reservation
Reserved N/A 1 0 1 1 0 N/A
Read-atomic Single-beat read or burst 1 1 0 1 0 Clean or flush
Read-with-intent-to
modify-atomic

Burst 1 1 1 1 0 Flush

Reserved — 0 0 0 1 1 N/A
Reserved — 0 0 1 1 1 N/A
Read-with-no-intent-to-cache Single-beat read or burst 0 1 0 1 1 Clean
Reserved — 0 1 1 1 1 N/A
Reserved — 1 X X 1 1 N/A

IBM Confidential

Chapter 7. Signal Descriptions IBM Confidential 5/25/00 Page 7-9

NOTE: Gekko does not generate all possible TSIZ[0–2] encodings.

For external control instructions (eciwx andecowx), TSIZ[0–2] are used
to output bits 29–31 of the external access register (EAR), which are used
to form the resource ID (TBST||TSIZ0–TSIZ2).

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].

7.2.4.3 Transfer Burst (TBST)
The transfer burst (TBST) signal is an input/output signal on Gekko.

7.2.4.3.1 Transfer Burst (TBST)—Output
Following are the state meaning and timing comments for theTBST output signal.

State Meaning Asserted—Indicates that a burst transfer is in progress.

Negated—Indicates that a burst transfer is not in progress.

For external control instructions (eciwx andecowx), TBST is used to
output bit 28 of the EAR, which is used to form the resource ID
(TBST||TSIZ0–TSIZ2).

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].

7.2.4.3.2 Transfer Burst (TBST)—Input
Following are the state meaning and timing comments for theTBST input signal.

State Meaning Asserted/Negated—Used when snooping for single-beat reads (read with
no intent to cache).

Timing Comments Assertion/Negation—The same as A[0–31].

Table 7-3. Data Transfer Size

TBST TSIZ[0–2] Transfer Size

Asserted 010 Burst (32 bytes)

Negated 000 8 bytes

Negated 001 1 byte

Negated 010 2 bytes

Negated 011 3 bytes

Negated 100 4 bytes

Negated 101 5 bytes1

Negated 110 6 bytes1

Negated 111 7 bytes1

Note : 1Not generated by Gekko.

IBM Confidential

Page 7-10 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

7.2.4.4 Cache Inhibit (CI)—Output
The cache inhibit (CI) signal is an output signal on Gekko. Following are the state meaning and timing
comments for theCI signal.

State Meaning Asserted—Indicates that a single-beat transfer will not be cached, reflecting
the setting of the I bit for the block or page that contains the address of the
current transaction.

Negated—Indicates that a burst transfer will allocate an Gekko data cache
block.

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].

7.2.4.5 Write-Through (WT)—Output
The write-through (WT) signal is an output signal on Gekko. Following are the state meaning and
timing comments for theWT signal.

State Meaning Asserted—Indicates that a single-beat write transaction is write-through,
reflecting the value of the W bit for the block or page that contains the address
of the current transaction. Assertion during a read operation indicates
instruction fetching.

Negated—Indicates that a write transaction is not write-through; during a
read operation negation indicates a data load.

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].

7.2.4.6 Global (GBL)
The global (GBL) signal is an input/output signal on Gekko.

7.2.4.6.1 Global (GBL)—Output
Following are the state meaning and timing comments for theGBL output signal.

State Meaning Asserted—Indicates that a transaction is global, reflecting the setting of the
M bit for the block or page that contains the address of the current transaction
(except in the case of copy-back operations and instruction fetches, which are
nonglobal.)

Negated—Indicates that a transaction is not global.

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].

7.2.4.6.2 Global (GBL)—Input
Following are the state meaning and timing comments for theGBL input signal.

State Meaning Asserted—Indicates that a transaction must be snooped by Gekko.

Negated—Indicates that a transaction is not snooped by Gekko.

Timing Comments Assertion/Negation—The same as A[0–31].

IBM Confidential

Chapter 7. Signal Descriptions IBM Confidential 5/25/00 Page 7-11

7.2.5 Address Transfer Termination Signals
The address transfer termination signals are used to indicate either that the address phase of the
transaction has completed successfully or must be repeated, and when it should be terminated. For
detailed information about how these signals interact, see Chapter 8.

7.2.5.1 Address Acknowledge (AACK)—Input
The address acknowledge (AACK) signal is an input-only signal on Gekko. Following are the state
meaning and timing comments for theAACK signal.

State Meaning Asserted—Indicates that the address phase of a transaction is complete.
The address bus will go to a high-impedance state on the next bus clock
cycle. Gekko samplesARTRY on the bus clock cycle following the
assertion ofAACK.

Negated—(During address bus tenure) indicates that the address bus and
the transfer attributes must remain driven.

Timing Comments Assertion—May occur as early as the bus clock cycle afterTS is asserted;
assertion can be delayed to allow adequate address access time for slow
devices. For example, if an implementation supports slow snooping
devices, an external arbiter can postpone the assertion ofAACK.

Negation—Must occur one bus clock cycle after the assertion ofAACK.

7.2.5.2 Address Retry (ARTRY)
The address retry (ARTRY) signal is both an input and output signal on Gekko.

7.2.5.2.1 Address Retry (ARTRY)—Output
Following are the state meaning and timing comments for theARTRY output signal.

State Meaning Asserted—Indicates that Gekko detects a condition in which a snooped
address tenure must be retried. If Gekko needs to update memory as a
result of the snoop that caused the retry, Gekko assertsBR the second cycle
afterAACK if ARTRY is asserted.

High Impedance—Indicates that Gekko does not need the snooped address
tenure to be retried.

Timing Comments Assertion—Asserted the third bus cycle following the assertion ofTS if a
retry is required.

Negation—Occurs the second bus cycle after the assertion ofAACK.
Since this signal may be simultaneously driven by multiple devices, it
negates in a unique fashion. First the buffer goes to high impedance for a
minimum of one-half processor cycle (dependent on the clock mode), then
it is driven negated for one-half bus cycle before returning to high
impedance.

This special method of negation may be disabled by setting precharge
disable in HID0.

7.2.5.2.2 Address Retry (ARTRY)—Input
Following are the state meaning and timing comments for theARTRY input signal.

State Meaning Asserted—If Gekko is the address bus master,ARTRY indicates that
Gekko must retry the preceding address tenure and immediately negateBR
(if asserted). If the associated data tenure has already started, Gekko also
aborts the data tenure immediately, even if the burst data has been

IBM Confidential

Page 7-12 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

received. If Gekko is not the address bus master, this input indicates that
Gekko should immediately negateBR to allow an opportunity for a
copy-back operation to main memory after a snooping bus master asserts
ARTRY. Note that the subsequent address presented on the address bus may
not be the same one associated with the assertion of theARTRY signal.

Negated/High Impedance—Indicates that Gekko does not need to retry the
last address tenure.

Timing Comments Assertion—May occur as early as the second cycle following the assertion of
TS, and must occur by the bus clock cycle immediately following the
assertion ofAACK if an address retry is required.

Negation—Must occur two bus clock cycles after the assertion ofAACK.

7.2.6 Data Bus Arbitration Signals
Like the address bus arbitration signals, data bus arbitration signals maintain an orderly process for
determining data bus mastership. Note that there is no data bus arbitration signal equivalent to the
address bus arbitration signalBR (bus request), because, except for address-only transactions,TS
implies data bus requests. For a detailed description on how these signals interact, see Section 8.4.1,
“Data Bus Arbitration" on Page 8-18.

7.2.6.1 Data Bus Grant (DBG)—Input
The data bus grant (DBG) signal is an input-only signal on Gekko. Following are the state meaning
and timing comments for theDBG signal.

State Meaning Asserted—Indicates that Gekko may, with the proper qualification, assume
mastership of the data bus. Gekko derives a qualified data bus grant when
DBG is asserted andARTRY is negated; that is, there is no outstanding
attempt to perform anARTRY of the associated address tenure.

Negated—Indicates that Gekko must hold off its data tenures.

Timing Comments Assertion—May occur any time to indicate Gekko is free to take data bus
mastership. It is not sampled untilTS is asserted.

Negation—May occur at any time to indicate Gekko cannot assume data bus
mastership.

IBM Confidential

Chapter 7. Signal Descriptions IBM Confidential 5/25/00 Page 7-13

7.2.7 Data Transfer Signals
Like the address transfer signals, the data transfer signals are used to transmit data and to generate
and monitor parity for the data transfer. For a detailed description of how the data transfer signals
interact, see Chapter 8.

7.2.7.1 Data Bus (DH[0–31], DL[0–31])
The data bus (DH[0–3]1 and DL[0–31]) consists of 64 signals that are both inputs and outputs on
Gekko. Following are the state meaning and timing comments for the DH and DL signals.

State Meaning The data bus has two halves—data bus high (DH) and data bus low (DL).
See Table 7-4 for the data bus lane assignments.

Timing Comments The data bus is driven once for noncached transactions and four times for
cache transactions (bursts).

7.2.7.1.1 Data Bus (DH[0–31], DL[0–31])—Output
Following are the state meaning and timing comments for the DH and DL output signals.

State Meaning Asserted/Negated—Represents the state of data during a data write. Byte
lanes not selected for data transfer will not supply valid data.

Timing Comments Assertion/Negation—Initial beat coincides with the bus cycle following a
qualifiedDBG and, for bursts, transitions on the bus clock cycle following
each assertion ofTA.

High Impedance—Occurs on the bus clock cycle after the final assertion
of TA, following the assertion ofTEA, or in certainARTRY cases.

7.2.7.1.2 Data Bus (DH[0–31], DL[0–31])—Input
Following are the state meaning and timing comments for the DH and DL input signals.

State Meaning Asserted/Negated—Represents the state of data during a data read
transaction.

Timing Comments Assertion/Negation—Data must be valid on the same bus clock cycle that
TA is asserted.

7.2.7.2 Data Bus Parity (DP[0–8]) (N/A on Gekko)
The eight data bus parity (DP[0–7]) signals are both output and input signals.

Table 7-4. Data Bus Lane Assignments

Data Bus Signals Byte Lane

DH[0–7] 0

DH[8–15] 1

DH[16–23] 2

DH[24–31] 3

DL[0–7] 4

DL[8–15] 5

DL[16–23] 6

DL[24–31] 7

IBM Confidential

Page 7-14 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

7.2.7.2.1 Data Bus Parity (DP[0–7])—Output
Following are the state meaning and timing comments for the DP output signals.

State Meaning Asserted/Negated—Represents odd parity for each of the 8 bytes of data
write transactions. Odd parity means that an odd number of bits, including
the parity bit, are driven high. The generation of parity is enabled through
HID0. The signal assignments are listed in Table 7-5.

Timing Comments Assertion/Negation—The same as DL[0–31].
High Impedance—The same as DL[0–31].

7.2.7.2.2 Data Bus Parity (DP[0–7])—Input
Following are the state meaning and timing comments for the DP input signals.

State Meaning Asserted/Negated—Represents odd parity for each byte of read data. Parity
is checked on all data byte lanes, regardless of the size of the transfer.
Detected even parity causes a checkstop if data parity errors are enabled in
the HID0 register.

Timing Comments Assertion/Negation—The same as DL[0–31].

7.2.8 Data Transfer Termination Signals
Data termination signals are required after each data beat in a data transfer. Note that in a single-beat
transaction, the data termination signals also indicate the end of the tenure, while in burst accesses,
the data termination signals apply to individual beats and indicate the end of the tenure only after the
final data beat.
For a detailed description of how these signals interact, see Chapter 8.

7.2.8.1 Transfer Acknowledge (TA)—Input
Following are the state meaning and timing comments for theTA signal.

State Meaning Asserted— Indicates that a single-beat data transfer completed successfully
or that a data beat in a burst transfer completed successfully. Note thatTA
must be asserted for each data beat in a burst transaction. For more
information, see Chapter 8.

Negated—If Gekko is the data bus master Gekko must continue to drive the

Table 7-5. DP[0–7] Signal Assignments

Signal Name Signal Assignments

DP0 DH[0–7]

DP1 DH[8–15]

DP2 DH[16–23]

DP3 DH[24–31]

DP4 DL[0–7]

DP5 DL[8–15]

DP6 DL[16–23]

DP7 DL[24–31]

IBM Confidential

Chapter 7. Signal Descriptions IBM Confidential 5/25/00 Page 7-15

data for the current write or must wait to sample the data for reads untilTA
is asserted.

Timing Comments Assertion—Must not occur beforeAACK for the current transaction (if the
address retry mechanism is to be used to prevent invalid data from being
used by the processor); otherwise, assertion may occur at any time Gekko
while Gekko is the data bus master. The system can withhold assertion of
TA to indicate that Gekko should insert wait states to extend the duration
of the data beat.

Negation—Must occur after the bus clock cycle of the final (or only) data
beat of the transfer. For a burst transfer, the system can assertTA for one
bus clock cycle and then negate it to advance the burst transfer to the next
beat and insert wait states during the next beat.

7.2.8.2 Data Retry (DRTRY)—Input (N/A on Gekko)
Following are the state meaning and timing comments for theDRTRY signal.

State Meaning Asserted—Indicates that Gekko must invalidate the data from the previous
read operation.

Negated—Indicates that data presented withTA on the previous read
operation is valid. Note thatDRTRY is ignored for write transactions.

Timing Comments Assertion—Must occur during the bus clock cycle immediately afterTA is
asserted if a retry is required. TheDRTRY signal may be held asserted for
multiple bus clock cycles. WhenDRTRY is negated, data must have been
valid on the previous clock withTA asserted.

Negation—Must occur during the bus clock cycle after a valid data beat.
This may occur several cycles effectively extending the data bus tenure.

Start-up—TheDRTRY signal is sampled at the negation ofHRESET; if
DRTRY is asserted, no-DRTRY mode is selected. IfDRTRY is negated at
start-up,DRTRY is enabled.

7.2.8.3 Transfer Error Acknowledge (TEA)—Input
Following are the state meaning and timing comments for theTEA signal.

State Meaning Asserted—Indicates that a bus error occurred. Causes a machine check
exception (and possibly causes the processor to enter checkstop state if
machine check enable bit is cleared (MSR[ME] = 0)). For more
information, see Section 4.5.2.2, “Checkstop State (MSR[ME] = 0)" on
Page 4-17. Assertion terminates the current transaction; that is, assertion
of TA is ignored. The assertion ofTEA causes data bus tenure to be
dropped. However, data entering the GPR or the cache are not invalidated.
(Note that the term ‘exception’ is also referred to as ‘interrupt’ in the
architecture specification.)

Negated—Indicates that no bus error was detected.

Timing Comments Assertion—May be asserted while Gekko is the data bus master, and the
cycle afterTA during a read operation.TEA should be asserted for one
cycle only.

Negation—TEA must be negated no later than the end of the data bus
tenure.

IBM Confidential

Page 7-16 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

7.2.9 System Status Signals
Most system status signals are input signals that indicate when exceptions are received, when
checkstop conditions have occurred, and when Gekko must be reset.

7.2.9.1 Interrupt (INT)— Input
Following are the state meaning and timing comments for theINT signal.
State Meaning Asserted—Gekko initiates an interrupt if MSR[EE] is set; otherwise, Gekko

ignores the interrupt. To guarantee that Gekko will take the external interrupt,
INT must be held active until Gekko takes the interrupt; otherwise, whether
Gekko takes an external interrupt depends on whether the MSR[EE] bit was
set while theINT signal was held active.

Negated—Indicates that normal operation should proceed. See Chapter 8.

Timing Comments Assertion—May occur at any time and may be asserted asynchronously to
the input clocks. TheINT input is level-sensitive.
Negation—Should not occur until interrupt is taken.

7.2.9.2 Machine Check Interrupt (MCP)—Input
Following are the state meaning and timing comments for theMCP signal.
State Meaning Asserted—Gekko initiates a machine check interrupt operation if MSR[ME]

and HID0[EMCP] are set; if MSR[ME] is cleared and HID0[EMCP] is set,
Gekko must terminate operation by internally gating off all clocks, and
releasing all outputs to the high-impedance state. If HID0[EMCP] is cleared,
Gekko ignores the interrupt condition. TheMCP signal must be held asserted
for two bus clock cycles.

Negated—Indicates that normal operation should proceed. See Section 8.8.1,
“External Interrupts" on Page 8-36.

Timing Comments Assertion—May occur at any time and may be asserted asynchronously to
the input clocks. TheMCP input is negative edge-sensitive.

Negation—May be negated two bus cycles after assertion.

7.2.9.3 Checkstop Input (CKSTP_IN)—Input
Following are the state meaning and timing comments for theCKSTP_IN signal.

State Meaning Asserted—Indicates that Gekko must terminate operation by internally
gating off all clocks, and release all outputs to the high-impedance state.
OnceCKSTP_IN has been asserted it must remain asserted until the system
has been reset.

Negated—Indicates that normal operation should proceed. See Chapter 8.

Timing Comments Assertion—May occur at any time and may be asserted asynchronously to
the input clocks.

Negation—May occur any time after the system reset.

IBM Confidential

Chapter 7. Signal Descriptions IBM Confidential 5/25/00 Page 7-17

7.2.9.4 Checkstop Output (CKSTP_OUT)—Output
Note that theCKSTP_OUT signal is an open-drain type output, and requires an external pull-up
resistor (for example, 10 k to Vdd) to assure proper de-assertion of theCKSTP_OUT signal.
Following are the state meaning and timing comments for theCKSTP_OUT signal.

State Meaning Asserted—Indicates that a checkstop condition has been detected and the
processor has ceased operation.

Negated—Indicates that the processor is operating normally.
See Chapter 8.

Timing Comments Assertion—May occur at any time and may be asserted asynchronously to
input clocks.

Negation—Is negated upon assertion ofHRESET.

7.2.9.5 Reset Signals
There are two reset signals on Gekko—hard reset (HRESET) and soft reset (SRESET).
Descriptions of the reset signals are as follows:

7.2.9.5.1 Hard Reset (HRESET)—Input
The hard reset (HRESET) signal must be used at power-on in conjunction with theTRST signal to
properly reset the processor. Following are the state meaning and timing comments for the
HRESET signal.

State Meaning Asserted—Initiates a complete hard reset operation when this input
transitions from asserted to negated. Causes a reset exception as described
in Section 4.5.1, “System Reset Exception (0x00100)" on Page 4-12
Output drivers are released to high impedance within five clocks after the
assertion ofHRESET.

Negated—Indicates that normal operation should proceed. See
Section 8.8.3, “Reset Inputs" on Page 8-37.

Timing Comments Assertion—May occur at any time and may be asserted asynchronously to
Gekko input clock; must be held asserted for a minimum of 255 clock
cycles after the PLL lock time has been met. Refer to Gekko hardware
specifications for further timing comments.

Negation—May occur any time after the minimum reset pulse width has
been met.

This input has additional functionality in certain test modes.

7.2.9.5.2 Soft Reset (SRESET)—Input
Following are the state meaning and timing comments for theSRESET signal.

State Meaning Asserted— Initiates processing for a reset exception as described in
Section 4.5.1, “System Reset Exception (0x00100)" on Page 4-12.

Negated—Indicates that normal operation should proceed. See
Section 8.8.3, “Reset Inputs" on Page 8-37.

Timing Comments Assertion—May occur at any time and may be asserted asynchronously to
Gekko input clock. TheSRESET input is negative edge-sensitive.

Negation—May be negated two bus cycles after assertion.

This input has additional functionality in certain test modes.

IBM Confidential

Page 7-18 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

7.2.9.6 Processor Status Signals
Processor status signals indicate the state of the processor. This includes the memory reservation
signal, machine quiesce control signals, time base enable signal, andTLBISYNC signal.

7.2.9.6.1 Quiescent Request (QREQ)—Output
Following are the state meaning and timing comments forQREQ.

State Meaning Asserted—Indicates that Gekko is requesting all bus activity normally
required to be snooped to terminate or to pause so Gekko may enter a
quiescent (low power) state. When Gekko has entered a quiescent state, it no
longer snoops bus activity.

Negated—Indicates that Gekko is not making a request to enter the quiescent
state.

Timing Comments Assertion/Negation—May occur on any cycle.QREQ will remain asserted
for the duration of the quiescent state.

7.2.9.6.2 Quiescent Acknowledge (QACK)—Input
Following are the state meaning and timing comments for theQACK signal.

State Meaning Asserted—Indicates that all bus activity that requires snooping has
terminated or paused, and that Gekko may enter the quiescent (or low power)
state.

Negated—Indicates that Gekko may not enter a quiescent state, and must
continue snooping the bus.

Timing Comments Assertion/Negation—May occur on any cycle following the assertion of
QREQ, and must be held asserted for at least one bus clock cycle.

Start-Up—QACK is sampled at the negation ofHRESET to select 32-bit bus
mode; ifQACK is de-asserted at start-up, 32-bit bus mode is selected.

7.2.10 IEEE 1149.1a-1993 Interface Description
Gekko has five dedicated JTAG signals which are described in Table 7-6. The test data input (TDI)
and test data output (TDO) scan ports are used to scan instructions as well as data into the various
scan registers for JTAG operations. The scan operation is controlled by the
test access port (TAP) controller which in turn is controlled by the test mode select (TMS) input
sequence. The scan data is latched in at the rising edge of test clock (TCK).

Test reset (TRST) is a JTAG optional signal which is used to reset the TAP controller asynchronously.
TheTRST signal assures that the JTAG logic does not interfere with the normal operation of the chip,
and must be asserted and deasserted coincident with the assertion of theHRESET signal.

Table 7-6. IEEE Interface Pin Descriptions

Signal Name Input/Output
Weak Pullup

Provided
IEEE 1149.1a Function

TDI Input Yes Serial scan input signal
TDO Output No Serial scan output signal
TMS Input Yes TAP controller mode signal
TCK Input Yes Scan clock
TRST Input Yes TAP controller reset

IBM Confidential

Chapter 7. Signal Descriptions IBM Confidential 5/25/00 Page 7-19

7.2.11 Clock Signals
Gekko clock signal inputs determine the system clock frequency and provide a flexible clocking
scheme that allows the processor to operate at an integer multiple of the system clock frequency.
Refer to Gekko hardware specifications for exact timing relationships of the clock signals.

7.2.11.1 System Clock (SYSCLK)—Input
Gekko requires a single system clock (SYSCLK) input. This input sets the frequency of operation
for the bus interface. Internally, Gekko uses a phase-locked loop (PLL) circuit to generate a master
clock for all of the CPU circuitry (including the bus interface circuitry) which is phase-locked to
the SYSCLK input. The master clock may be set to an integer or half-integer multiple (2:1, 3:1,
3.5:1, 4:1, 4.5:1, 5:1, 5.5:1, 6:1, 6.5:1, 7:1, 7.5:1, 8:1 or 10:1) of the SYSCLK frequency allowing
the CPU core to operate at an equal or greater frequency than the bus interface.

State Meaning Asserted/Negated—The SYSCLK input is the primary clock input for
Gekko, and represents the bus clock frequency for Gekko bus operation.
Internally, Gekko may be operating at an integer or half-integer multiple
of the bus clock frequency.

Timing Comments Duty cycle—Refer to Gekko hardware specifications for timing
comments.
Note: SYSCLK is used as the frequency reference for the internal PLL
clock generator, and must not be suspended or varied during normal
operation to ensure proper PLL operation.

7.2.11.2 Clock Out (CLK_OUT)—Output (N/A on Gekko)
The clock out (CLK_OUT) signal is an output signal (output-only). Following are the state
meaning and timing comments for the CLK_OUT signal.
State Meaning Asserted/Negated—Provides PLL clock output for PLL testing and

monitoring. The configuration of the HID0[SBCLK] and HID0[ECLK]
bits determines whether the CLK_OUT signal clocks at either the
processor clock frequency, the bus clock frequency, or half of the bus clock
frequency. See Table 2-5 on Page 2-13 for HID0 register configuration of
the CLK_OUT signal.
The CLK_OUT signal defaults to a high-impedance state following the
assertion ofHRESET. The CLK_OUT signal is provided for testing only.

Timing Comments Assertion/Negation—Refer to Gekko hardware specifications for timing
comments.

7.2.11.3 PLL Configuration (PLL_CFG[0–3])—Input
The PLL (phase-locked loop) is configured by the PLL_CFG[0–3] signals. For a given SYSCLK
(bus) frequency, the PLL configuration signals set the internal CPU frequency of operation. Refer
to Gekko hardware specifications for PLL configuration.
Following are the state meaning and timing comments for the PLL_CFG[0–3] signals.

State Meaning Asserted/Negated— Configures the operation of the PLL and the internal
processor clock frequency. Settings are based on the desired bus and
internal frequency of operation.

Timing Comments Assertion/Negation—Must remain stable during operation; should only be
changed during the assertion ofHRESET or during sleep mode. These bits
may be read through the PC[0–3] bits in the HID1 register.

IBM Confidential

Page 7-20 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

7.2.12 Power and Ground Signals
Gekko provides the following connections for power and ground:

• VDD—The VDD signals provide the supply voltage connection for the processor core.

• OVDD—The OVDD signals provide the supply voltage connection for the system interface
drivers.

• AVDD—The AVDD power signal provides power to the clock generation phase-locked loop.
See Gekko hardware specifications for information on how to use this signal.

• GND and OGND—The GND and OGND signals provide the connection for grounding
Gekko. On Gekko, there is no electrical distinction between the GND and OGND signals.

IBM Confidential

Chapter 8. Bus Interface Operation IBM Confidential 5/25/00 Page 8-1

Chapter 8 Bus Interface Operation
This chapter describes the Gekko microprocessor bus interface and its operation. It shows how the
Gekko signals, defined in Chapter 7, "Signal Descriptions" interact to perform address and data
transfers.
The bus interface buffers bus requests from the instruction and data caches, and executes the
requests per the 60x bus protocol. It includes address register queues, prioritizing logic, and bus
control logic. It captures snoop addresses for snooping in the cache and in the address register
queues. It also snoops for reservations and holds the touch load address for the cache. All data
storage for the address register buffers (load and store data buffers) are located in the cache section.
The data buffers are considered temporary storage for the cache and not part of the bus interface.
The general functions and features of the bus interface are as follows:

• Seven address register buffers that include the following:

— Instruction cache load address buffer
— DMA load address buffer
— Data cache load address buffer (shared with DMA load)
— Two data cache castout/store address buffers (shared with write gather pipe)
— Data cache snoop copy-back address buffer (associated data block buffer located in

cache)
— Reservation address buffer for snoop monitoring

• Pipeline collision detection for data cache buffers

• Reservation address snooping forlwarx /stwcx. instructions

• One-level address pipelining

• Load ahead of store capability
A conceptual block diagram of the bus interface is shown in Figure 8-1 on Page 8-2. The address
register queues in the figure hold transaction requests that the bus interface may issue on the bus
independently of the other requests. The bus interface may have up to two transactions operating
on the bus at any given time through the use of address pipelining.

IBM Confidential

Page 8-2 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Figure 8-1. Bus Interface Address Buffers

8.1 Bus Interface Overview
The bus interface prioritizes requests for bus operations from the instruction and data caches, and
performs bus operations in accordance with the protocol described in thePowerPC Microprocessor
Family: The Bus Interface for 32-Bit Microprocessors. It includes address register queues,
prioritization logic, and bus control unit. The bus interface latches snoop addresses for snooping in
the data cache and in the address register queues, and for reservations controlled by the Load Word
and Reserve Indexed (lwarx) and Store Word Conditional Indexed (stwcx.) instructions, and
maintains the touch load address for the cache. The interface allows one level of pipelining; that is,
with certain restrictions discussed later, there can be two outstanding transactions at any given time.
Accesses are prioritized with load operations preceding store operations.
Instructions are automatically fetched from the memory system into the instruction unit where they
are dispatched to the execution units at a peak rate of two instructions per clock. Conversely, load and
store instructions explicitly specify the movement of operands to and from the integer and
floating-point register files and the memory system.
When Gekko encounters an instruction or data access, it calculates the logical address (effective
address in the architecture specification) and uses the low-order address bits to check for a hit in the
on-chip, 32-Kbyte instruction and data caches.
During cache lookup, the instruction and data memory management units (MMUs) use the
higher-order address bits to calculate the virtual address from which they calculate the physical
address (real address in the architecture specification). The physical address bits are then compared
with the corresponding cache tag bits to determine if a cache hit occurred in the L1 instruction or data
cache. If the access misses in the corresponding cache, the physical address is used to access the L2
cache tags (if the L2 cache is enabled). If no match is found in the L2 cache tags, the physical address
is used to access system memory.
In addition to the loads, stores, and instruction fetches, Gekko performs hardware table search

Snoop

Control Addr Addr Data

System Bus

I-Cache

D-Cache

D-Cache
CST/ST Addr 1

D-Cache
SNP Addr

D-Cache
CST/ST Addr 0

I-Cache
LD Addr

D-Cache
LD Addr

Data

BIU
Control

Data

Write Pipe
Data Queue

Write Pipe
Address

D-Cache
DMA Load
Address

IBM Confidential

Chapter 8. Bus Interface Operation IBM Confidential 5/25/00 Page 8-3

operations following TLB misses, L2 cache cast-out operations when least-recently used cache
lines are written to memory after a cache miss, and cache-line snoop push-out operations when a
modified cache line experiences a snoop hit from another bus master.
Figure 8-2 on Page 8-4 shows the address path from the execution units and instruction fetcher,
through the translation logic to the caches and bus interface logic.
Gekko uses separate address and data buses and a variety of control and status signals for
performing reads and writes. The address bus is 32 bits wide and the data bus is 64 bits wide. The
interface is synchronous—all Gekko inputs are sampled at and all outputs are driven from the rising
edge of the bus clock. The processor runs at a multiple of the bus-clock speed.

8.1.1 Operation of the Instruction and Data L1 Caches
Gekko provides independent instruction and data L1 caches. Each cache is a physically-addressed,
32-Kbyte cache with eight-way set associativity. Both caches consist of 128 sets of eight cache
lines, with eight words in each cache line.
Because the data cache on Gekko is an on-chip, write-back primary cache, the predominant type
of transaction for most applications is burst-read memory operations, followed by burst-write
memory operations and single-beat (noncacheable or write-through) memory read and write
operations. Additionally, there can be address-only operations, variants of the burst and single-beat
operations (global memory operations that are snooped, and atomic memory operations, for
example), and address retry activity (for example, when a snooped read access hits a modified line
in the cache).
Since Gekko’s data cache tags are single ported, simultaneous load or store, DMA access, and
snoop accesses cause resource contention. Snoop accesses have the highest priority and are given
first access to the tags, unless the snoop access coincides with a tag write, in which case the snoop
is retried and must re-arbitrate for access to the cache. Loads or stores that are deferred due to
snoop accesses are performed on the clock cycle following the snoop. DMA access has the lowest
priority.
Gekko supports a three-state coherency protocol that supports the modified, exclusive, and invalid
(MEI) cache states. The protocol is a subset of the MESI (modified/exclusive/shared/invalid)
four-state protocol and operates coherently in systems that contain four-state caches.
With the exception of thedcbz instruction (and thedcbi, dcbst, and dcbf instructions, if
HID0[ABE] is enabled), Gekko does not broadcast cache control instructions. The cache control
instructions are intended for the management of the local cache but not for other caches in the
system.
Instruction cache lines in Gekko are loaded in four beats of 64 bits each. The burst load is
performed as critical double word first. The critical double word is simultaneously written to the
cache and forwarded to the instruction pre-fetch unit, thus minimizing stalls due to load delays. If
subsequent loads follow in sequential order, the instructions will be forwarded to the requesting
unit as the cache block is written.
Data cache lines in Gekko are loaded into the cache in one cycle for 256 bits. For cache line load
due to the cache miss of a load instruction, the critical double word is simultaneously written to the
256 bit line fill buffer and forwarded to the requesting load/store unit. If subsequent loads follow
in sequential order, the data will be forwarded to the load/store unit as the cache block is written
into the cache. For DMA read and data cache cast out, it takes one cycle to read the data out of the
cache.

IB
M

C
onfidential

P
age 8-4

V
ersion 1.2

IB
M

 C
onfidential

IB
M

G
ekko

R
IS

C
M

icroprocessorU
ser’s

M
anual

Figure 8-2. PowerPC Gekko Microprocessor Block Diagram

Additional Features

• Time Base Counter/Dec-
rementer

• Clock Multiplier

• JTAG/COP Interface

+

+

Fetcher Branch Processing

BTIC
64 Entry

+ x
FPSCRCR FPSCR

CTR
LR

BHT

Data MMU

Instruction MMU

PAEA

+ x

Instruction Unit

Unit

Instruction Queue
(6 Word)

2 Instructions

Reservation Station Reservation Station Reservation Station

Integer Unit 1
System Register

Unit

Dispatch Unit 64-Bit
(2 Instructions)

SRs

ITLB

(Shadow) IBAT
Array

32-Kbyte
I CacheTags

128-Bit
(4 Instructions)

32-Bit

Floating-Point
Unit

Rename Buffers
(6)

FPR File

32-Bit
64-Bit

64-Bit

Reservation Station
(2 Entry)

Load/Store Unit

(EA Calculation)

Store Queue

GPR File

Rename Buffers
(6)

32-Bit

SRs
(Original)

DTLB

DBAT
Array

64-Bit
Completion Unit

Reorder Buffer
(6 Entry)

60x Bus Interface Unit
Instruction Fetch Queue

L1 Castout Queue

Data Load Queue

L2 Cache

32-Bit Address Bus
64-Bit Data Bus

Integer Unit 2

L2CR

256Kbyte
SRAM

Tags

32-Kbyte
D Cache

DMA
DMAL
DMAU

Command

WPAR

Write Gather Pipe

128 Byte Buffer

Reservation Station

Queue

L2 Tag

(2 Entry)

(15 Entry)

IBM Confidential

Chapter 8. Bus Interface Operation IBM Confidential 5/25/00 Page 8-5

Cache lines are selected for replacement based on a pseudo least-recently-used (PLRU) algorithm.
Each time a cache line is accessed, it is tagged as the most-recently-used line of the set. When a
miss occurs, and all eight lines in the set are marked as valid, the least recently used line is replaced
with the new data. When data to be replaced is in the modified state, the modified data is written
into a write-back buffer while the missed data is being read from memory. When the load
completes, Gekko then pushes the replaced line from the write-back buffer to the L2 cache (if
enabled), or to main memory in a burst write operation.

8.1.2 Operation of the Bus Interface
Memory accesses can occur in single-beat (1, 2, 3, 4, and 8 bytes) and four-beat (32 bytes) burst
data transfers. The address and data buses are independent for memory accesses to support
pipelining and split transactions. Gekko can pipeline as many as two transactions and has limited
support for out-of-order split-bus transactions.
Access to the bus interface is granted through an external arbitration mechanism that allows
devices to compete for bus mastership. This arbitration mechanism is flexible, allowing Gekko to
be integrated into systems that implement various fairness and bus-parking procedures to avoid
arbitration overhead. Typically, memory accesses are weakly ordered to maximize the efficiency
of the bus without sacrificing coherency of the data. Gekko allows load operations to bypass store
operations (except when a dependency exists). In addition, Gekko can be configured to reorder
high-priority store operations ahead of lower-priority store operations. Because the processor can
dynamically optimize run-time ordering of load/store traffic, overall performance is improved.
NOTE: The synchronize (sync) and enforce in-order execution of IO (eieio) instructions can be

used to enforce strong ordering.

The following sections describe how Gekko interface operates, providing detailed timing diagrams
that illustrate how the signals interact. A collection of more general timing diagrams are included
as examples of typical bus operations.
Figure 8-3 on Page 8-6 is a legend of the conventions used in the timing diagrams.
This is a synchronous interface—all Gekko input signals are sampled and output signals are driven
on the rising edge of the bus clock cycle (see theGekko Datasheet for exact timing information).

8.1.3 Direct-Store Accesses
Gekko does not support the extended transfer protocol for accesses to the direct-store storage
space. The transfer protocol used for any given access is selected by the T bit in the MMU segment
registers; if the T bit is set, the memory access is a direct-store access. An attempt to access
instructions or data in a direct-store segment will result in Gekko taking an ISI or DSI exception.

IBM Confidential

Page 8-6 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Figure 8-3. Timing Diagram Legend

8.2 Memory Access Protocol
Memory accesses are divided into address and data tenures. Each tenure has three phases—bus
arbitration, transfer, and termination. Gekko also supports address-only transactions. Note that
address and data tenures can overlap, as shown in Figure 8-4 on Page 8-7.
Figure 8-4 shows that the address and data tenures are distinct from one another and that both consist
of three phases—arbitration, transfer, and termination. Address and data tenures are independent
(indicated in Figure 8-4 by the fact that the data tenure begins before the address tenure ends), which
allows split-bus transactions to be implemented at the system level in multiprocessor systems.
Figure 8-4 shows a data transfer that consists of a single-beat transfer of as many as 64 bits. Four-beat
burst transfers of 32-byte cache lines require data transfer termination signals for each beat of data.

Gekko input (while Gekko is a bus master)

Gekko output (while Gekko is a bus master)

Gekko output (grouped: here, address plus attributes)

Gekko internal signal (inaccessible to the user, but used
in diagrams to clarify operations)

Compelling dependency—event will occur on the
next clock cycle

Prerequisite dependency—event will occur on an
undetermined subsequent clock cycle

Gekko three-state output or input

Gekko nonsampled input

Signal with sample point

A sampled condition (dot on high or low state)
with multiple dependencies

Timing for a signal had it been asserted (it is not
actually asserted)

Bar over signal name indicates active low

ap0

BR

ADDR+

qual BG

IBM Confidential

Chapter 8. Bus Interface Operation IBM Confidential 5/25/00 Page 8-7

Figure 8-4. Overlapping Tenures on Gekko Bus for a Single-Beat Transfer

The basic functions of the address and data tenures are as follows:

• Address tenure

— Arbitration: During arbitration, address bus arbitration signals are used to gain
mastership of the address bus.

— Transfer: After Gekko is the address bus master, it transfers the address on the address
bus. The address signals and the transfer attribute signals control the address transfer.
The address parity and address parity error signals ensure the integrity of the address
transfer.

— Termination: After the address transfer, the system signals that the address tenure is
complete or that it must be repeated.

• Data tenure

— Arbitration: To begin the data tenure, Gekko arbitrates for mastership of the data bus.
— Transfer: After Gekko is the data bus master, it samples the data bus for read operations

or drives the data bus for write operations. The data parity and data parity error signals
ensure the integrity of the data transfer.

— Termination: Data termination signals are required after each data beat in a data
transfer. Note that in a single-beat transaction, the data termination signals also
indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the
final data beat.

Gekko generates an address-only bus transfer during the execution of thedcbz instruction (and for
thedcbi, dcbf, dcbst, sync, andeieioinstructions, if HID0[ABE] is enabled), which uses only the
address bus with no data transfer involved. Additionally, Gekko’s retry capability provides an
efficient snooping protocol for systems with multiple memory systems (including caches) that
must remain coherent.

ARBITRATION TRANSFER TERMINATION

ADDRESS TENURE

ARBITRATION SINGLE-BEAT TRANSFER TERMINATION

DATA TENURE

INDEPENDENT ADDRESS AND DATA

IBM Confidential

Page 8-8 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

8.2.1 Arbitration Signals
Arbitration for both address and data bus mastership is performed by a central, external arbiter and,
minimally, by the arbitration signals shown inSection 7.2.1, "Address Bus Arbitration Signals" on
Page 7-3. Most arbiter implementations require additional signals to coordinate bus
master/slave/snooping activities.
NOTE: Address bus busy (ABB) and data bus busy (DBB) signals are not supported on Gekko.

Gekko uses internally generated signals,iABB andiDBB to determine the status of the
bus transactions. Gekko does not support theDRTRY signal pin which is internally
configured as a pull-up. All the references to theDRTRY signal shall be considered as a
permanently negated signal.

The following list describes the address arbitration signals:
• BR (bus request)—Assertion indicates that Gekko is requesting mastership of the address

bus.

• BG (bus grant)—Assertion indicates that Gekko may, with the proper qualification, assume
mastership of the address bus. A qualified bus grant occurs whenBG is asserted and when
iABB andARTRY are negated.

If Gekko is parked,BR need not be asserted for the qualified bus grant.

The following list describes the data arbitration signals:

• DBG (data bus grant)—Indicates that Gekko may, with the proper qualification, assume
mastership of the data bus. A qualified data bus grant occurs whenDBG is asserted while
DRTRY, iDBB andARTRY are negated.

TheARTRY signal is driven from the bus and is only for the address bus tenure
associated with the current data bus tenure (that is, not from another address tenure).

Gekko always assumes data bus mastership if it needs the data bus and is given a
qualified data bus grant.

For more detailed information on the arbitration signals, refer to Section 7.2.1,
"Address Bus Arbitration Signals" on Page 7-3 and Section 7.2.6, "Data Bus
Arbitration Signals" on Page 7-12.

8.2.2 Address Pipelining and Split-Bus Transactions
Gekko protocol provides independent address and data bus capability to support pipelined and
split-bus transaction system organizations. Address pipelining allows the address tenure of a new bus
transaction to begin before the data tenure of the current transaction has finished. Split-bus transaction
capability allows other bus activity to occur (either from the same master or from different masters)
between the address and data tenures of a transaction.
While this capability does not inherently reduce memory latency, support for address pipelining and
split-bus transactions can greatly improve effective bus/memory throughput. For this reason, these
techniques are most effective in shared-memory multimaster implementations where bus bandwidth
is an important measurement of system performance.
External arbitration is required in systems in which multiple devices must compete for the system bus.
The design of the external arbiter affects pipelining by regulating address bus grant (BG), data bus
grant (DBG), and address acknowledge (AACK) signals. For example, a one-level pipeline is enabled
by assertingAACK to the current address bus master and granting mastership of the address bus to
the next requesting master before the current data bus tenure has completed. Two address tenures can

IBM Confidential

Chapter 8. Bus Interface Operation IBM Confidential 5/25/00 Page 8-9

occur before the current data bus tenure completes.
Gekko can pipeline its own transactions to a depth of one level (intraprocessor pipelining);
however, Gekko bus protocol does not constrain the maximum number of levels of pipelining that
can occur on the bus between multiple masters (interprocessor pipelining). The external arbiter
must control the pipeline depth and synchronization between masters and slaves.
In a pipelined implementation, data bus tenures are kept in strict order with respect to address
tenures. However, external hardware can further decouple the address and data buses, allowing the
data tenures to occur out of order with respect to the address tenures. This requires some form of
system tag to associate the out-of-order data transaction with the proper originating address
transaction (not defined for Gekko interface). Individual bus requests and data bus grants from each
processor can be used by the system to implement tags to support interprocessor, out-of-order
transactions.
NOTE: Gekko drops out of pipeline mode between consecutive burst data reads (with the

exception of consecutive DMA reads, which are pipelined) and between consecutive
burst instruction fetches. No other sequences of operations cause this effect. In this
case, the address tenure of the second transaction will not begin until one to three bus
clocks after the end of the data tenure of the first transaction.

8.3 Address Bus Tenure
This section describes the three phases of the address tenure—address bus arbitration, address
transfer, and address termination.

8.3.1 Address Bus Arbitration
Gekko replaces theABB signal with an internal signal,iABB ,which is asserted onTS and is
negated the cycle afterAACK.
When Gekko needs access to the external bus and it is not parked (BG is negated), it asserts bus
request (BR) until it is granted mastership of the bus and the bus is available (see Figure 8-5 on
Page 8-10). The external arbiter must grant master-elect status to the potential master by asserting
the bus grant (BG) signal. Gekko determines that the address bus is not busy by monitoring theTS
and theAACK input signals. Gekko determines that the bus is available when the address bus is
not busy,BG is asserted and the address retry (ARTRY) input is negated. This is referred to as a
qualified bus grant and Gekko can assume address bus mastership.

IBM Confidential

Page 8-10 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Figure 8-5. Address Bus Arbitration

External arbiters must allow only one device at a time to be the address bus master. For
implementations in which no other device can be a master,BG can be grounded (always asserted) to
continually grant mastership of the address bus to Gekko.
If Gekko assertsBR before the external arbiter assertsBG, Gekko is considered to be unparked, as
shown in Figure 8-5. Figure 8-6 on Page 8-11 shows the parked case, where a qualified bus grant
exists on the clock edge following a need_bus condition. Notice that the bus clock cycle required for
arbitration is eliminated if Gekko is parked, reducing overall memory latency for a transaction. Gekko
always negatesiABB for at least one bus clock cycle afterAACK is asserted, even if it is parked and
has another transaction pending.
Typically, bus parking is provided to the device that was the most recent bus master; however, system
designers may choose other schemes such as providing unrequested bus grants in situations where it
is easy to correctly predict the next device requesting bus mastership.

-1 0 1

need_bus

BR

bg

artry

qual BG

iABB

Logical Bus Clock

IBM Confidential

Chapter 8. Bus Interface Operation IBM Confidential 5/25/00 Page 8-11

Figure 8-6. Address Bus Arbitration Showing Bus Parking

When Gekko receives a qualified bus grant, it assumes address bus mastership by negating theBR
output signal. Meanwhile, Gekko drives the address for the requested access onto the address bus
and assertsTS to indicate the start of a new transaction.
When designing external bus arbitration logic, note that Gekko may assertBR without using the
bus after it receives the qualified bus grant. For example, in a system using bus snooping, if Gekko
assertsBR to perform a replacement copy-back operation, another device can invalidate that line
before Gekko is granted mastership of the bus. In these instances, Gekko assertsBR for at least one
clock cycle.
System designers should note that Gekko does not support theABB signal. The memory controller
must monitor theTS andAACK input signals to determine the status of the address bus. Gekko
allows this operation by using an internal version ofABB to determine if a qualified bus grant state
exists.
Gekko will not qualify a bus grant during the cycle thatTS is asserted on the bus by any master.
Address bus arbitration requires that every assertion ofTS be acknowledged by an assertion of
AACK while the processor is not in sleep mode.

8.3.2 Address Transfer
During the address transfer, the physical address and all attributes of the transaction are transferred
from the bus master to the slave device(s). Snooping logic may monitor the transfer to enforce
cache coherency; see discussion about snooping in Section 8.3.3, "Address Transfer Termination"
on Page 8-16. The signals used in the address transfer include the following signal groups:

• Address transfer start signal: transfer start (TS)

• Address transfer signals: address bus (A[0–31]), and address parity (AP[0–3])

• Address transfer attribute signals: transfer type (TT[0–4]), transfer size (TSIZ[0–2]),
transfer burst (TBST), cache inhibit (CI), write-through (WT), and global (GBL).

-1 0 1

need_bus

BR

bg

artry

qual BG

iABB

IBM Confidential

Page 8-12 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Figure 8-7 shows that the timing for all of these signals, exceptTS, is identical. All of the address
transfer and address transfer attribute signals are combined into the ADDR+ grouping in Figure 8-7.
TheTS signal indicates that Gekko has begun an address transfer and that the address and transfer
attributes are valid (within the context of a synchronous bus).

In Figure 8-7, the address transfer occurs during bus clock cycles 1 and 2 (arbitration occurs in bus
clock cycle 0 and the address transfer is terminated in bus clock 3). In this diagram, the address bus
termination input,AACK, is asserted to Gekko on the bus clock following assertion ofTS (as shown
by the dependency line). This is the minimum duration of the address transfer for Gekko; the duration
can be extended by delaying the assertion ofAACK for one or more bus clocks.

Figure 8-7. Address Bus Transfer

8.3.2.1 Address Bus Parity (N/A on Gekko)
Note: The address bus parity pins are not connected on Gekko, so it neither generates nor checks for
correct parity on the external bus.
The BIU always generates 1 bit of correct odd-byte parity for each of the 4 bytes of address when a
valid address is on the bus. The calculated values are placed on the AP[0–3] outputs when the BIU is
the address bus master. If the BIU is not the master andTS andGBL are asserted together (qualified
condition for snooping memory operations), the calculated values are compared with the AP[0–3]
inputs. If there is an error, and address parity checking is enabled (HID0[EBA] set to 1), a machine
check exception is generated. An address bus parity error causes a checkstop condition if MSR[ME]
is cleared to 0. For more information about checkstop conditions, see Chapter 4, "Exceptions" in this
manual.

8.3.2.2 Address Transfer Attribute Signals
The transfer attribute signals include several encoded signals such as the transfer type (TT[0–4])
signals, transfer burst (TBST) signal, transfer size (TSIZ[0–2]) signals, write-through (WT), and
cache inhibit (CI). Section 7.2.4, "Address Transfer Attribute Signals" on Page 7-6 describes the
encodings for the address transfer attribute signals.

0 1 2 3 4

qual BG

TS

iABB

ADDR+

aack

artry_in

IBM Confidential

Chapter 8. Bus Interface Operation IBM Confidential 5/25/00 Page 8-13

8.3.2.2.1 Transfer Type (TT[0–4]) Signals
Snooping logic should fully decode the transfer type signals if theGBL signal is asserted. Slave
devices can sometimes use the individual transfer type signals without fully decoding the group.
For a complete description of the encoding for TT[0–4], refer to Table 8-1 and Table 8-2 on Page
8-14.

8.3.2.2.2 Transfer Size (TSIZ[0–2]) Signals
The TSIZ[0–2] signals indicate the size of the requested data transfer as shown in Table 8-1. The
TSIZ[0–2] signals may be used along withTBST and A[29–31] to determine which portion of the
data bus contains valid data for a write transaction or which portion of the bus should contain valid
data for a read transaction. Note that for a burst transaction (as indicated by the assertion ofTBST),
TSIZ[0–2] are always set to 0b010. Therefore, if theTBST signal is asserted, the memory system
should transfer a total of eight words (32 bytes), regardless of the TSIZ[0–2] encodings.

The basic coherency size of the bus is defined to be 32 bytes (corresponding to one cache line).
Data transfers that cross an aligned, 32-byte boundary either must present a new address onto the
bus at that boundary (for coherency consideration) or must operate as noncoherent data with
respect to Gekko. Gekko never generates a bus transaction with a transfer size of 5 bytes, 6 bytes,
or 7 bytes.

8.3.2.2.3 Write-Through (WT) Signal
Gekko provides theWT signal to indicate a write-through operation as determined by the WIM bit
settings during address translation by the MMU. TheWT signal is also asserted for burst writes
due to the execution of thedcbf anddcbst instructions, and snoop push operations. TheWT signal
is deasserted for accesses caused by the execution of theecowxinstruction. During read operations
Gekko uses theWT signal to indicate whether the transaction is an instruction fetch (WT set to 1),
or a data read operation (WT cleared to 0).

Table 8-1. Transfer Size Signal Encodings

TBST TSIZ0 TSIZ1 TSIZ2 Transfer Size

Asserted 0 1 0 Eight-word burst

Negated 0 0 0 Eight bytes

Negated 0 0 1 One byte

Negated 0 1 0 Two bytes

Negated 0 1 1 Three bytes

Negated 1 0 0 Four bytes

Negated 1 0 1 Five bytes (N/A)

Negated 1 1 0 Six bytes (N/A)

Negated 1 1 1 Seven bytes (N/A)

IBM Confidential

Page 8-14 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

8.3.2.2.4 Cache Inhibit (CI) Signal
Gekko indicates the caching-inhibited status of a transaction (determined by the setting of the WIM
bits by the MMU) through the use of theCI signal. TheCI signal is asserted even if the L1 caches are
disabled or locked. This signal is also asserted for bus transactions caused by the execution ofeciwx
andecowx instructions independent of the address translation.

8.3.2.3 Burst Ordering During Data Transfers
During burst data transfer operations, 32 bytes of data (one cache line) are transferred to or from the
cache in order. Burst write transfers are always performed zero double word first, but since burst reads
are performed critical double word first, a burst read transfer may not start with the first double word
of the cache line, and the cache line fill may wrap around the end of the cache line.
Table 8-2 describes the data bus burst ordering.

Table 8-2. Burst Ordering

Data Transfer
For Starting Address:

A[27–28] = 00 A[27–28] = 01 A[27–28] = 10 A[27–28] = 11

First data beat DW0 DW1 DW2 DW3

Second data beat DW1 DW2 DW3 DW0

Third data beat DW2 DW3 DW0 DW1

Fourth data beat DW3 DW0 DW1 DW2

Note: A[29–31] are always 0b000 for burst transfers by Gekko.

IBM Confidential

Chapter 8. Bus Interface Operation IBM Confidential 5/25/00 Page 8-15

8.3.2.4 Effect of Alignment in Data Transfers
Table 8-3 lists the aligned transfers that can occur on the Gekko bus. These are transfers in which
the data is aligned to an address that is an integral multiple of the size of the data. For example,
Table 8-3 shows that 1-byte data is always aligned; however, for a 4-byte word to be aligned, it
must be oriented on an address that is a multiple of 4.

Gekko supports misaligned memory operations, although their use may substantially degrade
performance. Misaligned memory transfers address memory that is not aligned to the size of the
data being transferred (such as, a word read of an odd byte address). Although most of these
operations hit in the primary cache (or generate burst memory operations if they miss), Gekko
interface supports misaligned transfers within a word (32-bit aligned) boundary, as shown in
Table 8-4 on Page 8-16.
NOTE: The 4-byte transfer in Table 8-4 is only one example of misalignment. As long as the

attempted transfer does not cross a word boundary, Gekko can transfer the data on the
misaligned address (for example, a half-word read from an odd byte-aligned address).
An attempt to address data that crosses a word boundary requires two bus transfers to
access the data.

Table 8-3. Aligned Data Transfers

Transfer Size TSIZ0 TSIZ1 TSIZ2 A[29–31]
Data Bus Byte Lane(s)

0 1 2 3 4 5 6 7

Byte 0 0 1 000 x — — — — — — —

0 0 1 001 — x — — — — — —

0 0 1 010 — — x — — — — —

0 0 1 011 — — — x — — — —

0 0 1 100 — — — — x — — —

0 0 1 101 — — — — — x — —

0 0 1 110 — — — — — — x —

0 0 1 111 — — — — — — — x

Half word 0 1 0 000 x x — — — — — —

0 1 0 010 — — x x — — — —

0 1 0 100 — — — — x x — —

0 1 0 110 — — — — — — x x

Word 1 0 0 000 x x x x — — — —

1 0 0 100 — — — — x x x x

Double word 0 0 0 000 x x x x x x x x

Note: The entries with an “x” indicate the byte portions of the requested operand which are read or written
during a bus transaction.
The entries with a “–” are not required and are ignored during read transactions, and they are driven with
undefined data during all write transactions.

IBM Confidential

Page 8-16 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Due to the performance degradations associated with misaligned memory operations, they are best
avoided. In addition to the double-word straddle boundary condition, the address translation logic can
generate substantial exception overhead when the load/store multiple and load/store string
instructions access misaligned data. It is strongly recommended that software attempt to align data
where possible.

8.3.2.5 Alignment of External Control Instructions
The size of the data transfer associated with theeciwx andecowx instructions is always 4 bytes. If
theeciwxor ecowxinstruction is misaligned and crosses any word boundary, Gekko will generate an
alignment exception.

8.3.3 Address Transfer Termination
The address tenure of a bus operation is terminated when completed with the assertion ofAACK, or
retried with the assertion ofARTRY. Gekko does not terminate the address transfer until theAACK
(address acknowledge) input is asserted; therefore, the system can extend the address transfer phase
by delaying the assertion ofAACK to Gekko. The assertion ofAACK can be as early as the bus clock
cycle followingTS (see Figure 8-8 on Page 8-18), which allows a minimum address tenure of two

Table 8-4. Misaligned Data Transfers (Four-Byte Examples)

Transfer Size
(Four Bytes)

TSIZ[0–2] A[29–31]
Data Bus Byte Lanes

0 1 2 3 4 5 6 7

Aligned 1 0 0 0 0 0 A A A A — — — —

Misaligned—first access

second access

0 1 1 0 0 1 A A A — — — —

0 0 1 1 0 0 — — — — A — — —

Misaligned—first access

second access

0 1 0 0 1 0 — — A A — — — —

0 1 1 1 0 0 — — — — A A — —

Misaligned—first access

second access

0 0 1 0 1 1 — — — A — — — —

0 1 1 1 0 0 — — — — A A A —

Aligned 1 0 0 1 0 0 — — — — A A A A

Misaligned—first access

second access

0 1 1 1 0 1 — — — — — A A A

0 0 1 0 0 0 A — — — — — — —

Misaligned—first access

second access

0 1 0 1 1 0 — — — — — — A A

0 1 0 0 0 0 A A — — — — — —

Misaligned—first access

second access

0 0 1 1 1 1 — — — — — — — A

0 1 1 0 0 0 A A A — — — — —

Notes:

A: Byte lane used
—: Byte lane not used

IBM Confidential

Chapter 8. Bus Interface Operation IBM Confidential 5/25/00 Page 8-17

bus cycles. As shown in Figure 8-8, these signals are asserted for one bus clock cycle, three-stated
for half of the next bus clock cycle, driven high till the following bus cycle, and finally three-stated.
Note thatAACK must be asserted for only one bus clock cycle.
The address transfer can be terminated with the requirement to retry ifARTRY is asserted anytime
during the address tenure and through the cycle followingAACK. The assertion causes the entire
transaction (address and data tenure) to be rerun. As a snooping device, Gekko assertsARTRY for
a snooped transaction that hits modified data in the data cache that must be written back to memory,
or if the snooped transaction could not be serviced. As a bus master, Gekko responds to an assertion
of ARTRY by aborting the bus transaction and re-requesting the bus. Note that after recognizing
an assertion ofARTRY and aborting the transaction in progress, Gekko is not guaranteed to run the
same transaction the next time it is granted the bus due to internal reordering of load and store
operations.
If an address retry is required, theARTRY response will be asserted by a bus snooping device as
early as the second cycle after the assertion ofTS. Once asserted,ARTRY must remain asserted
through the cycle after the assertion ofAACK. The assertion ofARTRY during the cycle after the
assertion ofAACK is referred to as a qualifiedARTRY. An earlier assertion ofARTRY during the
address tenure is referred to as an earlyARTRY.
As a bus master, Gekko recognizes either an early or qualifiedARTRY and prevents the data tenure
associated with the retried address tenure. If the data tenure has already begun, Gekko aborts and
terminates the data tenure immediately even if the burst data has been received. If the assertion of
ARTRY is received up to or on the bus cycle following the first (or only) assertion ofTA for the
data tenure, Gekko ignores the first data beat, and if it is a load operation, does not forward data
internally to the cache and execution units. IfARTRY is asserted after the first (or only) assertion
of TA, improper operation of the bus interface may result.
During the clock of a qualifiedARTRY, Gekko also determines if it should negateBR and ignore
BG on the following cycle. On the following cycle, only the snooping master that assertedARTRY
and needs to perform a snoop copy-back operation is allowed to assertBR. This guarantees the
snooping master an opportunity to request and be granted the bus before the just-retried master can
restart its transaction. Note that a nonclocked bus arbiter may detect the assertion of address bus
request by the bus master that assertedARTRY, and return a qualified bus grant one cycle earlier
than shown in Figure 8-8 on Page 8-18.
Note that if Gekko assertsARTRY due to a snoop operation, and assertsBR in the bus cycle
following ARTRY in order to perform a snoop push to memory it may be several bus cycles later
before Gekko will be able to accept aBG. (The delay in responding to the assertion ofBG only
occurs during snoop pushes from the L2 cache.) The bus arbiter should keepBG asserted until it
detectsBR negated orTS asserted from Gekko indicating that the snoop copy-back has begun. The
system should ensure that no other address tenures occur until the current snoop push from Gekko
is completed. Snoop push delays can also be avoided by operating the L2 cache in write-through
mode so no snoop pushes are required by the L2 cache.

IBM Confidential

Page 8-18 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Figure 8-8. Snooped Address Cycle with ARTRY

8.4 Data Bus Tenure
This section describes the data bus arbitration, transfer, and termination phases defined by Gekko
memory access protocol. The phases of the data tenure are identical to those of the address tenure,
underscoring the symmetry in the control of the two buses.
Gekko does not support theDBB signal, typically found on a 60x PowerPC processor. Instead, Gekko
uses an internal signal,iDBB . The iDBB signal is asserted on the bus clock cycle following a
qualifiedDBG and is negated at least one bus clock cycle after the assertion of the finalTA. Also,
Gekko is configured to operate in no-DRTRY mode, so the state of theDRTRY signal as described
in the following sections is ignored by the processor.

8.4.1 Data Bus Arbitration
Data bus arbitration uses the data arbitration signal group—DBG and iDBB. Additionally, the
combination ofTS and TT[0–4] provides information about the data bus request to external logic.
The TS signal is an implied data bus request from Gekko. The arbiter must qualifyTS with the
transfer type (TT) encodings to determine if the current address transfer is an address-only operation,
which does not require a data bus transfer. If the data bus is needed, the arbiter grants data bus
mastership by asserting theDBG input to Gekko. As with the address bus arbitration phase, Gekko
must qualify theDBG input with a number of input signals before assuming bus mastership, as shown
in Figure 8-9 on Page 8-19.

1 2 3 4 5 6 7

ts

addr

aack

ARTRY

BR

qualBG

iABB

8

IBM Confidential

Chapter 8. Bus Interface Operation IBM Confidential 5/25/00 Page 8-19

Figure 8-9. Data Bus Arbitration

A qualified data bus grant can be expressed as the following:

QDBG =DBG asserted whileDRTRY, iDBB andARTRY (associated with the data
bus operation) are negated.

When a data tenure overlaps with its associated address tenure, a qualifiedARTRY assertion
coincident with a data bus grant signal does not result in data bus mastership Otherwise, Gekko
always becomes the bus master on the bus clock cycle after recognition of a qualified data bus
grant. Since Gekko can pipeline transactions, there may be an outstanding data bus transaction
when a new address transaction is retried. In this case, Gekko becomes the data bus master to
complete the outstanding transaction.
Gekko does not support theDBB signal. The memory system must track the start and end of the
data tenure and control data tenure scheduling directly withDBG. TheDBG signal is only asserted
to the next bus master the cycle before the cycle that the next bus master may actually begin its data
tenure. Gekko always requires one cycle after data tenure completion before recognizing a
qualified data bus grant for another data tenure.

8.4.2 Data Transfer
The data transfer signals include DH[0–31], DL[0–31], and DP[0–7]. For memory accesses, the
DH and DL signals form a 64-bit data path for read and write operations.
Gekko transfers data in either single- or four-beat burst transfers. Single-beat operations can
transfer from 1 to 8 bytes at a time and can be misaligned; see Section 8.3.2.4, "Effect of Alignment
in Data Transfers" on Page 8-15. Burst operations always transfer eight words and are aligned on
eight-word address boundaries. Burst transfers can achieve significantly higher bus throughput
than single-beat operations.
The type of transaction initiated by Gekko depends on whether the code or data is cacheable and,
for store operations whether the cache is in write-back or write-through mode, which software
controls on either a page or block basis. Burst transfers support cacheable operations only; that is,
memory structures must be marked as cacheable (and write-back for data store operations) in the

0 1 2 3

TS

dbg

drtry

qual DBG

iDBB

IBM Confidential

Page 8-20 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

respective page or block descriptor to take advantage of burst transfers.
The Gekko outputTBST indicates to the system whether the current transaction is a single- or
four-beat transfer (except duringeciwx/ecowxtransactions, when it signals the state of EAR[28]). A
burst transfer has an assumed address order. For load or store operations that miss in the cache (and
are marked as cacheable and, for stores, write-back in the MMU), Gekko uses the
double-word-aligned address associated with the critical code or data that initiated the transaction.
This minimizes latency by allowing the critical code or data to be forwarded to the processor before
the rest of the cache line is filled. For all other burst operations, however, the cache line is transferred
beginning with the eight-word-aligned data.

8.4.3 Data Transfer Termination
Three signals are used to terminate data bus transactions—TA, TEA (transfer error acknowledge),
andARTRY.
TheTA signal indicates normal termination of data transactions. It must always be asserted on the
bus cycle coincident with the data that it is qualifying. It may be withheld by the slave for any number
of clocks until valid data is ready to be supplied or accepted. Upon receiving a final (or only)
termination condition, Gekko always negatesiDBB for one cycle.
TheTEA signal is used to signal a nonrecoverable error during the data transaction. It may be asserted
on any cycle during a data bus tenure. The assertion ofTEA terminates the data tenure immediately
even if in the middle of a burst; however, it does not prevent incorrect data that has just been
acknowledged withTA from being written into Gekko’s cache or GPRs. The assertion ofTEA
initiates either a machine check exception or a checkstop condition based on the setting of the
MSR[ME] bit.
An assertion ofARTRY causes the data tenure to be terminated immediately if theARTRY is for the
address tenure associated with the data tenure in operation. IfARTRY is connected for Gekko, the
earliest allowable assertion ofTA to Gekko is directly dependent on the earliest possible assertion of
ARTRY to Gekko; see Section 8.3.3, "Address Transfer Termination" on Page 8-16.

IBM Confidential

Chapter 8. Bus Interface Operation IBM Confidential 5/25/00 Page 8-21

8.4.3.1 Normal Single-Beat Termination
Normal termination of a single-beat data read operation occurs whenTA is asserted by a
responding slave. TheTEA and DRTRY signals must remain negated during the transfer (see
Figure 8-10).

Figure 8-10. Normal Single-Beat Read Termination

TheDRTRY signal is not sampled during data writes, as shown in Figure 8-11.

Figure 8-11. Normal Single-Beat Write Termination

0 1 2 3 4

TS

qual DBG

iDBB

data

ta

drtry

AACK

0 1 2 3

TS

qual DBG

iDBB

data

ta

drtry

AACK

IBM Confidential

Page 8-22 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Normal termination of a burst transfer occurs whenTA is asserted for four bus clock cycles, as shown
inFigure 8-12 on Page 8-22. The bus clock cycles in whichTA is asserted need not be consecutive,
thus allowing pacing of the data transfer beats. For read bursts to terminate successfully,TEA and
DRTRY must remain negated during the transfer. For write bursts,TEA must remain negated for a
successful transfer.DRTRY is ignored during data writes.

Figure 8-12. Normal Burst Transaction

For read bursts,DRTRY may be asserted one bus clock cycle afterTA is asserted to signal that the
data presented withTA is invalid and that the processor must wait for the negation ofDRTRY before
forwarding data to the processor (see Figure 8-13). Thus, a data beat can be terminated by a predicted
branch withTA and then one bus clock cycle later confirmed with the negation ofDRTRY. The
DRTRY signal is valid only for read transactions.TA must be asserted on the bus clock cycle before
the first bus clock cycle of the assertion ofDRTRY; otherwise the results are undefined.
TheDRTRY signal extends data bus mastership such that other processors cannot use the data bus
until DRTRY is negated. Therefore, in the example inFigure 8-13, data bus tenure for the next
transaction cannot begin until bus clock cycle 6. This is true for both read and write operations even
thoughDRTRY does not extend bus mastership for write operations.

1 2 3 4 5 6 7

TS

qual DBG

iDBB

data

ta

drtry

IBM Confidential

Chapter 8. Bus Interface Operation IBM Confidential 5/25/00 Page 8-23

Figure 8-13. Termination with DRTRY

Figure 8-14 shows the effect of usingDRTRY during a burst read. It also shows the effect of using
TA to pace the data transfer rate. Notice that in bus clock cycle 3 of Figure 8-15 on Page 8-25,TA
is negated for the second data beat. Gekko data pipeline does not proceed until bus clock cycle 4
when theTA is reasserted.

Figure 8-14. Read Burst with TA Wait States and DRTRY

NOTE: DRTRY is useful for systems that implement predicted forwarding of data such as those
with direct-mapped, third-level caches where hit/miss is determined on the following
bus clock cycle, or for parity- or ECC-checked memory systems. Also note that
DRTRY may not be implemented on other PowerPC processors.

1 2 3 4 5

TS

qual DBG

iDBB

data

ta

drtry

TS

qual DBG

iDBB

data

ta

drtry

1 2 3 4 5 6 7 8 9

IBM Confidential

Page 8-24 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

8.4.3.2 Data Transfer Termination Due to a Bus Error
The TEA signal indicates that a bus error occurred. It may be asserted during data bus tenure.
AssertingTEA to Gekko terminates the transaction; that is, further assertions ofTA are ignored and
the data bus tenure is terminated.
Assertion of theTEA signal causes a machine check exception (and possibly a checkstop condition
within Gekko). The hard reset exception is a nonrecoverable, nonmaskable asynchronous exception.
When HRESET is asserted or at power-on reset (POR), the 750 immediately branches to
0xFFF0_0100 without attempting to reach a recoverable state. A hard reset has the highest priority of
any exception. It is always nonrecoverable.
Table 4-9 on Page 4-16 shows the state of the machine just before it fetches the first instruction of
the system reset handler after a hard reset. In Table 4-9, the term “Unknown” means that the content
may have been disordered. These facilities must be properly initialized before use. The FPRs, BATs,
and TLBs may have been disordered. To initialize the BATs, first set them all to zero, then to the
correct values before any address translation occurs..” Note also that Gekko does not implement a
synchronous error capability for memory accesses. This means that the exception instruction pointer
saved into the SRR0 register does not point to the memory operation that caused the assertion ofTEA,
but to the instruction about to be executed (perhaps several instructions later). However, assertion of
TEA does not invalidate data entering the GPR or the cache. Additionally, the address corresponding
to the access that causedTEA to be asserted is not latched by Gekko. To recover, the exception
handler must determine and remedy the cause of theTEA, or Gekko must be reset; therefore, this
function should only be used to indicate fatal system conditions to the processor.
After Gekko has committed to run a transaction, that transaction must eventually complete. Address
retry causes the transaction to be restarted;TA wait states andDRTRY assertion for reads delay
termination of individual data beats. Eventually, however, the system must either terminate the
transaction or assert theTEA signal. For this reason, care must be taken to check for the end of
physical memory and the location of certain system facilities to avoid memory accesses that result in
the assertion ofTEA.
Note thatTEA generates a machine check exception depending on MSR[ME]. Clearing the machine
check exception enable control bits leads to a true checkstop condition (instruction execution halted
and processor clock stopped).

8.4.4 Memory Coherency—MEI Protocol
Gekko provides dedicated hardware to provide memory coherency by snooping bus transactions. The
address retry capability enforces the three-state, MEI cache-coherency protocol (see Figure 8-15 on
Page 8-25).
The global (GBL) output signal indicates whether the current transaction must be snooped by other
snooping devices on the bus. Address bus masters assertGBL to indicate that the current transaction
is a global access (that is, an access to memory shared by more than one device). IfGBL is not
asserted for the transaction, that transaction is not snooped. When other devices detect theGBL input
asserted, they must respond by snooping the broadcast address.
Normally, GBL reflects the M bit value specified for the memory reference in the corresponding
translation descriptor(s). Note that care must be taken to minimize the number of pages marked as
global, because the retry protocol discussed in the previous section is used to enforce coherency and
can require significant bus bandwidth.
When Gekko is not the address bus master,GBL is an input. Gekko snoops a transaction ifTS and
GBL are asserted together in the same bus clock cycle (this is a qualified snooping condition). No
snoop update to Gekko cache occurs if the snooped transaction is not marked global. This includes
invalidation cycles.

IBM Confidential

Chapter 8. Bus Interface Operation IBM Confidential 5/25/00 Page 8-25

When Gekko detects a qualified snoop condition, the address associated with theTS is compared
against the data cache tags. Snooping completes if no hit is detected. If, however, the address hits
in the cache, Gekko reacts according to the MEI protocol shown in Figure 8-15, assuming the WIM
bits are set to write-back, caching-allowed, and coherency-enforced modes (WIM = 001).

Figure 8-15. MEI Cache Coherency Protocol—State Diagram (WIM = 001)

8.5 Timing Examples
This section shows timing diagrams for various scenarios. Figure 8-16 on Page 8-26 illustrates the
fastest single-beat reads possible for Gekko. This figure shows both minimal latency and maximum
single-beat throughput. By delaying the data bus tenure, the latency increases, but, because of
split-transaction pipelining, the overall throughput is not affected unless the data bus latency causes
the third address tenure to be delayed.

BUS TRANSACTIONS

SH =Snoop Hit = Snoop Push
RH =Read Hit
WH =Write Hit = Cache Line Fill
WM=Write Miss
RM =Read Miss
SH/CRW=Snoop Hit, Cacheable Read/Write
SH/CIR =Snoop Hit, Caching-Inhibited Read

RH

WH

RH

MODIFIED
WH

SH

SH/CIR

SH/CRW

WM

EXCLUSIVE

INVALID

SH/CRW

RM

IBM Confidential

Page 8-26 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Note that all bidirectional signals are three-stated between bus tenures.

Figure 8-16. Fastest Single-Beat Reads

BR

BG

iABB

TS

A[0–31]

TT[0–4]

TBST

GBL

AACK

ARTRY

DBG

iDBB

D[0–63]

TA

DRTRY

TEA

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

CPU A CPU A CPU A

Read Read Read

In In In

IBM Confidential

Chapter 8. Bus Interface Operation IBM Confidential 5/25/00 Page 8-27

Figure 8-17 illustrates the fastest single-beat writes supported by Gekko. All bidirectional signals
are three-stated between bus tenures.

Figure 8-17. Fastest Single-Beat Writes

Figure 8-18 on Page 8-28 shows three ways to delay single-beat reads showing data-delay
controls:

• TheTA signal can remain negated to insert wait states in clock cycles 3 and 4.

• For the second access,DBG could have been asserted in clock cycle 6.

• In the third access,DRTRY is asserted in clock cycle 11 to flush the previous data.

BR

BG

iABB

TS

A[0–31]

TT[0–4]

TBST

GBL

AACK

ARTRY

DBG

iDBB

D[0–63]

TA

DRTRY

TEA

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

CPU A CPU A CPU A

SBW SBW SBW

Out Out Out

IBM Confidential

Page 8-28 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

NOTE: All bidirectional signals are three-stated between bus tenures. The pipelining shown in
Figure 8-18 can occur if the second access is not another load (for example, an instruction
fetch).

Figure 8-18. Single-Beat Reads Showing Data-Delay Controls

Figure 8-19 on Page 8-29 shows data-delay controls in a single-beat write operation. Note that all
bidirectional signals are three-stated between bus tenures. Data transfers are delayed in the following
ways:

• TheTA signal is held negated to insert wait states in clocks 3 and 4.

BR

BG

iABB

TS

A[0–31]

TT[0–4]

TBST

GBL

AACK

ARTRY

DBG

iDBB

D[0–63]

TA

DRTRY

TEA

CPU A CPU A CPU A

Read Read Read

In In Bad

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

In

IBM Confidential

Chapter 8. Bus Interface Operation IBM Confidential 5/25/00 Page 8-29

• In clock 6,DBG is held negated, delaying the start of the data tenure.
The last access is not delayed (DRTRY is valid only for read operations).

Figure 8-19. Single-Beat Writes Showing Data Delay Controls

Figure 8-20 on Page 8-30 shows the use of data-delay controls with burst transfers. Note that all
bidirectional signals are three-stated between bus tenures. Note the following:

• The first data beat of bursted read data (clock 0) is the critical quad word.

• The write burst shows the use ofTA signal negation to delay the third data beat.

• The final read burst shows the use ofDRTRY on the third data beat.

BR

BG

iABB

TS

A[0–31]

TT[0–4]

TBST

GBL

AACK

ARTRY

DBG

iDBB

D[0–63]

TA

DRTRY

TEA

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

CPU A CPU A CPU A

SBW SBW SBW

Out Out Out

IBM Confidential

Page 8-30 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

• The address for the third transfer is delayed until the first transfer completes.

Figure 8-20. Burst Transfers with Data Delay Controls

Figure 8-21 on Page 8-31 shows the use of theTEA signal. Note that all bidirectional signals are
three-stated between bus tenures. Note the following:

• The first data beat of the read burst (in clock 0) is the critical quad word.

• TheTEA signal truncates the burst write transfer on the third data beat.

• Gekko eventually causes an exception to be taken on theTEA event.

BR

BG

iABB

TS

A[0–31]

TT[0–4]

TBST

GBL

AACK

ARTRY

DBG

iDBB

D[0–63]

TA

DRTRY

TEA

CPU A

In 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

CPU A CPU A

Read Write Read

In 1 In 2 In 3 Out 0 Out 1 Out 2 Out 3 In 0 In 1 In 2 In 3In 2

IBM Confidential

Chapter 8. Bus Interface Operation IBM Confidential 5/25/00 Page 8-31

Figure 8-21. Use of Transfer Error Acknowledge (TEA)

8.6 No-DRTRY Bus Configuration
Gekko is internally configured for the no-DRTRY mode. The no-DRTRY mode allows the
forwarding of data during load operations to the internal CPU one bus cycle sooner than in the
normal bus protocol.
The 60x bus protocol specifies that, during load operations, the memory system normally has the
capability to cancel data that was read by the master on the bus cycle afterTA was asserted. This
late cancellation protocol requires Gekko to hold any loaded data at the bus interface for one
additional bus clock to verify that the data is valid before forwarding it to the internal CPU. Gekko
uses the no-DRTRY mode that eliminates this one-cycle stall during all load operations, and allows
for the forwarding of data to the internal CPU immediately whenTA is recognized.

BR

BG

iABB

TS

A[0–31]

TT[0–4]

TBST

GBL

AACK

ARTRY

DBG

iDBB

D[0–63]

TA

DRTRY

TEA

CPU A

In 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CPU A CPU A

Read Write Read

In 1 In 2 In 3 Out 0 Out 1 Out 2 In 0 In 1 In 3In 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

IBM Confidential

Page 8-32 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

The data can no longer be cancelled the cycle after it is acknowledged by an assertion ofTA. Data is
immediately forwarded to the CPU internally, and any attempt at late cancellation by the system may
cause improper operation by Gekko.
When a typical 60x PowerPC processor is following normal bus protocol, data may be cancelled the
bus cycle afterTA by either of two means—late cancellation byDRTRY, or late cancellation by
ARTRY. For Gekko, due to the default no-DRTRY mode, both late cancellation cases must be
disallowed in the system design for the bus protocol. The system must also ensure that an assertion
of ARTRY by a snooping device must occur before or coincident with the first assertion ofTA to
Gekko, but not on the cycle after the first assertion ofTA.

8.7 32-bit Data Bus Mode
Gekko supports an optional 32-bit data bus mode. The 32-bit data bus mode operates the same as the
64-bit data bus mode with the exception of the byte lanes involved in the transfer and the number of
data beats that are performed. When in 32-bit data bus mode, only byte lanes 0 through 3 are used
corresponding to DH0–DH31 and DP0–DP3. Byte lanes 4 through 7 corresponding to DL0–DL31
and DP4–DP7 are never used in this mode. The unused data bus signals are not sampled by Gekko
during read operations, and they are driven low during write operations.
The number of data beats required for a data tenure in the 32-bit data bus mode is one, two, or eight
beats depending on the size of the program transaction and the cache mode for the address. Data
transactions of one or two data beats are performed for caching-inhibited load/store or write-through
store operations. These transactions do not assert theTBST signal even though a two-beat burst may
be performed (having the sameTBST and
TSIZ[0–2] encodings as the 64-bit data bus mode). Single-beat data transactions are performed for
bus operations of 4 bytes or less, and double-beat data transactions are performed for 8-byte
operations only. Gekko only generates an 8-byte operation for a double-word-aligned load or store
double operation to or from the floating-point registers. All cache-inhibited instruction fetches are
performed as word (single-beat) operations.
Data transactions of eight data beats are performed for burst operations that load into or store from
Gekko’s internal caches. These transactions transfer 32 bytes in the same way as in 64-bit data bus
mode, asserting theTBST signal, and signaling a transfer size of 2 (TSIZ(0–2) = 0b010).
The same bus protocols apply for arbitration, transfer, and termination of the address and data tenures
in the 32-bit data bus mode as they apply to the 64-bit data bus mode. LateARTRY cancellation of
the data tenure applies on the bus clock after the first data beat is acknowledged (after the firstTA)
for word or smaller transactions, or on the bus clock after the second data beat is acknowledged (after
the secondTA) for double-word or burst operations (or coincident with respectiveTA if no-DRTRY
mode is selected).
An example of an eight-beat data transfer while Gekko is in 32-bit data bus mode is shown in
Figure 8-22 on Page 8-33.

IBM Confidential

Chapter 8. Bus Interface Operation IBM Confidential 5/25/00 Page 8-33

Figure 8-22. 32-Bit Data Bus Transfer (Eight-Beat Burst)

An example of a two-beat data transfer is shown in Figure 8-23.

Figure 8-23. 32-Bit Data Bus Transfer (Two-Beat Burst with DRTRY)

Gekko selects 64-bit or 32-bit data bus mode at startup by sampling the state of theQACK signal
at the negation ofHRESET. If theQACK signal is asserted at the negation ofHRESET, 64-bit data

TS

ABB

ADDR

TBST

AACK

ARTRY

DBB

DH[0–31]

TA

DRTRY

TEA

0 1 2 3 4 5 6 7

TS

ABB

ADDR

TBST

AACK

ARTRY

DBB

DH[0–31]

TA

DRTRY

TEA

0 1

IBM Confidential

Page 8-34 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

mode is selected by Gekko. IfQACK is de-asserted at the negation ofHRESET, 32-bit data mode is
selected. Table 8-5 describes the burst ordering when Gekko is in 32-bit mode.

The aligned data transfer cases for 32-bit data bus mode are shown in Table 8-6. All of the transfers
require a single data beat (if caching-inhibited or write-through) except for double-word cases which
require two data beats. The double-word case is only generated by Gekko for load or store double
operations to/from the floating-point registers. All caching-inhibited instruction fetches are
performed as word operations.

Table 8-5. Burst Ordering—32-Bit Bus

Data Transfer
For Starting Address:

A[27–28] = 00 A[27–28] = 01 A[27–28] = 10 A[27–28] = 11

First data beat DW0-U DW1-U DW2-U DW3-U

Second data beat DW0-L DW1-L DW2-L DW3-L

Third data beat DW1-U DW2-U DW3-U DW0-U

Fourth data beat DW1-L DW2-L DW3-L DW0-L

Fifth data beat DW2-U DW3-U DW0-U DW1-U

Sixth data beat DW2-L DW3-L DW0-L DW1-L

Seventh data beat DW3-U DW0-U DW1-U DW2-U

Eighth data beat DW3-L DW0-L DW1-L DW2-L

Notes: A[29–31] are always 0b000 for burst transfers by the 750.

“U” and “L” represent the upper and lower word of the double word respectively.

Table 8-6. Aligned Data Transfers (32-Bit Bus Mode)

Transfer Size TSIZ0 TSIZ1 TSIZ2 A[29–31]
Data Bus Byte Lane(s)

0 1 2 3 4 5 6 7

Byte 0 0 1 000 A — — — x x x x

0 0 1 001 — A x — x x x x

0 0 1 010 — — A — x x x x

0 0 1 011 — — — A x x x x

0 0 1 100 A — — — x x x x

0 0 1 101 — A — — x x x x

0 0 1 110 — — A — x x x x

0 0 1 111 — — — A x x x x

IBM Confidential

Chapter 8. Bus Interface Operation IBM Confidential 5/25/00 Page 8-35

Misaligned data transfers in the 32-bit bus mode is the same as in the 64-bit bus mode with the
exception that only DH[0-31] data lines are used.Table 8-7 on Page 8-36 shows examples of 4-byte
mis-aligned transfers starting at each possible byte address within a double word.

Half word 0 1 0 000 A A — — x x x x

0 1 0 010 — — A A x x x x

0 1 0 100 A A — — x x x x

0 1 0 110 — — A A x x x x

Word 1 0 0 000 A A A A x x x x

1 0 0 100 A A A A x x x x

Double word

Second beat

0 0 0 000 A A A A x x x x

0 0 0 000 A A A A x x x x

Notes:

A: Byte lane used
—: Byte lane not used
x: Byte lane not used in 32-bit bus mode

Table 8-6. Aligned Data Transfers (32-Bit Bus Mode)

Transfer Size TSIZ0 TSIZ1 TSIZ2 A[29–31]
Data Bus Byte Lane(s)

0 1 2 3 4 5 6 7

IBM Confidential

Page 8-36 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

8.8 Interrupt, Checkstop, and Reset Signals
This section describes external interrupts, checkstop operations, and hard and soft reset inputs.

8.8.1 External Interrupts
The external interrupt input signals (INT andMCP) of Gekko eventually force the processor to take
the external interrupt vector if the MSR[EE] is set, or the machine check interrupt if the MSR[ME]
and the HID0[EMCP] bits are set.

8.8.2 Checkstops
A checkstop causes the processor to halt. Once Gekko enters a checkstop state, only a hard reset can
clear the processor from the checkstop state.
Gekko has two checkstop input signals—CKSTP_IN (nonmaskable) andMCP (enabled when
MSR[ME] is cleared, and HID0[EMCP] is set). IfCKSTP_IN orMCP is asserted, Gekko halts
operations by gating off all internal clocks.
Following is the list of checkstop sources:

Table 8-7. Misaligned 32-Bit Data Bus Transfer (Four-Byte Examples)

Transfer Size
(Four Bytes)

TSIZ[0–2] A[29–31]
Data Bus Byte Lanes

0 1 2 3 4 5 6 7

Aligned 1 0 0 0 0 0 A A A A x x x x

Misaligned—first access

second access

0 1 1 0 0 1 A A A x x x x

0 0 1 1 0 0 A — — — x x x x

Misaligned—first access

second access

0 1 0 0 1 0 — — A A x x x x

0 1 0 1 0 0 A A — x x x x x

Misaligned—first access

second access

0 0 1 0 1 1 — — — A x x x x

0 1 1 1 0 0 A A A — x x x x

Aligned 1 0 0 1 0 0 A A A A x x x x

Misaligned—first access

second access

0 1 1 1 0 1 — A A A x x x x

0 0 1 0 0 0 A — — — x x x x

Misaligned—first access

second access

0 1 0 1 1 0 — — A A x x x x

0 1 0 0 0 0 A A — — x x x x

Misaligned—first access

second access

0 0 1 1 1 1 — — — A x x x x

0 1 1 0 0 0 A A A — x x x x

Notes:

A: Byte lane used
—: Byte lane not used
x: Byte lane not used in 32-bit bus mode

IBM Confidential

Chapter 8. Bus Interface Operation IBM Confidential 5/25/00 Page 8-37

• Machine Check with MSR(ME)=0. If MSR(ME)=0 when a machine check interrupt
occurs, then the checkstop state is entered. The machine check sources are as follows.

— TEA_ assertion on the 60X bus
— Address parity error on the 60X bus
— Data parity error on the 60X bus
— Data double bit error on the L2 bus

• Machine check input pin (MCP_)

• Checkstop input pin (CKSTP_IN_)

8.8.3 Reset Inputs
Gekko has two reset inputs, described as follows:

• HRESET (hard reset)—TheHRESET signal is used for power-on reset sequences, or for
situations in which Gekko must go through the entire cold start sequence of internal
hardware initializations.

• SRESET (soft reset)—The soft reset input provides warm reset capability. This input can
be used to avoid forcing Gekko to complete the cold start sequence.

When eitherHRESET is negated orSRESET transitions to asserted, the processor attempts to fetch
code from the system reset exception vector. The vector is located at offset 0x00100 from the
exception prefix (all zeros or ones, depending on the setting of the exception prefix bit in the
machine state register (MSR[IP]). The MSR[IP] bit is set forHRESET.

8.8.4 System Quiesce Control Signals
The system quiesce control signals (QREQ andQACK) allow the processor to enter the nap or
sleep low-power states, and bring bus activity to a quiescent state in an orderly fashion.
Prior to entering the nap or sleep power state, Gekko asserts theQREQ signal. This signal allows
the system to terminate or pause any bus activities that are normally snooped. When the system is
ready to enter the system quiesce state, it asserts theQACK signal. At this time Gekko may enter
a quiescent (low power) state. When Gekko is in the quiescent state, it stops snooping bus activity.
While Gekko is in the nap power state, the system power controller can enable snooping by Gekko
by deasserting theQACK signal for at least eight bus clock cycles, after which Gekko is capable
of snooping bus transactions. The reassertion ofQACK following the snoop transactions will cause
Gekko to reenter the nap power state.

IBM Confidential

Page 8-38 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

8.9 Processor State Signals
This section describes Gekko's support for atomic update and memory through the use of the
lwarx /stwcx. opcode pair, and includes a description of theTLBISYNC input.

8.9.1 Support for the lwarx/stwcx. Instruction Pair
The Load Word and Reserve Indexed (lwarx) and the Store Word Conditional Indexed (stwcx.)
instructions provide a means for atomic memory updating. Memory can be updated atomically by
setting a reservation on the load and checking that the reservation is still valid before the store is
performed. In Gekko, the reservations are made on behalf of aligned, 32-byte sections of the memory
address space.

8.9.2 TLBISYNC Input
Note: TheTLBISYNC pin is not connected in Gekko, so the corresponding MMU synchronization
function is effectively disabled.

8.10 IEEE 1149.1a-1993 Compliant Interface
Gekko boundary-scan interface is a fully-compliant implementation of the IEEE 1149.1a-1993
standard. This section describes Gekko’s IEEE 1149.1a-1993 (JTAG) interface.

8.10.1 JTAG/COP Interface
Gekko has extensive on-chip test capability including the following:

• Debug control/observation (COP)

• Boundary scan (standard IEEE 1149.1a-1993 (JTAG) compliant interface)

• Support for manufacturing test
The COP and boundary scan logic are not used under typical operating conditions. Detailed
discussion of Gekko test functions is beyond the scope of this document; however, sufficient
information has been provided to allow the system designer to disable the test functions that would
impede normal operation.
The JTAG/COP interface is shown in Figure 8-24. For more information, refer toIEEE Standard Test
Access Port and Boundary Scan Architecture IEEE STD 1149-1a-1993.

Figure 8-24. IEEE 1149.1a-1993 Compliant Boundary Scan Interface

TDI (Test Data Input)

TMS (Test Mode Select)

TCK (Test Clock Input)

TDO (Test Data Output)

TRST (Test Reset)

IBM Confidential

Chapter 9. L2 Cache, Locked D-Cache, DMA and Write Gather Pipe IBM Confidential 5/25/00 Page 9-1

Chapter 9 L2 Cache, Locked D-Cache, DMA and
Write Gather Pipe

90

This chapter describes Gekko microprocessor‘s implementation of L2 cache, L1 D-cache partition,
direct memory access (DMA) and write gather pipe.

9.1 L2 Cache
Gekko’s L2 cache is implemented with an on-chip, two-way set-associative tag memory with 2048
tags per way, and an on-chip 256 Kbyte SRAM for data storage. The tags are sectored to support
two cache blocks per tag entry (two sectors, 64 bytes). Each sector (32-byte L1 cache block) in the
L2 cache has its own valid and modified bits. In addition, the SRAM includes an 8-bit ECC for
every double word. The ECC logic corrects single bit errors and detects double bit errors as data is
read from the SRAM. The L2 cache maintains cache coherency through snooping and is normally
configured to operate in copy-back mode.
The L2 cache control register (L2CR) allows control of:

• L2 cache configuration

• Double bit error machine check

• Global invalidation of L2 contents

• Write-through operation

• L2 test support

9.1.1 L2 Cache Operation
Gekko’s L2 cache is a combined instruction and data cache that receives memory requests from
both L1 instruction and data caches independently. The L1 requests are generally the result of
instruction fetch misses, data load or store misses, write-through operations, or cache management
instructions. Each L1 request generates an address lookup in the L2 tags. If a hit occurs, the
instructions or data are forwarded to the L1 cache. A miss in the L2 tags causes the L1 request to
be forwarded to the 60x bus interface. The cache block received from the bus is forwarded to the
L1 cache immediately, and is also loaded into the L2 cache with the tag marked valid and
unmodified. If the cache block loaded into the L2 causes a new tag entry to be allocated and the
current tag entry is marked valid modified, the modified sectors of the tag to be replaced are castout
from the L2 cache to the 60x bus.
At any given time the L1 instruction cache may have one instruction fetch request, and the L1 data
cache may have one load and two stores requesting L2 cache access. The L2 cache also services
snoop requests from the 60x bus. When there are multiple pending requests to the L2 cache, snoop
requests have highest priority, followed by data load and store requests (serviced on a first-in,
first-out basis). Instruction fetch requests have the lowest priority in accessing the L2 cache when
there are multiple accesses pending.
If read requests from both the L1 instruction and data caches are pending, the L2 cache can perform
hit-under-miss and supplies the available instruction or data while a bus transaction for the previous
L2 cache miss is performed. The L2 cache does not support miss-under-miss, and the second
instruction fetch or data load stalls until the bus operation resulting from the first L2 miss
completes.
All requests to the L2 cache that are marked cacheable (even if the respective L1 cache is disabled
or locked) cause tag lookup and will be serviced if the instructions or data are in the L2 cache. Burst
and single-beat read requests from the L1 caches that hit in the L2 cache are forwarded instructions

IBM Confidential

Page 9-2 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

or data, and the L2 LRU bit for that tag is updated. Burst writes from the L1 data cache due to a castout
or replacement copyback are written only to the L2 cache, and the L2 cache sector is marked
modified.
If the L2 cache is configured as write-through, the L2 sector is marked unmodified, and the write is
forwarded to the 60x bus. If the L1 castout requires a new L2 tag entry to be allocated and the current
tag is marked modified, any modified sectors of the tag to be replaced are cast out of the L2 cache to
the 60x bus.
Single-beat read requests from the L1 caches that miss in the L2 cache do not cause any state changes
in the L2 cache and are forwarded on the 60x bus interface. Cacheable single-beat store requests
marked copy-back that hit in the L2 are allowed to update the L2 cache sector, but do not cause L2
cache sector allocation or deallocation. Cacheable, single-beat store requests that miss in the L2 are
forwarded to the 60x bus. Single-beat store requests marked write-through (through address
translation or through the configuration of L2CR[L2WT]) are written to the L2 cache if they hit and
are written to the 60x bus independent of the L2 hit/miss status. If the store hits in the L2 cache, the
modified/unmodified status of the tag remains unchanged. All requests to the L2 cache that are
marked cache-inhibited by address translation (through either the MMU or by default WIMG
configuration) bypass the L2 cache and do not cause any L2 cache tag state change.
The execution of thestwcx. instruction results in single-beat writes from the L1 data cache. These
single-beat writes are processed by the L2 cache according to hit/miss status, L1 and L2 write-through
configuration, and reservation-active status. If the address associated with thestwcx. instruction
misses in the L2 cache or if the reservation is no longer active, thestwcx. instruction bypasses the L2
cache and is forwarded to the 60x bus interface. If thestwcx.hits in the L2 cache and the reservation
is still active, one of the following actions occurs:

• If the stwcx. hits a modified sector in the L2 cache (independent of write-through
status), or if thestwcx.hits both the L1 and L2 caches in copy-back mode, thestwcx.
is written to the L2 and the reservation completes.

• If the stwcx. hits an unmodified sector in the L2 cache, and either the L1 or L2 is in
write-through mode, thestwcx. is forwarded to the 60x bus interface and the sector hit in the
L2 cache is invalidated.

L1 cache-block-push operations generated by the execution ofdcbf and dcbst instructions write
through to the 60x bus interface and invalidate the L2 cache sector if they hit. The execution ofdcbf
anddcbst instructions that do not cause a cache-block-push from the L1 cache are forwarded to the
L2 cache to perform a sector invalidation and/or push from the L2 cache to the 60x bus as required.
If the dcbf anddcbst instructions do not cause a sector push from the L2 cache, they are forwarded
to the 60x bus interface for address-only broadcast if HID0[ABE] is set to 1.
The L2 flush mechanism is similar to the L1 data cache flush mechanism. L2 flush requires that the
entire L1 data cache be flushed prior to flushing the L2 cache. Also, interrupts must be disabled during
the L2 flush so that the LRU algorithm does not get disturbed. The L2 can be flushed by executing
uniquely addressed load instructions to each of the 32 byte blocks of the L2 cache. This requires a
load to each of the 2 sets (2-way set associative) of the 32-byte block (sector) within each 64-byte line
of the L2 cache. The loads must not hit in the L1 cache in order to effect a flush of the L2 cache.
Thedcbi instruction is always forwarded to the L2 cache and causes a segment invalidation if a hit
occurs. The instruction is also forwarded to the 60x bus interface for broadcast if HID0[ABE] is set
to 1. Theicbi instruction invalidates only L1 cache blocks and is never forwarded to the L2 cache.
Any dcbz instructions marked global do not affect the L2 cache state. If an instruction hits in the L1
and L2 caches, the L1 data cache block is cleared and the instruction completes. If an instruction
misses in the L2 cache, it is forwarded to the 60x bus interface for broadcast. Anydcbz instructions

IBM Confidential

Chapter 9. L2 Cache, Locked D-Cache, DMA and Write Gather Pipe IBM Confidential 5/25/00 Page 9-3

that are marked nonglobal act only on the L1 data cache without reference to the state of the L2.
Thedcbz_l is not forwarded to the L2 cache.
Thesync andeieio instructions bypass the L2 cache and are forwarded to the 60x bus.

9.1.2 L2 Cache Control Register (L2CR)
The L2 cache control register is used to configure and enable the L2 cache. The L2CR is a
supervisor-level read/write, implementation-specific register that is accessed as SPR 1017. The
contents of the L2CR are cleared during power-on reset. Table 9-1 describes the L2CR bits. For
additional information about the configuration of the L2CR, refer to Section 2.1.2.11 on Page 2-25.

9.1.3 L2 Cache Initialization
Following a power-on or hard reset, the L2 cache is disabled initially. Before enabling the L2 cache,
other configuration parameters must be set in the L2CR, and the L2 tags must be globally
invalidated. The L2 cache should be initialized during system start-up.
The sequence for initializing the L2 cache is:

1. Power-on reset (automatically performed by the assertion ofHRESET signal).

2. Disable interrupts and Dynamic Power Management (DPM).

3. Disable L2 cache by clearing L2CR[L2E].

4. Perform an L2 global invalidate as described in the next section.

5. After the L2 global invalidate has been performed, and the other L2 configuration bits have
been set, enable the L2 cache for normal operation by setting the L2CR[L2E] bit to 1.

Table 9-1. L2 Cache Control Register

Bit Name Function

0 L2E L2 enable

1 L2CE L2 double bit error checkstop enable.

2-8 Reserved.

9 L2DO L2 data-only. Setting this bit disables the caching of instructions in the L2 cache.

10 L2I L2 global invalidate. Setting L2I invalidates the L2 cache globally by clearing the L2 status
bits.

11 Reserved

12 L2WT L2 write-through. Setting L2WT selects write-through mode (rather than the default
copy-back mode) so all writes to the L2 cache also write through to the 60x bus.

13 L2TS L2 test support. Setting L2TS causes cache block pushes from the L1 data cache that
result from dcbf and dcbst instructions to be written only into the L2 cache and marked
valid, rather than being written only to the 60x bus and marked invalid in the L2 cache in
case of hit. If L2TS is set, causes single-beat store operations that miss in the L2 cache to
be discarded.

14-30 Reserved.

31 L2IP L2 global invalidate in progress (read only)—This read-only bit indicates whether an L2
global invalidate is occurring.

IBM Confidential

Page 9-4 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

9.1.4 L2 Cache Global Invalidation
The L2 cache supports a global invalidation function in which all bits of the L2 tags (tag data bits, tag
status bits, and LRU bit) are cleared. It is performed by an on-chip hardware state machine that
sequentially cycles through the L2 tags. The global invalidation function is controlled through
L2CR[L2I], and it must be performed only while the L2 cache is disabled. Gekko can continue
operation during a global invalidation provided the L2 cache has been properly disabled before the
global invalidation operation starts.
The sequence for performing a global invalidation of the L2 cache is as follows:

1. Execute asyncinstruction to finish any pending store operations in the load/store unit, disable
the L2 cache by clearing L2CR[L2E], and execute an additionalsync instruction after
disabling the L2 cache to ensure that any pending operations in the L2 cache unit have
completed.

2. Initiate the global invalidation operation by setting the L2CR[L2I] bit to 1.

3. Monitor the L2CR[L2IP] bit to determine when the global invalidation operation is completed
(indicated by the clearing of L2CR[L2IP]). The global invalidation requires approximately
32K core clock cycles to complete.

4. After detecting the clearing of L2CR[L2IP], clear L2CR[L2I] and re-enable the L2 cache for
normal operation by setting L2CR[L2E].

9.1.5 L2 Cache Test Features and Methods
In the course of system power-up, testing may be required to verify the proper operation of the L2 tag
memory, SRAM, and overall L2 cache system. The following sections describe Gekko’s features and
methods for testing the L2 cache. The L2 cache address space should be marked as guarded (G = 1)
so spurious load operations are not forwarded to the 60x bus interface before branch resolution during
L2 cache testing.

9.1.5.1 L2CR Support for L2 Cache Testing
L2CR[DO] and L2CR[TS] support the testing of the L2 cache. L2CR[DO] prevents instructions from
being cached in the L2. This allows the L1 instruction cache to remain enabled during the testing
process without having L1 instruction misses affect the contents of the L2 cache and allows all L2
cache activity to be controlled by program-specified load and store operations.
L2CR[TS] is used with thedcbf and dcbst instructions to push data into the L2 cache. When
L2CR[TS] is set, and the L1 data cache is enabled, an instruction loop containing adcbf instruction
can be used to store any address or data pattern to the L2 cache. Additionally, 60x bus broadcasting
is inhibited when adcbz instruction is executed. This allows the use of adcbz instruction to clear an
L1 cache block, followed by adcbf instruction to push the cache block into the L2 cache and
invalidate the L1 cache block.
When the L2 cache is enabled, cacheable single-beat read operations are allowed to hit in the L2
cache and cacheable write operations are allowed to modify the contents of the L2 cache when a hit
occurs. Cacheable single-beat read and writes occur when address translation is disabled (invoking
the use of the default WIMG bits (0b0011)), or when address translation is enabled and accesses are
marked as cacheable through the page table entries or the BATs, and the L1 data cache is disabled or
locked. When the L2 cache has been initialized and the L1 cache has been disabled or locked, load or
store instructions then bypass the L1 cache and hit in the L2 cache directly. When L2CR[TS] is set,
cacheable single-beat writes are inhibited from accessing the 60x bus interface after an L2 cache miss.
During L2 cache testing, the performance monitor can be used to count L2 cache hits and misses,
thereby providing a numerical signature for test routines and a way to verify proper L2 cache

IBM Confidential

Chapter 9. L2 Cache, Locked D-Cache, DMA and Write Gather Pipe IBM Confidential 5/25/00 Page 9-5

operation.

9.1.5.2 L2 Cache Testing
A typical test for verifying the proper operation of Gekko’s L2 cache memory would perform the
following steps:

1. Initialize the L2 test sequence by disabling address translation to invoke the default WIMG
setting (0b0011). Set L2CR[DO] and L2CR[TS] and perform a global invalidation of the
L1 data cache and the L2 cache. The L1 instruction cache can remain enabled to improve
execution efficiency.

2. Test the L2 cache SRAM by enabling the L1 data cache and executing a sequence ofdcbz,
stw, anddcbf instructions to initialize the L2 cache with a desired range of consecutive
addresses and with cache data consisting of zeros. Once the L2 cache holds a sequential
range of addresses, disable the L1 data cache and execute a series of single-beat load and
store operations employing a variety of bit patterns to test for stuck bits and pattern
sensitivities in the L2 cache SRAM. The performance monitor can be used to verify
whether the number of L2 cache hits or misses corresponds to the tests performed.

3. Test the L2 cache tag memory by enabling the L1 data cache and executing a sequence of
dcbz, stw, anddcbf instructions to initialize the L2 cache with a wide range of addresses
and cache data. Once the L2 cache is populated with a known range of addresses and data,
disable the L1 data cache and execute a series of store operations to addresses not
previously in the L2 cache. These store operations should miss in every case. Note that
setting the L2CR[TS] inhibits L2 cache misses from being forwarded to the 60x bus
interface, thereby avoiding the potential for bus errors due to addressing hardware or
nonexistent memory. The L2 cache then can be further verified by reading the previously
loaded addresses and observing whether all the tags hit, and that the associated data
compares correctly. The performance monitor can also be used to verify whether the proper
number of L2 cache hits and misses correspond to the test operations performed.

4. The entire L2 cache can be tested by clearing L2CR[DO] and L2CR[TS], restoring the L1
and L2 caches to their normal operational state, and executing a comprehensive test
program designed to exercise all the caches. The test program should include operations
that cause L2 hit, reload, and castout activity that can be subsequently verified through the
performance monitor.

9.1.6 L2 Cache Timing
There is a 64 bit bus to access the L2 SRAM. Access to the L2 data cache typically takes 3
processor cycles. In the first cycle, the address is presented to the data cache and on writes, ECC
check bits are generated. The second cycle, the array is accessed. On the third cycle, ECC error
correction is done for reads. It takes 4 cycles to transfer the data for each L2 access with “wrap
around” to forward the critical double word for read operation.
Accesses to the L2 are not pipelined. Gekko’s L2 support

9.2 Locked L1 Data Cache
Under the control of the HID2[LCE] bit, the L1 data cache can be configured as either a 32 Kbyte
normal cache, or as a 16 Kbyte normal cache and a 16 Kbyte locked cache. The locked cache can
be explicitely managed, separate from the normal cache. A new instruction,dcbz_l, is used to
allocate cache lines in the locked cache.

IBM Confidential

Page 9-6 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

9.2.1 Locked Cache Configuration
At power-on or reset, HID2[LCE] is set to be 0. The L1 data cache is a 32 Kbyte 8-way set-associated
cache, as described in Chapter 3. When amtspr instruction sets HID2[LCE] = 1, the data cache is
configured as two partitions. The first partition, consisting of ways 0-3, is a 16 Kbyte normal cache.
The second partition, consisting of ways 4-7, is a 16 Kbyte locked cache. The normal cache operates
as described in Chapter 3, except that it behaves as a four-way set-associative cache. The operation
of the locked cache partition is described in the following sections.

9.2.2 Locked Cache Operation
The new instruction,dcbz_l, is the only mechanism to allocate a tag for a 32 byte block in the locked
cache to be associated with a particular address. There are four methods to de-allocate cache lines in
the locked cache:

1. Usedcbi instruction

2. Usedcbf instruction

3. Thedcbz_l instruction forces cache line replacement by the pseudo-LRU algorithm in the
locked cache

The behavior of the cache control instructions are the following:

9.2.2.1 DCBZ
If a dcbz instruction misses both the normal cache and the locked cache, then a cache line is allocated
from the four ways in the normal cache according to the pseudo-LRU rule. The effect in the L2 and
the 60x bus is the same as when HID2[LCE] = 0
If the instruction hits either the locked cache or the normal cache, the cache line is cleared and marked
as ‘M’ and the effect in the L2 and the 60x bus is the same as when HID2[LCE] = 0.

9.2.2.2 DCBZ_L
If a dcbz_l instruction misses both the normal cache and the locked cache, a cache line is allocated
from the four ways in the locked cache according to the pseudo-LRU rule, and the cache line is
marked as ‘M’.
If the instruction hits either the normal cache or the locked cache, then the instruction clears all the
bytes in the cache line and marks the line as ‘M’.
Thedcbz_l instruction has no effect on the L2 cache or the 60x bus.

IBM Confidential

Chapter 9. L2 Cache, Locked D-Cache, DMA and Write Gather Pipe IBM Confidential 5/25/00 Page 9-7

9.2.2.2.1 DCBZ_L Exceptions
The dcbz_l instruction causes an alignment exception if the page or the block of the effective
address is marked as write-thriugh or cache-inhibited.
The dcbz_l instruction is intended to allocate a 32 byte block in the locked cache. When the
instruction hits either the normal cache or the locked cache, Gekko sets HID2[DCHERR]=1. In
addition, when the situation happens with HID2[DCHEE] = MSR[EE] = MSR[ME] = 1, and
HID2[DCHERR] = 0, Gekko also sets SRR1[10]=1 and raises machine check.
When HID2[LCE] = 0, execution ofdcbz_lcauses an illegal instruction exception

9.2.2.3 DCBI
A dcbi hit in the locked cache invalidates the cache line and has no effect on L2 or the 60x bus.
A dcbi hit in the normal cache invalidates the cache line. The effect on the L2 and the 60x bus is
the same as when HID2[LCE] = 0.

9.2.2.4 DCBF
When adcbf hits a modified cache line in either the normal cache or the locked cache, the cache
line is castout and is marked ‘I’. The effect on the L2 and the 60x bus is the same as when
HID2[LCE] = 0.

9.2.2.5 DCBST
When adcbst hits a modified cache line in either the locked cache or the normal cache, the cache
line is castout and the cacheline is marked as ‘E’. The effect on the L2 and the 60x bus is the same
as when HID2[LCE] = 0.

9.2.2.6 DCBT and DCBTST
If a dcbt or dcbtst hits a cache line in either the normal cache or the locked cache, the instruction
is treated as a no-op. If the instruction misses both the locked cache and the normal cache, the
corresponding cache line is loaded from the external memory to the normal cache the same as the
case when HID2[LCE] = 0.

9.2.2.7 Load and Store
Load and store instructions which miss both the locked and the normal caches will result in a cache
line load to the normal cache by the pseudo-LRU rule among the four ways in the normal cache.
Load and store instructions which hit either the normal cache or the locked cache will result in the
usual MEI state transition and the pseudo-LRU state transition among the four ways in that
partition of the cache.

IBM Confidential

Page 9-8 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

9.3 Direct Memory Access (DMA)
Gekko implements a DMA engine to transfer data between the locked L1 D-cache and the external
memory. The DMA engine has a 15-entry FIFO queue for DMA commands and processes the
commands sequentially. The DMA engine’s operation is controlled by the two special purpose
registers: DMAU and DMAL.

9.3.1 DMA Operation
The DMA engine is disabled at power-on with HID2[LCE] = 0. Setting HID2[LCE] = 1 partitions the
L1 D-cache and enables the DMA engine. Note that after HID2[LCE] is set to 1, the i-cache must be
invalidated prior to executing anydcbz_l instructions. Also, for systems which generate snoop
transactions, HID2[LCE] shall be kept at 0.
When amtspr instruction sets DMAL[T] = 1 and DMAL[F] = 0, the DMA engine latches the values
in DMAU and DMAL to form a DMA command, enqueues the command in the DMA queue and sets
DMAL[T] = 0.
HID2[DMAQL] indicates the number of DMA commands in the DMA queue, including the
command in progress (if any).
When the DMA queue is not empty, i.e., HID2[DMAQL] != 0, the DMA engine processes the
commands sequentially. The starting address of the transfer in the D-cache is DMAL[LC_ADDR] ||
0b00000. The starting address of the transfer in the external memory is DMAU[MEM_ADDR] ||
0b00000. The number of cache lines to be transfered by a command is DMAU[DMA_LEN_U] ||
DMAL[DMA_LEN_L], except that a value of zero specifies a length of 128 cache lines. The
direction of the transfer is determined by DMAL[LD]. DMAL[LD] = 0 means a transfer from the
locked cache to the external memory. DMAL[LD] = 1 means a transfer from the external memory to
the locked cache.
For a DMA store command, i.e., DMAL[LD] = 0, the DMA engine performs a D-cache look-up for
each of the cache lines sequentially from the starting address. For a look-up hit in the locked cache,
the DMA engine initiates a 60x bus write-with-flush transaction to transfer the 32 byte cache line
from the locked cache to the external memory.
For a DMA load command, i.e., DMAL[LD] = 1, the DMA engine performs a D-cache look-up for
each of the cache lines sequentially from the starting address. For a look-up hit in the locked cache,
the DMA engine initiates a 60x bus burst read transaction to transfer the data from the external
memory to the locked cache. For all but the last read transaction associated with the DMA load
command, the burst read transaction type is 0b01011. The last burst read transaction has a transaction
type of 0b01010. Gekko initiates the burst transaction type 0b01011 only for the DMA load
commands. The memory controller can use the information to pre-fetch the next cache line to
improve the performance.
The DMA access to the cache, either a load or a store, will result in a pseudo-LRU state transition
within the four-way set associated with the cache line, but does not affect the MEI state. If the look-up
misses the locked cache, the DMA engine transfers no data and continues to the next cache line.
The eieio and sync instructions have no effect on the DMA engine. When HID0[ABE] = 0, the
execution ofsyncdoes not complete until all the DMA commands in the queue are completed. When
HID0[ABE] = 1, the execution ofsync is not affected by the DMA operation.
The only way to flush the DMA queue is to issue amtspr instruction to set DMAL[F] = 1. In this
situation, the DMA engine flushes all the commands in the DMA queue, including the command in
progress, and sets both DMAL[F] = DMAL[T] = 0. Such an instruction should be followed by async
instruction to ensure that the pending bus transaction associated with the discarded command, if any,
complete before the DMA engine accepts the next DMA command.

IBM Confidential

Chapter 9. L2 Cache, Locked D-Cache, DMA and Write Gather Pipe IBM Confidential 5/25/00 Page 9-9

9.3.2 Exception Conditions
There are three conditions under which a DMA operation can cause an exception.

9.3.2.1 DMA Queue Overflow
When amtspr instruction sets DMAL[T] = 1 and DMAL[F] = 0 while HID2[DMAQL] = 15, the
DMA engine does not latch the DMA command, but sets DMAL[T] = 0 and HID2[DQOERR] =
1. In addition, when the situation happens that HID2[DQOEE] = MSR[EE] = MSR[ME] = 1 and
HID2[DQOERR] = 0, Gekko also sets SRR1[10] = 1 and raises machine check.

9.3.2.2 DMA Look-up Hits Normal Cache
When the DMA engine looks up the L1 cache tag and hits in the normal cache partition, Gekko
transfers no data, continues to the next cache line and indicates the situation by setting
HID2[DNCERR] = 1. In addition, when the situation happens that HID2[DNCEE] = MSR[EE] =
MSR[ME] = 1 and HID2[DNCERR] = 0, Gekko also sets SRR1[10] =1 and raises machine check.

9.3.2.3 DMA Look-up Miss
When a DMA engine look-up misses the L1 cache tag, Gekko transfers no data, continues to the
next cache line and indicates the situation by setting HID2[DCMERR] = 1. In addition, when the
situation happens that HID2[DCMEE] = MSR[EE] = MSR[ME] = 1 and HID2[DCMERR] = 0,
Gekko also sets SRR1[10] = 1 and raises machine check.

9.3.3 DMA Timing
A DMA command is broken into a sequence of transaction requests. Each request will transfer a
32 byte block between the locked cache and the external memory. The read/write transaction
requests from DMA are served by the BIU. On a first-come-first-serve basis, the BIU serves
transaction requests from multiple sources, e.g., DMA read, instruction load, etc.
A DMA transaction request requires one cycle to arbitrate for L1 cache tag access and then one
cycle to look up the tag for the cache line. After the tag look-up, the DMA makes the transaction
request to the BIU.
For a DMA store, it takes one cycle to fetch the 32 byte block from the cache and make the write
transaction request to the BIU to transfer the data to the external memory. There is a two entry
DMA store queue to support the pipelined write transactions.
For a DMA load, there is a two entry DMA load queue to support the pipelined read transactions
from the external memory. After receiving the 32 byte data from the external memory, it takes one
cycle to place the data into the cache.

IBM Confidential

Page 9-10 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

9.4 Write Gather Pipe
Gekko implements a write gather pipe for efficient transfer of non-cacheable data from the processor
to the external memory. The write gather pipe consists of a 128 byte circular FIFO buffer and a special
purpose register: Write Pipe Address Register (WPAR). For a non-cacheable store instruction to the
address specified in WPAR, the operand will be stored sequentially in the buffer. When there are 32
bytes or more of data in the buffer, the write gather pipe will sequentially transfere the data to the
external memory by burst transaction.

9.4.1 WPAR
The write gather pipe address register is a 32-bit special purpose register. WPAR holds the upper 26
bits of the physical address of the write pipe, WPAR[GB_ADDR], and a status bit, WPAR[BNE]. The
WPAR controls the operations of the write gather pipe.

9.4.2 Write Gather Pipe Operation
The write gather pipe is disabled at power-on as HID2[WPE] = 0. Setting HID2[WPE] = 1 enables
the write gather pipe. The operation is described below.
A mtspr to WPAR invalidates the data in the buffer and sets the gather address. In other words, all
the data in the buffer, yet to be transfered, will be discarded and the operand of all the store
instructions to the non-cacheable address of WPAR[GB_ADDR] || 0b00000 will be stored in the
buffer.
When there are 32 bytes or more of data stored in the buffer, the write gather pipe will transfer the
data to the memory 32 bytes at a time with a write-with-flush burst transaction. The address of the
transaction is WPAR[GB_ADDR] || 0b00000. Software can check WPAR[BNE] to determine if the
buffer is empty or not.
Theeieio, stwcx, andsyncinstructions have no effect on the write gather pipe. The write gather pipe
does not participate in bus snoop operation. The only way for software to flush out a partially full 32
byte block is to fill up the block with dummy data,. This fill data must be recognized or ignored by
the consumer of the data stream to ensure the system’s proper behavior.
A non-cacheable store to an address with bits 0-26 matching WPAR[GB_ADDR] but with bits 27-31
not all zero will result in incorrect data in the buffer.

9.4.3 Write Gather Pipe Timing
The buffer of the write gather pipe has independent read and write ports such that the burst transfer
does not block the store instructions. However, when the buffer has more than 120 bytes of data
pending to be transfered, a non-cacheable store instruction to the gather address stalls.
The cycle following a store to the write gather pipe such that the buffer conatain at least 32 bytes, a
transaction request is made to the BIU to burst out 32 bytes of data. As soon as the write transaction
request is being served by the BIU, a second write transaction request can be made to the BIU, if an
additional 32 bytes has been gathered. On a first-come-first-serve basis, the BIU serves transaction
requests from multiple sources, e.g., DMA write, instruction load, etc.

IBM Confidential

Chapter 10. Power and Thermal Management IBM Confidential 5/25/00 Page 10-1

Chapter 10 Power and Thermal Management
90
100

Gekko microprocessor is specifically designed for low-power operation. It provides both automatic
and program-controlled power reduction modes for progressive reduction of power consumption.
It also provides a thermal assist unit (TAU) to allow on-chip thermal measurement, allowing
sophisticated thermal management for high-performance portable systems. This chapter describes
the hardware support provided by Gekko for power and thermal management.

10.1 Dynamic Power Management
NOTE: The Gekko processor ignores HID0[DPM] and does not implement dynamic power

management.

Dynamic power management (DPM) automatically powers up and down the individual execution
units of Gekko, based upon the contents of the instruction stream. For example, if no floating-point
instructions are being executed, the floating-point unit is automatically powered down. Power is
not actually removed from the execution unit; instead, each execution unit has an independent
clock input, which is automatically controlled on a clock-by-clock basis. Since CMOS circuits
consume negligible power when they are not switching, stopping the clock to an execution unit
effectively eliminates its power consumption. The operation of DPM is completely transparent to
software or any external hardware. Dynamic power management is enabled by setting HID0[DPM]
to 1.

10.2 Programmable Power Modes
Gekko provides four programmable power states—full power, doze, nap, and sleep. Software
selects these modes by setting one (and only one) of the three power saving mode bits in the HID0
register.
Hardware can enable a power management state through external asynchronous interrupts. Such a
hardware interrupt causes the transfer of program flow to interrupt handler code that then invokes
the appropriate power saving mode. Gekko also contains a decrementer which allows it to enter the
nap or doze mode for a predetermined amount of time and then return to full power operation
through a decrementer interrupt.
NOTE: Gekko cannot switch from one power management mode to another without first

returning to full-power mode.

The sleep mode disables bus snooping; therefore, a hardware handshake is provided to ensure
coherency before Gekko enters this power management mode.

IBM Confidential

Page 10-2 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Table 10-1 summarizes the four power states.

10.2.1 Power Management Modes
The following sections describe the characteristics of Gekko’s power management modes, the
requirements for entering and exiting the various modes, and the system capabilities provided by
Gekko while the power management modes are active.

10.2.1.1 Full-Power Mode
Full-power mode is selected when the POW bit in MSR is cleared.

• Default state following power-up andHRESET
• All functional units are operating at full processor speed at all times.

10.2.1.2 Doze Mode
Doze mode disables most functional units but maintains cache coherency by enabling the bus
interface unit and snooping. A snoop hit causes Gekko to enable the data cache, copy the data
back to memory, disable the cache, and fully return to the doze state.

• Most functional units disabled
• Bus snooping and time base/decrementer still enabled
• Doze mode sequence

— Set doze bit (HID0[8] = 1), clear nap and sleep bits (HID0[9] and HID0[10] = 0)
— Gekko enters doze mode after several processor clocks

• Several methods of returning to full-power mode

— AssertINT, MCP, decrementer, performance monitor, machine check, or thermal
management interrupts

— Assert hard reset or soft reset

Table 10-1. Gekko Microprocessor Programmable Power Modes

PM Mode Functioning Units Activation Method Full-Power Wake Up Method

Full power All units active — —

Doze • Bus snooping
• Data cache as needed
• Decrementer timer

Controlled by SW External asynchronous exceptions*
Decrementer interrupt
Performance monitor interrupt
Thermal management interrupt
Hard or soft reset

Nap • Bus snooping
— enabled by deassertion

of QACK
• Decrementer timer

Controlled by hardware
and software

External asynchronous exceptions*
Decrementer interrupt
Hard or soft reset

Sleep None Controlled by hardware
and software

External asynchronous exceptions*
Hard or soft reset

Note : * Exceptions are referred to as interrupts in the architecture specification.

IBM Confidential

Chapter 10. Power and Thermal Management IBM Confidential 5/25/00 Page 10-3

• Transition to full-power state takes no more than a few processor cycles
• PLL running and locked to SYSCLK

10.2.1.3 Nap Mode
The nap mode disables Gekko but still maintains the phase-locked loop (PLL), and the time
base/decrementer. The time base can be used to restore Gekko to full-power state after a
programmed amount of time. To maintain data coherency, bus snooping is disabled for nap
and sleep modes through a hardware handshake sequence using the quiesce request
(QREQ) and quiesce acknowledge (QACK) signals. Gekko asserts theQREQ signal to
indicate that it is ready to disable bus snooping. When the system has ensured that snooping
is no longer necessary, it will assertQACK and Gekko will enter the nap mode. If the
system determines that a bus snoop cycle is required,QACK is deasserted to Gekko for at
least eight bus clock cycles, and the Gekko will then be able respond to a snoop cycle.
Assertion ofQACK following the snoop cycle will again disable Gekko’s snoop capability.
Gekko’s power dissipation while in nap mode withQACK deasserted is the same as the
power dissipation while in doze mode.

Gekko (2.0 and later) also allows dynamic switching between nap and doze modes to allow
the use of nap mode without sacrificing hardware snoop coherency. For this operation,
negatingQACK at any time for at least 8 bus cycles guarantees that Gekko has transitioned
from nap mode to doze mode in order to snoop. Reasserting QACK then allows Gekko to
return to nap mode. This sequencing could be used by the system at any time with
knowledge of what power management mode, if any, that Gekko is currently in.

• Time base/decrementer still enabled

• Thermal management unit enabled

• Most functional units disabled

• All nonessential input receivers disabled

• Nap mode sequence

— Set nap bit (HID0[9] = 1), clear doze and sleep bits (HID0[8] and HID0[10] = 0)

— Gekko asserts quiesce request (QREQ) signal

— System asserts quiesce acknowledge (QACK) signal

— Gekko enters nap mode after several processor clocks

• Nap mode bus snoop sequence

— System deassertsQACK signal for eight or more bus clock cycles

— Gekko snoops address tenure(s) on bus

— System assertsQACK signal to restore full nap mode

• Several methods of returning to full-power mode

— AssertINT, MCP, machine check, or decrementer interrupts
— Assert hard reset or soft reset

IBM Confidential

Page 10-4 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

• Transition to full-power takes no more than a few processor cycles
• PLL running and locked to SYSCLK.

10.2.1.4 Sleep Mode
Sleep mode consumes the least amount of power of the four modes since all functional units
are disabled. To conserve the maximum amount of power, the PLL may be disabled by
placing the PLL_CFG signals in the PLL bypass mode, and disabling SYSCLK.
NOTE: Forcing the SYSCLK signal into a static state does not disable Gekko’s PLL, which will

continue to operate internally at an undefined frequency unless placed in PLL bypass
mode.

Due to the fully static design of Gekko, internal processor state is preserved when no internal
clock is present. Because the time base and decrementer are disabled while Gekko is in sleep
mode, the Gekko’s time base contents will have to be updated from an external time base after
exiting sleep mode if maintaining an accurate time-of-day is required. Before entering the
sleep mode, Gekko asserts theQREQ signal to indicate that it is ready to disable bus
snooping.
When the system has ensured that snooping is no longer necessary, it assertsQACK and the
Gekko will enter sleep mode.

• All functional units disabled (including bus snooping and time base)
• All nonessential input receivers disabled

— Internal clock regenerators disabled
— PLL still running (see below)

• Sleep mode sequence
— Set sleep bit (HID0[10] = 1), clear doze and nap bits (HID0[8] and HID0[9])
— Gekko asserts quiesce request (QREQ)
— System asserts quiesce acknowledge (QACK)
— Gekko enters sleep mode after several processor clocks

• Several methods of returning to full-power mode
— AssertINT or MCP interrupts
— Assert hard reset or soft reset

• PLL and DLL may be disabled and SYSCLK may be removed while in sleep mode
• Return to full-power mode after PLL and SYSCLK are disabled in sleep mode

— Enable SYSCLK
— Reconfigure PLL into desired processor clock mode
— System logic waits for PLL startup and relock time (100 sec)
— System logic asserts one of the sleep recovery signals (for example, INT)

IBM Confidential

Chapter 10. Power and Thermal Management IBM Confidential 5/25/00 Page 10-5

10.2.2 Power Management Software Considerations
Since Gekko is a dual-issue processor with out-of-order execution capability, care must be
taken in how the power management mode is entered. Furthermore, nap and sleep modes
require all outstanding bus operations to be completed before these power management
modes are entered. Normally, during system configuration time, one of the power
management modes would be selected by setting the appropriate HID0 mode bit. Later on,
the power management mode is invoked by setting the MSR[POW] bit. To ensure a clean
transition into and out of a power management mode, set the MSR[EE] bit to 1 and execute
the following code sequence:

sync

mtmsr[POW = 1]

isync

continue

10.3 Thermal Assist Unit
With the increasing power dissipation of high-performance processors and operating conditions
that span a wider range of temperatures than desktop systems, thermal management becomes an
essential part of system design to ensure reliable operation of portable systems. One key aspect of
thermal management is ensuring that the junction temperature of the microprocessor does not
exceed the operating specification. While the case temperature can be measured with an external
thermal sensor, the thermal constant from the junction to the case can be large, and accuracy can
be a problem. This may lead to lower overall system performance due to the necessary
compensation to alleviate measurement deficiencies.
Gekko provides the system designer an efficient means of monitoring junction temperature through
the incorporation of an on-chip thermal sensor and programmable control logic to enable a thermal
management implementation tightly coupled to the processor for improved performance and
reliability.

IBM Confidential

Page 10-6 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

10.3.1 Thermal Assist Unit Overview
The on-chip thermal assist unit (TAU) is composed of a thermal sensor, a digital-to-analog converter
(DAC), a comparator, control logic, and three dedicated SPRs. See Figure 10-1 for a block diagram
of the TAU.

Figure 10-1. Thermal Assist Unit Block Diagram

The TAU provides thermal control by periodically comparing Gekko’s junction temperature against
user-programmed thresholds, and generating a thermal management interrupt if the threshold values
are crossed. The TAU also enables the user to determine the junction temperature through a software
successive approximation routine.
The TAU is controlled through three supervisor-level SPRs, accessed through themtspr/mfspr
instructions. Two of the SPRs (THRM1 and THRM2) provide temperature threshold values that can
be compared to the junction temperature value, and control bits that enable comparison and thermal
interrupt generation. The third SPR (THRM3) provides a TAU enable bit and a sample interval timer.
Note that all the bits in THRM1, THRM2, and THRM3 are cleared to 0 during a hard reset, and the
TAU remains idle and in a low-power state until configured and enabled.

Thermal Sensor

Thermal Sensor
Control Logic

DAC

Decoder

Latch

Interrupt Control

THRM1 THRM2

TH
R

M
3

Thermal Interrupt
Request
(0x1700)

IBM Confidential

Chapter 10. Power and Thermal Management IBM Confidential 5/25/00 Page 10-7

The bit fields in the THRM1 and THRM2 SPRs are described in Table 10-2.

The bit fields in the THRM3 SPR are described in Table 10-3.

10.3.2 Thermal Assist Unit Operation
The TAU can be programmed to operate in single or dual threshold modes, which results in the
TAU generating a thermal management interrupt when one or both threshold values are crossed. In
addition, with the appropriate software routine, the TAU can also directly determine the junction
temperature. The following sections describe the configuration of the TAU to support these modes
of operation.

Table 10-2. THRM1 and THRM2 Bit Field Settings

Bits Field Description

0 TIN Thermal management interrupt bit. Read only. This bit is set if the thermal sensor output
crosses the threshold specified in the SPR. The state of this bit is valid only if TIV is set. The
interpretation of the TIN bit is controlled by the TID bit.

1 TIV Thermal management interrupt valid. Read only. This bit is set by the thermal assist logic to
indicate that the thermal management interrupt (TIN) state is valid.

2–8 Threshold Threshold value that the output of the thermal sensor is compared to. The threshold range is
between 0 and 127 C, and each bit represents 1 C. Note that this is not the resolution of the
thermal sensor.

9–28 — Reserved. System software should clear these bits to 0.

29 TID Thermal management interrupt direction bit. Selects the result of the temperature
comparison to set TIN. If TID is cleared to 0, TIN is set and an interrupt occurs if the junction
temperature exceeds the threshold. If TID is set to 1, TIN is set and an interrupt is indicated
if the junction temperature is below the threshold.

30 TIE Thermal management interrupt enable. Enables assertion of the thermal management
interrupt signal. The thermal management interrupt is maskable by the MSR[EE] bit. If TIE is
cleared to 0 and THRMn is valid, the TIN bit records the status of the junction temperature
vs. threshold comparison without asserting an interrupt signal. This feature allows system
software to make a successive approximation to estimate the junction temperature.

31 V SPR valid bit. This bit is set to indicate that the SPR contains a valid threshold, TID, and TIE
controls bits. Setting THRM1/2[V] and THRM3[E] to 1 enables operation of the thermal
sensor.

Table 10-3. THRM3 Bit Field Settings

Bits Name Description

0–17 — Reserved for future use. System software should clear these bits to 0.

18–30 SITV Sample interval timer value. Number of elapsed processor clock cycles before a junction
temperature vs. threshold comparison result is sampled for TIN bit setting and interrupt
generation. This is necessary due to the thermal sensor, DAC, and the analog comparator
settling time being greater than the processor cycle time. The value should be configured to
allow a sampling interval of 20 microseconds.

31 E Enables the thermal sensor compare operation if either THRM1[V] or THRM2[V] is set to 1.

IBM Confidential

Page 10-8 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

10.3.2.1 TAU Single Threshold Mode
When the TAU is configured for single threshold mode, either THRM1 or THRM2 can be used to
contain the threshold value, and a thermal management interrupt is generated when the threshold
value is crossed. To configure the TAU for single threshold operation, set the desired temperature
threshold, TID, TIE, and V bits for either THRM1 or THRM2. The unused THRMn threshold SPR
should be disabled by clearing the V bit to 0. In this discussion THRMn refers to the THRM threshold
SPR (THRM1 or THRM2) selected to contain the active threshold value.
After setting the desired operational parameters, the TAU is enabled by setting the THRM3[E] bit to
1, and placing a value allowing a sample interval of 20 microseconds or greater in the THRM3[SITV]
field. The THRM3[SITV] setting determines the number of processor clock cycles between input to
the DAC and sampling of the comparator output; accordingly, the use of a value smaller than
recommended in the THRM3[SITV] field can cause inaccuracies in the sensed temperature.
If the junction temperature does not cross the programmed threshold, the THRMn[TIN] bit is cleared
to 0 to indicate that no interrupt is required, and the THRMn[TIV] bit is set to 1 to indicate that the
TIN bit state is valid. If the threshold value has been crossed, the THRMn[TIN] and THRMn[TIV]
bits are set to 1, and a thermal management interrupt is generated if both the THRMn[TIE] and
MSR[EE] bits are set to 1.
A thermal management interrupt is held asserted internally until recognized by Gekko’s interrupt
unit. Once a thermal management interrupt is recognized, further temperature sampling is suspended,
and the THRMn[TIN] and THRMn[TIV] values are held until anmtspr instruction is executed to
THRMn.
The execution of anmtspr instruction to THRMn anytime during TAU operation will clear the
THRMn[TIV] bit to 0 and restart the temperature comparison. Executing anmtspr instruction to
THRM3 will clear both THRM1[TIV] and THRM2[TIV] bits to 0, and restart temperature
comparison in THRMn if the THRM3[E] bit is set to 1.
Examples of valid THRM1 and THRM2 bit settings are shown in Table 10-4.

Table 10-4. Valid THRM1 and THRM2 Bit Settings

TIN1 TIV1 TID TIE V Description

x x x x 0 The threshold in the SPR will not be used for comparison.

x x x 0 1 Threshold is used for comparison, thermal management interrupt
assertion is disabled.

x x 0 0 1 Set TIN and do not assert thermal management interrupt if the
junction temperature exceeds the threshold.

x x 0 1 1 Set TIN and assert thermal management interrupt if the junction
temperature exceeds the threshold.

x x 1 0 1 Set TIN and do not assert thermal management interrupt if the
junction temperature is less than the threshold.

x x 1 1 1 Set TIN and assert thermal management interrupt if the junction
temperature is less than the threshold.

x 0 x x 1 The state of the TIN bit is not valid.

0 1 0 x 1 The junction temperature is less than the threshold and as a result
the thermal management interrupt is not generated for TIE = 1.

1 1 0 x 1 The junction temperature is greater than the threshold and as a
result the thermal management interrupt is generated if TIE = 1.

0 1 1 x 1 The junction temperature is greater than the threshold and as a
result the thermal management interrupt is not generated for TIE = 1.

IBM Confidential

Chapter 10. Power and Thermal Management IBM Confidential 5/25/00 Page 10-9

10.3.2.2 TAU Dual-Threshold Mode
The configuration and operation of the TAU’s dual-threshold mode is similar to single threshold
mode, except both THRM1 and THRM2 are configured with desired threshold and TID values, and
the TIE and V bits are set to 1. When the THRM3[E] bit is set to 1 to enable temperature
measurement and comparison, the first comparison is made with THRM1. If no thermal
management interrupt results from the comparison, the number of processor cycles specified in
THRM3[SITV] elapses, and the next comparison is made with THRM2. If no thermal management
interrupt results from the THRM2 comparison, the time specified by THRM3[SITV] again elapses,
and the comparison returns to THRM1.
This sequence of comparisons continues until a thermal management interrupt occurs, or the TAU
is disabled. When a comparison results in an interrupt, the comparison with the threshold SPR
causing the interrupt is halted, but comparisons continue with the other threshold SPR. Following
a thermal management interrupt, the interrupt service routine must read both THRM1 and THRM2
to determine which threshold was crossed. Note that it is possible for both threshold values to have
been crossed, in which case the TAU ceases making temperature comparisons until anmtspr
instruction is executed to one or both of the threshold SPRs.

10.3.2.3 Gekko Junction Temperature Determination
While Gekko’s TAU does not implement an analog-to-digital converter to enable the direct
determination of the junction temperature, system software can execute a simple successive
approximation routine to find the junction temperature.
The TAU configuration used to approximate the junction temperature is the same required for
single-threshold mode, except that the threshold SPR selected has its TIE bit cleared to 0 to disable
thermal management interrupt generation. Once the TAU is enabled, the successive approximation
routine loads a threshold value into the active threshold SPR, and then continuously polls the
threshold SPRs TIV bit until it is set to 1, indicating a valid TIN bit. The successive approximation
routine can then evaluate the TIN bit value, and then increment or decrement the threshold value
for another comparison. This process is continued until the junction temperature is determined.

10.3.2.4 Power Saving Modes and TAU Operation
The static power saving modes provided by Gekko (the nap, doze, and sleep modes) allow the
temperature of the processor to be lowered quickly, and can be invoked through the use of the TAU
and associated thermal management interrupt. The TAU remains operational in the nap and doze
modes, and in sleep mode as long as the SYSCLK signal input remains active. If the SYSCLK
signal is made static when sleep mode is invoked, the TAU is rendered inactive. If Gekko is entering
sleep mode with SYSCLK disabled, the TAU should be configured to disable thermal management
interrupts to avoid an unwanted thermal management interrupt when the SYSCLK input signal is
restored.

1 1 1 x 1 The junction temperature is less than the threshold and as a result
the thermal management interrupt is generated if TIE = 1.

Note : 1The TIN and TIV bits are read-only status bits.

Table 10-4. Valid THRM1 and THRM2 Bit Settings (Continued)

TIN1 TIV1 TID TIE V Description

IBM Confidential

Page 10-10 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

10.4 Instruction Cache Throttling
NOTE: Gekko does not implement dynamic power management (DPM), and therefore does not

provide thermal reduction through instruction cache throttling.

Gekko provides an instruction cache throttling mechanism to effectively reduce the instruction
execution rate without the complexity and overhead of dynamic clock control. Instruction cache
throttling, when used in conjunction with the TAU and the dynamic power management capability,
provides the system designer with a flexible means of controlling device temperature while allowing
the processor to continue operating.
The instruction cache throttling mechanism simply reduces the instruction forwarding rate from the
instruction cache to the instruction dispatcher. Normally, the instruction cache forwards four
instructions to the instruction dispatcher every clock cycle if all the instructions hit in the cache. For
thermal management Gekko provides a supervisor-level instruction cache throttling control (ICTC)
SPR. The instruction forwarding rate is reduced by writing a nonzero value into the ICTC[FI] field,
and enabling instruction cache throttling by setting the ICTC[E] bit to 1. An overall junction
temperature reduction can result in processors that implement dynamic power management by
reducing the power to the execution units while waiting for instructions to be forwarded from the
instruction cache; thus, instruction cache throttling does not provide thermal reduction unless
HID0[DPM] is set to 1.
NOTE: During instruction cache throttling the configuration of the PLL remains unchanged.

The bit field settings of the ICTC SPR are shown in Table 10-5.

Table 10-5. ICTC Bit Field Settings

Bits Name Description

23–30 FI Instruction forwarding interval expressed in processor clocks.
0x00—0 clock cycle
0x01—1 clock cycle
..
0xFF—255 clock cycles

31 E Cache throttling enable
0 Disable instruction cache throttling.
1 Enable instruction cache throttling.

IBM Confidential

Chapter 11. Performance Monitor IBM Confidential 5/25/00 Page 11-1

Chapter 11 Performance Monitor
110
110

The performance monitor facility provides the ability to monitor and count predefined events such
as processor clocks, misses in the instruction cache, data cache, or L2 cache, types of instructions
dispatched, mispredicted branches, and other occurrences. The count of such events (which may
be an approximation) can be used to trigger the performance monitor exception. The performance
monitor facility is not defined by the PowerPC architecture.
The performance monitor can be used for the following:

• To increase system performance with efficient software, especially in a multiprocessing
system. Memory hierarchy behavior may be monitored and studied in order to develop
algorithms that schedule tasks (and perhaps partition them) and that structure and distribute
data optimally.

• To improve processor architecture, the detailed behavior of the PowerPC Gekko’s structure
must be known and understood in many software environments. Some environments may
not be easily characterized by a benchmark or trace.

• To help system developers bring up and debug their systems.
The performance monitor uses the following Gekko-specific special-purpose registers (SPRs):

• The performance monitor counter registers (PMC1–PMC4) are used to record the number
of times a certain event has occurred. UPMC1–UPMC4 provide user-level read access to
these registers.

• The monitor mode control registers (MMCR0–MMCR1) are used to enable various
performance monitor interrupt functions and select events to count. UMMCR0–UMMCR1
provide user-level read access to these registers.

• The sampled instruction address register (SIA) contains the effective address of an
instruction executing at or around the time that the processor signals the performance
monitor interrupt condition. USIA provides user-level read access to the SIA.

Four 32-bit counters in Gekko count occurrences of software-selectable events. Two control
registers (MMCR0 and MMCR1) are used to control performance monitor operation. The counters
and the control registers are supervisor-level SPRs; however, in Gekko, the contents of these
registers can be read by user-level software using separate SPRs (UMMCR0 and UMMCR1).
Control fields in the MMCR0 and MMCR1 select the events to be counted, can enable a counter
overflow to initiate a performance monitor exception, and specify the conditions under which
counting is enabled.
As with other PowerPC exceptions, the performance monitor interrupt follows the normal
PowerPC exception model with a defined exception vector offset (0x00F00). Its priority is below
the external interrupt and above the decrementer interrupt.

11.1 Performance Monitor Interrupt
The performance monitor provides the ability to generate a performance monitor interrupt
triggered by a counter overflow condition in one of the performance monitor counter registers
(PMC1–PMC4), shown in Figure 11-3. A counter is considered to have overflowed when its
most-significant bit is set. A performance monitor interrupt may also be caused by the flipping
from 0 to 1 of certain bits in the time base register, which provides a way to generate a time
reference-based interrupt.
Although the interrupt signal condition may occur with MSR[EE] = 0, the actual exception cannot

IBM Confidential

Page 11-2 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

be taken until MSR[EE] = 1.
As a result of a performance monitor exception being taken, the action taken depends on the
programmable events, as follows: To help track which part of the code was being executed when an
exception was signaled, the address of the last completed instruction during that cycle is saved in the
SIA. The SIA is not updated if no instruction completed the cycle in which the exception was taken.

Exception handling for the Performance Monitor Interrupt Exception is described in Section 4.5.13,
"Performance Monitor Interrupt (0x00F00)" on Page 4-20.

11.2 Special-Purpose Registers Used by Performance Monitor
The performance monitor incorporates the SPRs listed in Table 11-1. All of these supervisor-level
registers are accessed throughmtspr and mfspr instructions. The following table shows more
information about all performance monitor SPRs.

Table 11-1. Performance Monitor SPRs

SPR Number spr[5-9] || spr[0-4] Register Name Access Level

952 0b11101 11000 MMCR0 Supervisor

953 0b11101 11001 PMC1 Supervisor

954 0b11101 11010 PMC2 Supervisor

955 0b11101 11011 SIA Supervisor

956 0b11101 11100 MMCR1 Supervisor

957 0b11101 11101 PMC3 Supervisor

958 0b11101 11110 PMC4 Supervisor

936 0b11101 01000 UMMCR0 User (read only)

937 0b11101 01001 UPMC1 User (read only)

938 0b11101 01010 UPMC2 User (read only)

939 0b11101 01011 USIA User (read only)

940 0b11101 01100 UMMCR1 User (read only)

941 0b11101 01101 UPMC3 User (read only)

942 0b11101 01110 UPMC4 User (read only)

IBM Confidential

Chapter 11. Performance Monitor IBM Confidential 5/25/00 Page 11-3

11.2.1 Performance Monitor Registers
This section describes the registers used by the performance monitor.

11.2.1.1 Monitor Mode Control Register 0 (MMCR0)
The monitor mode control register 0 (MMCR0), shown in Figure 11-1, is a 32-bit SPR provided to
specify events to be counted and recorded. MMCR0 can be written to only in supervisor mode.
User-level software can read the contents of MMCR0 by issuing anmfspr instruction to
UMMCR0, described in Section 11.2.1.2, "User Monitor Mode Control Register 0 (UMMCR0)"
on Page 11-4.

Figure 11-1. Monitor Mode Control Register 0 (MMCR0)

This register must be cleared at power up. Reading this register does not change its contents.
Table 11-2 describes the bits of the MMCR0 register.

Table 11-2. MMCR0 Bit Settings

Bit Name Description

0 DIS Disables counting unconditionally.
0 The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.

1 DP Disables counting while in supervisor mode.
0 The PMCn counters can be changed by hardware.
1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters are not

changed by hardware.

2 DU Disables counting while in user mode.
0 The PMCn counters can be changed by hardware.
1 If the processor is in user mode (MSR[PR] is set), the PMCn counters are not

changed by hardware.

3 DMS Disables counting while MSR[PM] is set.
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.

4 DMR Disables counting while MSR[PM] is zero.
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.

5 ENINT Enables performance monitor interrupt signaling.
0 Interrupt signaling is disabled.
1 Interrupt signaling is enabled.
Cleared by hardware when a performance monitor interrupt is taken. To re-enable
these interrupt signals, software must set this bit after servicing the performance
monitor interrupt. The IPL ROM code clears this bit before passing control to the
operating system.

0 1 2 3 4 5 6 7 8 9 10 15 16 17 18 19 25 26 31

DMSDU THRESHOLD

INTONBITTRANS

DISCOUNT

PMC1SELECTDP PMC2SELECTDIS DMR

PMC1INTCONTROLENINT

PMC2INTCONTROL

RTCSELECT

PMCTRIGGER

IBM Confidential

Page 11-4 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

MMCR0 can be accessed with themtspr andmfspr instructions using SPR 952.

11.2.1.2 User Monitor Mode Control Register 0 (UMMCR0)
The contents of MMCR0 are reflected to UMMCR0, which can be read by user-level software.
UMMCR0 can be accessed with themfspr instructions using SPR 936.

11.2.1.3 Monitor Mode Control Register 1 (MMCR1)
The monitor mode control register 1 (MMCR1) functions as an event selector for performance
monitor counter registers 3 and 4 (PMC3 and PMC4). The MMCR1 register is shown in Figure 11-2.

6 DISCOUNT Disables counting of PMCn when a performance monitor interrupt is signaled (that is,
((PMCnINTCONTROL = 1) & (PMCn[0] = 1) & (ENINT = 1)) or the occurrence of an
enabled time base transition with ((INTONBITTRANS =1) & (ENINT = 1)).
0 Signaling a performance monitor interrupt does not affect counting status of

PMCn.
1 The signaling of a performance monitor interrupt prevents changing of PMC1

counter. The PMCn counter does not change if PMC2COUNTCTL = 0.
Because a time base signal could have occurred along with an enabled counter
overflow condition, software should always reset INTONBITTRANS to zero, if the value
in INTONBITTRANS was a one.

7–8 RTCSELECT Time base lower (TBL) bit selection enable
00 Pick bit 31 to count
01 Pick bit 23 to count
10 Pick bit 19 to count
11 Pick bit 15 to count

9 INTONBITTRANS Causes interrupt signaling on bit transition (identified in RTCSELECT) from off to on.
0 Do not allow interrupt signal on the transition of a chosen bit.
1 Signal interrupt on the transition of a chosen bit.
Software is responsible for setting and clearing INTONBITTRANS.

10–15 THRESHOLD Threshold value. All 6 bits are supported by Gekko; allowing threshold values from 0 to
63. The intent of the THRESHOLD support is to characterize L1 data cache misses.

16 PMC1INTCONTROL Enables interrupt signaling due to PMC1 counter overflow.
0 Disable PMC1 interrupt signaling due to PMC1 counter overflow.
1 Enable PMC1 Interrupt signaling due to PMC1 counter overflow.

17 PMCINTCONTROL Enable interrupt signaling due to any PMC2–PMC4 counter overflow. Overrides the
setting of DISCOUNT.
0 Disable PMC2–PMC4 interrupt signaling due to PMC2–PMC4 counter overflow.
1 Enable PMC2–PMC4 interrupt signaling due to PMC2–PMC4 counter overflow.

18 PMCTRIGGER Can be used to trigger counting of PMC2–PMC4 after PMC1 has overflowed or after a
performance monitor interrupt is signaled.
0 Enable PMC2–PMC4 counting.
1 Disable PMC2–PMC4 counting until either PMC1[0] = 1 or a performance monitor

interrupt is signaled.

19–25 PMC1SELECT PMC1 input selector, 128 events selectable; 25 defined. See Table 11-5.

26–31 PMC2SELECT PMC2 input selector, 64 events selectable; 21 defined. See Table 11-6.

Table 11-2. MMCR0 Bit Settings (Continued)

Bit Name Description

IBM Confidential

Chapter 11. Performance Monitor IBM Confidential 5/25/00 Page 11-5

Figure 11-2. Monitor Mode Control Register 1 (MMCR1)

Bit settings for MMCR1 are shown in Table 11-3. The corresponding events are described in
Section 11.2.1.5.

MMCR1 can be accessed with themtspr and mfspr instructions using SPR 956. User-level
software can read the contents of MMCR1 by issuing anmfspr instruction to UMMCR1, described
in Section 11.2.1.4

11.2.1.4 User Monitor Mode Control Register 1 (UMMCR1)
The contents of MMCR1 are reflected to UMMCR1, which can be read by user-level software.
UMMCR1 can be accessed with themfspr instructions using SPR 940.

11.2.1.5 Performance Monitor Counter Registers (PMC1–PMC4)
PMC1–PMC4, shown in Figure 11-3, are 32-bit counters that can be programmed to generate
interrupt signals when they overflow.

Figure 11-3. Performance Monitor Counter Registers (PMC1–PMC4)

The bits contained in the PMC registers are described in Table 11-4.

Counters overflow when the high-order bit (the sign bit) becomes set; that is, they reach the value
2147483648 (0x8000_0000). However, an interrupt is not signaled unless both MMCR0[ENINT]
and either PMC1INTCONTROL or PMCINTCONTROL in the MMCR0 register are also set as
appropriate.

Table 11-3. MMCR1 Bit Settings

Bits Name Description

0–4 PMC3SELECT PMC3 input selector. 32 events selectable. See Table 11-7 for defined selections.

5–9 PMC4SELECT PMC4 input selector. 32 events selectable. See Table 11-8 for defined selections.

10–31 — Reserved

Table 11-4. PMCn Bit Settings

Bits Name Description

0 OV Overflow. When this bit is set, it indicates this counter has reached its maximum value.

1–31 Counter value Indicates the number of occurrences of the specified event.

0 4 5 9 10 31

Reserved

PMC3SELECT PMC4SELECT 0

0 1 31

OV Counter Value

IBM Confidential

Page 11-6 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

NOTE: The interrupts can be masked by clearing MSR[EE]; the interrupt signal condition may
occur with MSR[EE] cleared, but the exception is not taken until MSR[EE] is set. Setting
MMCR0[DISCOUNT] forces counters to stop counting when a counter interrupt occurs.

Software is expected to use themtspr instruction to explicitly set PMC to non-overflowed values.
Setting an overflowed value may cause an erroneous exception. For example, if both
MMCR0[ENINT] and either PMC1INTCONTROL or PMCINTCONTROL are set and themtspr
instruction loads an overflow value, an interrupt signal may be generated without an event counting
having taken place.
The event to be monitored can be chosen by setting MMCR0[19–31]. The selected events are counted
beginning when MMCR0 is set until either MMCR0 is reset or a performance monitor interrupt is
generated. Table 11-5 lists the selectable events and their encodings.

Table 11-5. PMC1 Events—MMCR0[19–25] Select Encodings

Encoding Description

000 0000 Register holds current value.

000 0001 Number of processor cycles

000 0010 Number of instructions that have completed. Does not include folded branches.

0000011 Number of transitions from 0 to 1 of specified bits in the time base lower (TBL) register. Bits are
specified through RTCSELECT, MMCR0[7–8]. 00 = 31, 01 = 23, 10 = 19, 11 = 15

0000100 Number of instructions dispatched—0, 1, or 2 instructions per cycle

0000101 Number of eieio instructions completed

0000110 Number of cycles spent performing table search operations for the ITLB

0000111 Number of accesses that hit the L2. This event includes cache ops (i.e., dcbz)

0001000 Number of valid instruction EAs delivered to the memory subsystem

0001001 Number of times the address of an instruction being completed matches the address in the IABR

0001010 Number of loads that miss the L1 with latencies that exceeded the threshold value

0001011 Number of branches that are unresolved when processed

0001100 Number of cycles the dispatcher stalls due to a second unresolved branch in the instruction stream

All others Reserved. May be used in a later revision.

IBM Confidential

Chapter 11. Performance Monitor IBM Confidential 5/25/00 Page 11-7

Bits MMCR0[26–31] specify events associated with PMC2, as shown in Table 11-6.

Table 11-6. PMC2 Events—MMCR0[26–31] Select Encodings

Encoding Description

00 0000 Nothing Register holds current value.

00 0001 Processor cycles Count every cycle

00 0010 Number of instructions that have completed. Indicates number of instructions that have
completed. Does not include folded branches

00 0011 Time-base (lower) bit transitions. Number of transitions from 0 to 1 of specified bits in
the time base lower (TBL) register. Bits are
specified through RTCSELECT, MMCR0[7–8].
00 = 31, 01 = 23, 10 = 19, 11 = 15

00 0100 Number of instructions dispatched. 0, 1, or 2 instructions per cycle

00 0101 Number of L1 Icache misses Indicates the number of times an instruction fetch
missed the L1 instruction cache.

00 0110 Number of ITLB misses Indicates the number of times the needed
instruction address translation was not in the ITLB.

00 0111 L2 I-misses Counts the number of accesses which miss the L2
due to an I-side request.

00 1000 Number of fall-through branches Indicates the number of branches that were
predicted not taken.

00 1001 Reserved. -

00 1010 Reserved loads Incremented every time that a reserved load
completes.

00 1011 Loads and stores Counts all load and store instructions completed.

00 1100 Number of snoops Gives the total number of snoops to the L1 and the
L2.

001101 L1 castouts to L2 Number of times the L1 castout goes to the L2.

001110 System Unit Instructions Number of system unit instructions completed.

001111 Instruction Miss cycles Counts the total number of L1 miss cycles of
instruction fetches.

010000 First speculative branch resolved correctly Indicates the number of branches that allow
speculative execution beyond those that resolved
correctly

All others Reserved. May be used in a later revision.

IBM Confidential

Page 11-8 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Bits MMCR1[0–4] specify events associated with PMC3, as shown in Table 11-7.

Table 11-7. PMC3 Events—MMCR1[0–4] Select Encodings

Encoding Description

0 0000 Register holds current value.

0 0001 Number of processor cycles

0 0010 Number of completed instructions, not including folded branches.

0 0011 Number of transitions from 0 to 1 of specified bits in the time base lower (TBL) register. Bits are
specified through RTCSELECT, MMCR0[7–8]. 00 = 31, 01 = 23, 10 = 19, 11 = 15

0 0100 Number of instructions dispatched. 0, 1, or 2 per cycle.

0 0101 Number of L1 data cache misses. Does not include cache ops.

0 0110 Number of DTLB misses

0 0111 Number of L2 data misses

0 1000 Number of predicted branches that were taken

0 1001 Reserved.

0 1010 Number of store conditional instructions completed

0 1011 Number of instructions completed from the FPU

0 1100 Number of L2 castouts caused by snoops to modified lines

0 1101 Number of cache operations that hit in the L2 cache

0 1110 Reserved

0 1111 Number of cycles generated by L1 load misses

1 0000 Number of branches in the second speculative stream that resolve correctly

1 0001 Number of cycles the BPU stalls due to LR or CR unresolved dependencies

All others Reserved. May be used in a later revision.

IBM Confidential

Chapter 11. Performance Monitor IBM Confidential 5/25/00 Page 11-9

Bits MMCR1[5–9] specify events associated with PMC4, as shown in Table 11-8.

The PMC registers can be accessed with themtspr andmfspr instructions using the following SPR
numbers:

• PMC1 is SPR 953

• PMC2 is SPR 954

• PMC3 is SPR 957

• PMC4 is SPR 958

11.2.1.6 User Performance Monitor Counter Registers (UPMC1–UPMC4)
The contents of the PMC1–PMC4 are reflected to UPMC1–UPMC4, which can be read by
user-level software. The UPMC registers can be read with themfspr instructions using the
following SPR numbers:

• UPMC1 is SPR 937

• UPMC2 is SPR 938

• UPMC3 is SPR 941

• UPMC4 is SPR 942

11.2.1.7 Sampled Instruction Address Register (SIA)
The sampled instruction address register (SIA) is a supervisor-level register that contains the

Table 11-8. PMC4 Events—MMCR1[5–9] Select Encodings

Encoding Comments

00000 Register holds current value

00001 Number of processor cycles

00010 Number of completed instructions, not including folded branches

00011 Number of transitions from 0 to 1 of specified bits in the time base lower (TBL) register. Bits are
specified through RTCSELECT, MMCR0[7–8]. 00 = 31, 01 = 23, 10 = 19, 11 = 15

00100 Number of instructions dispatched. 0, 1, or 2 per cycle

00101 Number of L2 castouts

00110 Number of cycles spent performing table searches for DTLB accesses.

00111 Reserved. May be used in a later revision.

01000 Number of mispredicted branches. Reserved for future use.

01001 Reserved. May be used in a later revision.

01010 Number of store conditional instructions completed with reservation intact

01011 Number of completed sync instructions

01100 Number of snoop request retries

01101 Number of completed integer operations

01110 Number of cycles the BPU cannot process new branches due to having two unresolved branches

All others Reserved. May be used in a later revision.

IBM Confidential

Page 11-10 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

effective address of an instruction executing at or around the time that the processor signals the
performance monitor interrupt condition. The SIA is shown in Figure 11-4.

Figure 11-4. Sampled instruction Address Registers (SIA)

If the performance monitor interrupt is triggered by a threshold event, the SIA contains the address
of the exact instruction (called the sampled instruction) that caused the counter to overflow.
If the performance monitor interrupt was caused by something besides a threshold event, the SIA
contains the address of the last instruction completed during that cycle. SIA can be accessed with the
mtspr andmfspr instructions using SPR 955.

11.2.1.8 User Sampled Instruction Address Register (USIA)
The contents of SIA are reflected to USIA, which can be read by user-level software. USIA can be
accessed with themfspr instructions using SPR 939.

11.3 Event Counting
Counting can be enabled if conditions in the processor state match a software-specified condition.
Because a software task scheduler may switch a processor’s execution among multiple processes and
because statistics on only a particular process may be of interest, a facility is provided to mark a
process. The performance monitor (PM) bit, MSR[29] is used for this purpose. System software may
set this bit when a marked process is running. This enables statistics to be gathered only during the
execution of the marked process. The states of MSR[PR] and MSR[PM] together define a state that
the processor (supervisor or program) and the process (marked or unmarked) may be in at any time.
If this state matches a state specified by the MMCR, the state for which monitoring is enabled,
counting is enabled.
The following are states that can be monitored:

• (Supervisor) only

• (User) only

• (Marked and user) only

• (Not marked and user) only

• (Marked and supervisor) only

• (Not marked and supervisor) only

• (Marked) only

• (Not marked) only

0 31

Instruction Address

IBM Confidential

Chapter 11. Performance Monitor IBM Confidential 5/25/00 Page 11-11

In addition, one of two unconditional counting modes may be specified:

• Counting is unconditionally enabled regardless of the states of MSR[PM] and MSR[PR].
This can be accomplished by clearing MMCR0[0–4].

• Counting is unconditionally disabled regardless of the states of MSR[PM] and MSR[PR].
This is done by setting MMCR0[0].

The performance monitor counters count specified events and are used to generate performance
monitor exceptions when an overflow (most-significant bit is a 1) situation occurs. The Gekko
performance monitor has four, 32-bit registers that can count up to 0x7FFFFFFF (2,147,483,648
in decimal) before overflowing. Bit 0 of the registers is used to determine when an interrupt
condition exists.

11.4 Event Selection
Event selection is handled through MMCR0 and MMCR1, described in Table 11-2 on Page 11-3
and Table 11-3 on Page 11-5, respectively. Event selection is described as follows:

• The four event-select fields in MMCR0 and MMCR1 are as follows:

— MMCR0[19–25] PMC1SELECT—PMC1 input selector, 128 events selectable;
25 defined. See Table 11-5.

— MMCR0[26–31] PMC2SELECT—PMC2 input selector, 64 events selectable;
21 defined. See Table 11-6.

— MMCR0[0–4] PMC3SELECT—PMC3 input selector. 32 events selectable,
defined. See Table 11-7.

— MMCR0[5–9] PMC4SELECT—PMC4 input selector. 32 events selectable. See
Table 11-8.

• In the tables, a correlation is established between each counter, events to be traced, and the
pattern required for the desired selection.

• The first five events are common to all four counters and are considered to be reference
events. These are as follows:

— 00000—Register holds current value

— 00001—Number of processor cycles

— 00010—Number of completed instructions, not including folded branches

— 00011—Number of transitions from 0 to 1 of specified bits in the time base lower
(TBL) register. Bits are specified through RTCSELECT, MMCR0[7–8]. 00 = 31,
01 = 23, 10 = 19, 11 = 15

— 00100—Number of instructions dispatched. 0, 1, or 2 per cycle

• Some events can have multiple occurrences per cycle, and therefore need two or three bits
to represent them.

IBM Confidential

Page 11-12 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

11.5 Notes
The following warnings should be noted:

• Only those load and store in queue position 0 of their respective load/store queues are
monitored when a threshold event is selected in PMC1.

• Gekko cannot accurately track threshold events with respect to the following types of loads
and stores:

— Unaligned load and store operations that cross a word boundary

— Load and store multiple operations

— Load and store string operations

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-1

Chapter 12 Instruction Set
120

This chapter lists the PowerPC instruction set in alphabetical order by mnemonic. Note that each
entry includes the instruction formats and a quick reference ‘legend’ that provides such
information as the level(s) of the PowerPC architecture in which the instruction may be
found—user instruction set architecture (UISA), virtual environment architecture (VEA), and
operating environment architecture (OEA); and the privilege level of the instruction—user- or
supervisor-level (an instruction is assumed to be user-level unless the legend specifies that it is
supervisor-level); and the instruction formats. The format diagrams show, horizontally, all valid
combinations of instruction fields; for a graphical representation of these instruction formats.

A description of the instruction fields and pseudocode conventions are also provided.

NOTE: The architecture specification refers to user-level and supervisor-level as problem state
and privileged state, respectively.

12.1 Instruction Formats
Instructions are four bytes long and word-aligned, so when instruction addresses are presented to
the processor (as in branch instructions) the two low-order bits are ignored. Similarly, whenever
the processor develops an instruction address, its two low-order bits are zero.

Bits 0–5 always specify the primary opcode. Many instructions also have an extended opcode. The
remaining bits of the instruction contain one or more fields for the different instruction formats.

Some instruction fields are reserved, or must contain a predefined value as shown in the individual
instruction layouts. If a reserved field does not have all bits cleared, or if a field that must contain
a particular value does not contain that value, the instruction form is invalid and the results are
described in Chapter 4, “Addressing Modes and Instruction Set Summary” in thePowerPC
Microprocessor Family: The Programming Environments manual.

Within the instruction format diagram the instruction operation code and extended operation code
(if extended form) are specified in decimal. These fields have been converted to hexadecimal and
are shown on line two for each instruction definition.

12.1.1 Split-Field Notation
Some instruction fields occupy more than one contiguous sequence of bits or occupy a contiguous
sequence of bits used in permuted order. Such a field is called a split field. Split fields that represent
the concatenation of the sequences from left to right are shown in lowercase letters. These split
fields— spr and tbr—are described in Table 12-1.

Table 12-1. Split-Field Notation and Conventions

Field Description

spr (11–20) This field is used to specify a special-purpose register for the mtspr and mfspr instructions. The
encoding is described in Section 4.4.2.2, “Move to/from Special-Purpose Register Instructions
(OEA)”, in the PowerPC Microprocessor Family: The Programming Environments manual.

tbr (11–20) This field is used to specify either the time base lower (TBL) or time base upper (TBU).

IBM Confidential

Page 12-2 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

12.1.2 Instruction Fields
Table 12-2 describes the instruction fields used in the various instruction formats.

Table 12-2. Instruction Syntax Conventions

Field Description

 AA (30) Absolute address bit.
0 The immediate field represents an address relative to the current instruction address (CIA). (For

more information on the CIA, see Table 12-3.) The effective (logical) address of the branch is
either the sum of the LI field sign-extended to 32 bitsand the address of the branch instruction or
the sum of the BD field sign-extended to 32 bits and the address of the branch instruction.

1 The immediate field represents an absolute address. The effective address (EA) of the branch is
the LI field sign-extended to 32 bitsor the BD field sign-extended to 32 bits.

Note: The LI and BD fields are sign-extended to 32 bits.

BD (16–29) Immediate field specifying a 14-bit signed two's complement branch displacement that is
concatenated on the right with 0b00 and sign-extended to 32 bits.

BI (11–15) This field is used to specify a bit in the CR to be used as the condition of a branch conditional
instruction.

BO (6–10) This field is used to specify options for the branch conditional instructions. The encoding is
described in Section 4.2.4.2, “Conditional Branch Control” in the PowerPC Microprocessor Family:
The Programming Environments manual.

crb A (11–15) This field is used to specify a bit in the CR to be used as a source.

crb B (16–20) This field is used to specify a bit in the CR to be used as a source.

crb D (6–10) This field is used to specify a bit in the CR, or in the FPSCR, as the destination of the result of an
instruction.

crf D (6–8) This field is used to specify one of the CR fields, or one of the FPSCR fields, as a destination.

crf S (11–13) This field is used to specify one of the CR fields, or one of the FPSCR fields, as a source.

CRM (12–19) This field mask is used to identify the CR fields that are to be updated by the mtcrf instruction.

d (16–31, or
20-31)

Immediate field specifying a signed two's complement integer that is sign-extended to 32 bits.

FM (7–14) This field mask is used to identify the FPSCR fields that are to be updated by the mtfsf instruction.

frA (11–15) This field is used to specify an FPR as a source.

frB (16–20) This field is used to specify an FPR as a source.

frC (21–25) This field is used to specify an FPR as a source.

frD (6–10) This field is used to specify an FPR as the destination.

frS (6–10) This field is used to specify an FPR as a source.

I (17-19, or
22-24)

This field is used to specify a GQR control register that is used by the paired single load or store
instructions.

IMM (16–19) Immediate field used as the data to be placed into a field in the FPSCR.

LI (6–29) Immediate field specifying a 24-bit signed two's complement integer that is concatenated on the
right with 0b00 and sign-extended to 32 bits.

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-3

LK (31) Link bit.
0 Does not update the link register (LR).
1 Updates the LR. If the instruction is a branch instruction, the address of the instruction following

the branch instruction is placed into the LR.

MB (21–25) and
ME (26–30)

These fields are used in rotate instructions to specify a 32-bit mask in the PowerPC
Microprocessor Family: The Programming Environments manual.

NB (16–20) This field is used to specify the number of bytes to move in an immediate string load or store.

OE (21) This field is used for extended arithmetic to enable setting OV and SO in the XER.

OPCD (0–5) Primary opcode field

rA (11–15) This field is used to specify a GPR to be used as a source or destination.

rB (16–20) This field is used to specify a GPR to be used as a source.

Rc (31) Record bit.
0 Does not update the condition register (CR).
1 Updates the CR to reflect the result of the operation.

For integer instructions, CR bits 0–2 are set to reflect the result as a signed quantity and CR bit
3 receives a copy of the summary overflow bit, XER[SO]. The result as an unsigned quantity or
a bit string can be deduced from the EQ bit. For floating-point instructions, CR bits 4–7 are set
to reflect floating-point exception, floating-point enabled exception, floating-point invalid
operation exception, and floating-point overflow exception.

(Note that exceptions are referred to as interrupts in the architecture specification.)

rD (6–10) This field is used to specify a GPR to be used as a destination.

rS (6–10) This field is used to specify a GPR to be used as a source.

SH (16–20) This field is used to specify a shift amount.

SIMM (16–31) This immediate field is used to specify a 16-bit signed integer.

SR (12–15) This field is used to specify one of the 16 segment registers.

TO (6–10) This field is used to specify the conditions on which to trap. The encoding is described in Section
4.2.4.6, “Trap Instructions” iin the PowerPC Microprocessor Family: The Programming
Environments manual.

UIMM (16–31) This immediate field is used to specify a 16-bit unsigned integer.

XO (21–30,
22–30, 25-30 or
26–30)

Extended opcode field.

Table 12-2. Instruction Syntax Conventions (Continued)

Field Description

IBM Confidential

Page 12-4 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

12.1.3 Notation and Conventions
The operation of some instructions is described by a semiformal language (pseudocode). See
Table 12-3 for a list of pseudocode notation and conventions used throughout this chapter.

Table 12-3. Notation and Conventions

Notation/Convention Meaning

← Assignment

←iea Assignment of an 32-bit instruction effective address.

¬ NOT logical operator

∗ Multiplication

÷ Division (yielding quotient)

+ Two’s-complement addition

– Two’s-complement subtraction, unary minus

=,≠ Equals and Not Equals relations

<,≤,≥, >, Signed comparison relations

. (period) Update. When used as a character of an instruction mnemonic, a period (.) means that the
instruction updates the condition register field.

c Carry. When used as a character of an instruction mnemonic, a ‘c’ indicates a carry out in
XER[CA].

e Extended Precision.
When used as the last character of an instruction mnemonic, an ‘e’ indicates the use of
XER[CA] as an operand in the instruction and records a carry out in XER[CA].

o Overflow. When used as a character of an instruction mnemonic, an ‘o’ indicates the record
of an overflow in XER[OV] and CR0[SO] for integer instructions or CR1[SO] for floating-point
instructions.

<U, >U Unsigned comparison relations

? Unordered comparison relation

&, | AND, OR logical operators

|| Used to describe the concatenation of two values (that is, 010 || 111 is the same as 010111)

⊕, ≡ Exclusive-OR, Equivalence logical operators (for example, (a ≡ b) = (a ⊕ ¬ b))

0bnnnn A number expressed in binary format.

0xnnnn or
x’nnnn nnnn’

A number expressed in hexadecimal format.

(n)x The replication of x, n times (that is, x concatenated to itself n – 1 times).
(n)0 and (n)1 are special cases. A description of the special cases follows:

• (n)0 means a field of n bits with each bit equal to 0. Thus (5)0 is equivalent to
 0b00000.

• (n)1 means a field of n bits with each bit equal to 1. Thus (5)1 is equivalent to
0b11111.

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-5

(rA|0) The contents of rA if the rA field has the value 1–31, or the value 0 if the rA field is 0.

(rX) The contents of rX

x[n] n is a bit or field within x, where x is a register

xn x is raised to the nth power

ABS(x) Absolute value of x

CEIL(x) Least integer x

Characterization Reference to the setting of status bits in a standard way that is explained in the text.

CIA Current instruction address.
The 32-bit address of the instruction being described by a sequence of pseudocode. Used by
relative branches to set the next instruction address (NIA) and by branch instructions with LK
= 1 to set the link register. Does not correspond to any architected register.

Clear Clear the leftmost or rightmost n bits of a register to 0. This operation is used for rotate and
shift instructions.

Clear left and shift left Clear the leftmost b bits of a register, then shift the register left by n bits. This operation can
be used to scale a known non-negative array index by the width of an element. These
operations are used for rotate and shift instructions.

Cleared Bits are set to 0.

Do Do loop.
• Indenting shows range.
• “To” and/or “by” clauses specify incrementing an iteration variable.
• “While” clauses give termination conditions.

DOUBLE(x) Result of converting x from floating-point single-precision format to floating-point double-
precision format.

Extract Select a field of n bits starting at bit position b in the source register, right or left justify this
field in the target register, and clear all other bits of the target register to zero. This operation
is used for rotate and shift instructions.

EXTS(x) Result of extending x on the left with sign bits

GPR(x) General-purpose register x

if...then...else... Conditional execution, indenting shows range, else is optional.

Insert Select a field of n bits in the source register, insert this field starting at bit position b of the
target register, and leave other bits of the target register unchanged. (No simplified
mnemonic is provided for insertion of a field when operating on double words; such an
insertion requires more than one instruction.) This operation is used for rotate and shift
instructions. (Note that simplified mnemonics are referred to as extended mnemonics in the
architecture specification.)

Leave Leave innermost do loop, or the do loop described in leave statement.

MASK(x, y) Mask having ones in positions x through y (wrapping if x > y) and zeros elsewhere.

MEM(x, y) Contents of y bytes of memory starting at address x

Table 12-3. Notation and Conventions (Continued)

Notation/Convention Meaning

IBM Confidential

Page 12-6 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Table 12-4 describes instruction field notation conventions used throughout this chapter.

NIA Next instruction address, which is the32-bit address of the next instruction to be executed
(the branch destination) after a successful branch. In pseudocode, a successful branch is
indicated by assigning a value to NIA. For instructions which do not branch, the next
instruction address is CIA + 4. Does not correspond to any architected register.

OEA PowerPC operating environment architecture

Rotate Rotate the contents of a register right or left n bits without masking. This operation is used for
rotate and shift instructions.

reserved

ROTL(x, y) Result of rotating the value x left y positions, where x is 32 bits long

Set Bits are set to 1.

Shift Shift the contents of a register right or left n bits, clearing vacated bits (logical shift). This
operation is used for rotate and shift instructions.

SINGLE(x) Result of converting x from floating-point double-precision format to floating-point single-
precision format.

SPR(x) Special-purpose register x

TRAP Invoke the system trap handler.

Undefined An undefined value. The value may vary from one implementation to another, and from one
execution to another on the same implementation.

UISA PowerPC user instruction set architecture

VEA PowerPC virtual environment architecture

Table 12-4. Instruction Field Conventions

The Architecture
Specification

Equivalent to:

BA, BB, BT crb A, crb B, crb D (respectively)

BF, BFA crf D, crf S (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

Table 12-3. Notation and Conventions (Continued)

Notation/Convention Meaning

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-7

Precedence rules for pseudocode operators are summarized in Table 12-5.

Operators higher in Table 12-5 are applied before those lower in the table. Operators at the same
level in the table associate from left to right, from right to left, or not at all, as shown. For example,
“–” (unary minus) associates from left to right, so a –b – c = (a – b) – c. Parentheses are used to
override the evaluation order implied by Table 12-5, or to increase clarity; parenthesized
expressions are evaluated before serving as operands.Note that the all pseudocode examples
provided in this chapter are for 32-bit implementations.PowerPC Instruction Set

12.1.4 Computation Modes
The PowerPC architecture is defined for 32-bit implementations, in which all registers except the
FPRs are 32 bits long, and effective addresses are 32 bits long. The FPR registers are 64 bits long.
For more information on computation modes see Section 4.1.1, “Computation Modes,” in the
PowerPC Microprocessor Family: The Programming Environments manual.

U IMM

UI UIMM

/, //, /// 0...0 (shaded)

Table 12-5. Precedence Rules

Operators Associativity

x[n], function evaluation Left to right

(n)x or replication,
x(n) or exponentiation

Right to left

unary –, ¬ Right to left

∗, Left to right

+, – Left to right

|| Left to right

=, , <, , >, , <U, >U, ? Left to right

&, ⊕, ≡ Left to right

| Left to right

– (range) None

←, ←iea None

Table 12-4. Instruction Field Conventions (Continued)

The Architecture
Specification

Equivalent to:

IBM Confidential

Page 12-8 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

12.2 PowerPC Instruction Set
The remainder of this chapter lists and describes the instruction set for the PowerPC architecture. The
instructions are listed in alphabetical order by mnemonic. Figure 12-1 shows the format for each
instruction description page.

Figure 12-1. Instruction Description

NOTE: The execution unit that executes the instruction may not be the same for all PowerPC
processors.

addx addx
Add (x’7C00 0214’)

add rD,rA,rB (OE = 0 Rc = 0)

add. rD,rA,rB (OE = 0 Rc = 1)

addo rD,rA,rB (OE = 1 Rc = 0)

addo. rD,rA,rB (OE = 1 Rc = 1)

r D ← (r A) + (r B)

The sum (rA) + (rB) is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(If Rc = 1)

• XER:

Affected: SO, OV(If OE = 1)

B OE 266 Rc
0 5 6 10 11 15 16 20 21 22 30 31

31 D A

Instruction name

name (Instruction operation codes in
hexadecimal)

Instruction syntax

Instruction encoding

Pseudocode description
of instruction operation

Text description of
instruction operation

Registers altered by instruction

Quick reference legend
PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-9

addx addx
Add (x’7C00 0214’)

add rD,rA,rB (OE = 0 Rc = 0)
add. rD,rA,rB (OE = 0 Rc = 1)
addo rD,rA,rB (OE = 1 Rc = 0)
addo. rD,rA,rB (OE = 1 Rc = 1)

r D ← (r A) + (r B)

The sum (rA) + (rB) is placed intorD.

Theadd instruction is preferred for addition because it sets few status bits.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see
XER below).

• XER:

Affected: SO, OV (if OE = 1)

NOTE: For more information on condition codes see Section 2.1.3, “Condition
Register,” in thePowerPC Microprocessor Family: The Programming
Environmentsmanual and Section 2.1.5, “XER Register,” in thePowerPC
Microprocessor Family: The Programming Environments manual.

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 266 Rc

IBM Confidential

Page 12-10 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

addc x addc x
Add Carrying (x’7C00 0014’)

addc rD,rA,rB (OE = 0 Rc = 0)
addc. rD,rA,rB (OE = 0 Rc = 1)
addco rD,rA,rB (OE = 1 Rc = 0)
addco. rD,rA,rB (OE = 1 Rc = 1)

r D ← (r A) + (r B)

The sum (rA) + (rB) is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see
XER below).

• XER:

Affected: CA

Affected: SO, OV (if OE = 1)

NOTE: For more information on condition codes see Section 2.1.3, “Condition
Register,” and Section 2.1.5, “XER Register,” in thePowerPC
Microprocessor Family: The Programming Environments manual.

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 10 Rc

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-11

addex addex
Add Extended (x’7C00 0114’)

adde rD,rA,rB (OE = 0 Rc = 0)
adde. rD,rA,rB (OE = 0 Rc = 1)
addeo rD,rA,rB (OE = 1 Rc = 0)
addeo. rD,rA,rB (OE = 1 Rc = 1)

r D ← (r A) + (r B) + XER[CA]

The sum (rA) + (rB) + XER[CA] is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see
XER below).

• XER:

Affected: CA

Affected: SO, OV (if OE = 1)

NOTE: For more information on condition codes see Section 2.1.3, “Condition
Register,” and Section 2.1.5, “XER Register,” in thePowerPC
Microprocessor Family: The Programming Environments manual.

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 138 Rc

IBM Confidential

Page 12-12 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

addi addi
Add Immediate (x’3800 0000’)

addi rD,rA,SIMM

if r A = 0
then r D ← EXTS(SIMM)
else r D ← (r A) + EXTS(SIMM)

The sum (rA|0) + sign extended SIMM is placed intorD.

Theaddi instruction is preferred for addition because it sets few status bits. Note thataddi uses the
value 0, not the contents of GPR0, ifrA = 0.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

14 D A SIMM

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-13

addic addic
Add Immediate Carrying (x’3000 0000’)

addic rD,rA,SIMM

r D ← (r A) + EXTS(SIMM)

The sum (rA) + sign extended SIMM is placed intorD.

Other registers altered:

• XER:
NOTE: Affected: CAFor more information see Section 2.1.5, “XER Register,” in

thePowerPC Microprocessor Family: The Programming Environments
manual.

Simplified mnemonics:

subic rD,rA,value equivalent to addic rD,rA,–value

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

12 D A SIMM

IBM Confidential

Page 12-14 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

addic. addic.
Add Immediate Carrying and Record (x’3400 0000’)

addic. rD,rA,SIMM

r D ← (r A) + EXTS(SIMM)

The sum (rA) + the sign extended SIMM is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see
XER below).

• XER:

Affected: CA

NOTE: For more information on condition codes see Section 2.1.3, “Condition
Register,” and Section 2.1.5, “XER Register,” in thePowerPC
Microprocessor Family: The Programming Environments manual.

Simplified mnemonics:

subic.rD,rA,value equivalent to addic. rD,rA,–value

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

13 D A SIMM

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-15

addis addis
Add Immediate Shifted (x’3C00 0000’)

addis rD,rA,SIMM

if r A = 0
then r D ← (SIMM || (16)0)
else r D ← (r A) + (SIMM || (16)0)

The sum (rA|0) + (SIMM || 0x0000) is placed intorD.

Theaddis instruction is preferred for addition because it sets few status bits. Note thataddis uses
the value 0, not the contents of GPR0, ifrA = 0.

Other registers altered:

• None

Simplified mnemonics:

lis rD, value equivalent to addis rD,0,value
subis rD,rA, value equivalent to addis rD,rA,–value

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

15 D A SIMM

IBM Confidential

Page 12-16 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

addme x addme x
Add to Minus One Extended (x’7C00 01D4’)

addme rD,rA (OE = 0 Rc = 0)
addme. rD,rA (OE = 0 Rc = 1)
addmeo rD,rA (OE = 1 Rc = 0)
addmeo. rD,rA (OE = 1 Rc = 1)

r D ← (r A) + XER[CA] – 1

The sum (rA) + XER[CA] + 0xFFFF_FFFF is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see
XER below).

• XER:

Affected: CA

Affected: SO, OV (if OE = 1)

NOTE: For more information on condition codes see Section 2.1.3, “Condition
Register,” and Section 2.1.5, “XER Register,” in thePowerPC
Microprocessor Family: The Programming Environments manual.

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

Reserved

31 D A 0 0 0 0 0 OE 234 Rc

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-17

addzex addzex
Add to Zero Extended (x’7C00 0194’)

addze rD,rA (OE = 0 Rc = 0)
addze. rD,rA (OE = 0 Rc = 1)
addzeo rD,rA (OE = 1 Rc = 0)
addzeo. rD,rA (OE = 1 Rc = 1)

r D ← (r A) + XER[CA]

The sum (rA) + XER[CA] is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see
XER below).

• XER:

Affected: CA

Affected: SO, OV (if OE = 1)

NOTE: For more information on condition codes see Section 2.1.3, “Condition
Register,” and Section 2.1.5, “XER Register,” in thePowerPC
Microprocessor Family: The Programming Environments manual.

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

Reserved

31 D A 0 0 0 0 0 OE 202 Rc

IBM Confidential

Page 12-18 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

andx andx
AND (x’7C00 0038’)

and rA,rS,rB (Rc = 0)
and. rA,rS,rB (Rc = 1)

r A ← (r S) & (r B)

The contents ofrS are ANDed with the contents ofrB and the result is placed intorA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 28 Rc

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-19

andc x andc x
AND with Complement (x’7C00 0078’)

andc rA,rS,rB (Rc = 0)
andc. rA,rS,rB (Rc = 1)

r A ← (r S) & ¬ (r B)

The contents ofrS are ANDed with the one’s complement of the contents ofrB and the result is
placed intorA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 60 Rc

IBM Confidential

Page 12-20 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

andi. andi.
AND Immediate (x’7000 0000’)

andi. rA,rS,UIMM

r A ← (r S) & ((16)0 || UIMM)

The contents ofrS are ANDed with 0x000 || UIMM and the result is placed intorA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

28 S A UIMM

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-21

andis. andis.
AND Immediate Shifted (x’7400 0000’)

andis. rA,rS,UIMM

r A ← (r S) & (UIMM || (16)0)

The contents ofrS are ANDed with UIMM || 0x0000 and the result is placed intorA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

29 S A UIMM

IBM Confidential

Page 12-22 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

bx bx
Branch (x’4800 0000’)

b target_addr (AA = 0 LK = 0)
ba target_addr (AA = 1 LK = 0)
bl target_addr (AA = 0 LK = 1)
bla target_addr (AA = 1 LK = 1)

if AA = 1
then NIA ←iea EXTS(LI || 0b00)
else NIA ←iea CIA + EXTS(LI || 0b00)

if LK = 1
then LR ←iea CIA + 4

target_addr specifies the branch target address.

If AA = 1, then the branch target address is the value LI || 0b00 sign-extended.

If AA = 0, then the branch target address is the sum of LI || 0b00 sign-extended plus the address of
this instruction.

If LK = 1, then the effective address of the instruction following the branch instruction is placed into
the link register.

Other registers altered:

• Link Register (LR) (if LK = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA I

0 5 6 29 30 31

18 LI AA LK

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-23

bcx bcx
Branch Conditional (x’4000 0000’)

bc BO,BI,target_addr (AA = 0 LK = 0)
bca BO,BI,target_addr (AA = 1 LK = 0)
bcl BO,BI,target_addr (AA = 0 LK = 1)
bcla BO,BI,target_addr (AA = 1 LK = 1)

if ¬ BO[2] then CTR ← CTR – 1

ctr_ok ← BO[2] | ((CTR ≠ 0) ⊕ BO[3])

cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if ctr_ok & cond_ok

then
if AA = 1

then NIA ←iea EXTS(BD || 0b00)
else NIA ←iea CIA + EXTS(BD || 0b00)

if LK then LR ←iea CIA + 4

target_addr specifies the branch target address.

The BI field specifies the bit in the condition register (CR) to be used as the condition of the branch.
The BO field is encoded as described in Table 12-6.

Additional information about BO field encoding is provided in Section 4.2.4.2, “Conditional
Branch Control,” in the PowerPC Microprocessor Family: The Programming Environments
manual.

NOTE: In this table,z indicates a bit that is ignored. Thez bits should be cleared,
as they may be assigned a meaning in some future version of the PowerPC
architecture.They bit provides a hint about whether a conditional branch is
likely to be taken, and may be used by some PowerPC implementations to
improve performance.

Table 12-6. BO Operand Encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

0 5 6 10 11 15 16 29 30 31

16 BO BI BD AA LK

IBM Confidential

Page 12-24 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

If AA = 0, the branch target address is the sum of BD || 0b00 sign-extended and the address of this
instruction.

If AA = 1, the branch target address is the value BD || 0b00 sign-extended.

If LK = 1, the effective address of the instruction following the branch instruction is placed into the
link register.

Other registers altered:

Affected: Count Register (CTR) (if BO[2] = 0)

Affected: Link Register (LR) (if LK = 1)

Simplified mnemonics:

blt target equivalent to bc 12,0,target
bne cr2,target equivalent to bc 4,10,target
bdnz target equivalent to bc 16,0,target

1z00y Decrement the CTR, then branch if the decremented CTR 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

BO Description

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-25

bcctr x bcctr x
Branch Conditional to Count Register (x’4C00 0420’)

bcctr BO,BI (LK = 0)
bcctrl BO,BI (LK = 1)

cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if cond_ok

then
NIA ←iea CTR || 0b00
if LK then LR ←iea CIA + 4

The BI field specifies the bit in the condition register to be used as the condition of the branch. The
BO field is encoded as described in Table 12-7. Additional information about BO field encoding is
provided in Section 4.2.4.2, “Conditional Branch Control,”in the PowerPC Microprocessor
Family: The Programming Environments manual.

Table 12-7. BO Operand Encodings

The branch target address is CTR[0–29] || 0b00.

If LK = 1, the effective address of the instruction following the branch instruction is placed into the
link register.

BO Description

0000y Decrement the CTR, then branch if the decremented CTR 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

In this table, z indicates a bit that is ignored.
Note that the z bits should be cleared, as they may be assigned a meaning in some future version of the
PowerPC architecture.

The y bit provides a hint about whether a conditional branch is likely to be taken, and may be used by some
PowerPC implementations to improve performance.

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 BO BI 0 0 0 0 0 528 LK

IBM Confidential

Page 12-26 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

If the “decrement and test CTR” option is specified (BO[2] = 0), the instruction form is invalid.

Other registers altered:

• Link Register (LR) (if LK = 1)
Simplified mnemonics:

bltctr equivalent to bcctr 12,0
bnectrcr2 equivalent to bcctr 4,10

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XL

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-27

bclr x bclr x
Branch Conditional to Link Register (x’4C00 0020’)

bclr BO,BI (LK = 0)
bclrl BO,BI (LK = 1)

if ¬ BO[2] then CTR ← CTR – 1

ctr_ok ← BO[2] | ((CTR ≠ 0) ⊕ BO[3])
cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if ctr_ok & cond_ok

then
NIA ←iea LR[0–29] || 0b00
if LK then LR ←iea CIA + 4

The BI field specifies the bit in the condition register to be used as the condition of the branch. The
BO field is encoded as described in Table 12-8. Additional information about BO field encoding is
provided in Section 4.2.4.2, “Conditional Branch Control,” in thePowerPC Microprocessor
Family: The Programming Environments manual.

Table 12-8. BO Operand Encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

If the BO field specifies that the CTR is to be decremented, the entire 32-bit CTR is decremented .

In this table, z indicates a bit that is ignored.
Note that the z bits should be cleared, as they may be assigned a meaning in some future version of
the PowerPC architecture.

The y bit provides a hint about whether a conditional branch is likely to be taken, and may be used by
some PowerPC implementations to improve performance.

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 BO BI 0 0 0 0 0 16 LK

IBM Confidential

Page 12-28 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

The branch target address is LR[0–29] || 0b00.

If LK = 1, then the effective address of the instruction following the branch instruction is placed into
the link register.

Other registers altered:

• Count Register (CTR) (if BO[2] = 0)
• Link Register (LR) (if LK = 1)

Simplified mnemonics:

bltlr equivalent to bclr 12,0
bnelr cr2 equivalent to bclr 4,10
bdnzlr equivalent to bclr 16,0

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XL

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-29

cmp cmp
Compare (x’7C00 0000’)

cmp crfD,L,rA,rB

a ← (r A)
b ← (r B)
if a < b

then c ← 0b100
else if a > b

then c ← 0b010
else c ← 0b001

CR[(4 ∗ crf D)–(4 ∗ crf D + 3)] ← c || XER[SO]

The contents ofrA are compared with the contents ofrB, treating the operands as signed integers.
The result of the comparison is placed into CR fieldcrfD.

If L = 1 the instruction form is invalid.

Other registers altered:

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpdrA,rB equivalent to cmp 0,1,rA,rB

cmpwcr3,rA,rB equivalent to cmp 3,0,rA,rB

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 0 0 0 0 0 0 0 0 0 0 031 crfD 0 L A

IBM Confidential

Page 12-30 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

cmpi cmpi
Compare Immediate (x’2C00 0000’)

cmpi crfD,L,rA,SIMM

a ← (r A)
if a < EXTS(SIMM)

then c ← 0b100
else if a > EXTS(SIMM)

then c ← 0b010
else c ← 0b001

CR[(4 ∗ crf D)–(4 ∗ crf D + 3)] ← c || XER[SO]

The contents ofrA are compared with the sign-extended value of the SIMM field, treating the
operands as signed integers. The result of the comparison is placed into CR fieldcrfD.

f L = 1 the instruction form is invalid.

Other registers altered:

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpdirA,value equivalent to cmpi 0,1,rA,value
cmpwi cr3,rA,value equivalent to cmpi 3,0,rA,value

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 8 9 10 11 15 16 31

Reserved

SIMM11 crfD 0 L A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-31

cmpl cmpl
Compare Logical (x’7C00 0040’)

cmpl crfD,L,rA,rB

a ← (r A)
b ← (r B)
if a <U b

then c ← 0b100
else if a >U b

then c ← 0b010
else c ← 0b001

CR[(4 ∗ crf D)–(4 ∗ crf D + 3)] ← c || XER[SO]

The contents ofrA are compared with the contents ofrB, treating the operands as unsigned
integers. The result of the comparison is placed into CR fieldcrfD.

If L = 1 the instruction form is invalid.

Other registers altered:

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpldrA,rB equivalent to cmpl 0,1,rA,rB
cmplw cr3,rA,rB equivalent to cmpl 3,0,rA,rB

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 8 9 10 11 15 16 20 21 31

Reserved

31 crfD 0 L A B 32 0

IBM Confidential

Page 12-32 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

cmpli cmpli
Compare Logical Immediate (x’2800 0000’)

cmpli crf D,L,rA,UIMM

a ← (r A)
if a <U ((16)0 || UIMM)

then c ← 0b100
else if a >U ((16)0 || UIMM)

then c ← 0b010
else c ← 0b001

CR[(4 ∗ crf D)-(4 ∗ crf D + 3)] ← c || XER[SO]

The contents ofrA are compared with 0x0000 || UIMM, treating the operands as unsigned integers.
The result of the comparison is placed into CR fieldcrfD.

If L = 1 the instruction form is invalid.

Other registers altered:

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpldir A,value equivalent to cmpli 0,1,rA,value
cmplwi cr3,rA,value equivalent to cmpli 3,0,rA,value

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 8 9 10 11 15 16 31

Reserved

UIMM10 crfD 0 L A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-33

cntlzw x cntlzw x
Count Leading Zeros Word (x’7C00 0034’)

cntlzw rA,rS (Rc = 0)
cntlzw. rA,rS (Rc = 1)

n ← 0
do while n < 32

if r S[n] = 1 then leave
n ← n + 1

r A ← n

A count of the number of consecutive zero bits starting at bit 0ofrS is placed intorA. This number
ranges from 0 to 32, inclusive.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

NOTE: If Rc = 1, then LT is cleared in the CR0 field.

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A 0 0 0 0 0 26 Rc

IBM Confidential

Page 12-34 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

crand crand
Condition Register AND (x’4C00 0202’)

crand crbD,crbA,crbB

CR[crb D] ← CR[crb A] & CR[crb B]

The bit in the condition register specified bycrbA is ANDed with the bit in the condition register
specified bycrbB. The result is placed into the condition register bit specified bycrbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 257 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-35

crandc crandc
Condition Register AND with Complement (x’4C00 0102’)

crandc crbD,crbA,crbB

CR[crb D] ← CR[crb A] & ¬ CR[crb B]

The bit in the condition register specified bycrbA is ANDed with the complement of the bit in the
condition register specified bycrbB and the result is placed into the condition register bit specified
by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 129 0

IBM Confidential

Page 12-36 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

creqv creqv
Condition Register Equivalent (x’4C00 0242’)

creqv crbD,crbA,crbB

CR[crb D] ← CR[crb A] ≡ CR[crb B]

The bit in the condition register specified bycrbA is XORed with the bit in the condition register
specified bycrbB and the complemented result is placed into the condition register bit specified by
crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operandcrbD

Simplified mnemonics:

crse crbD equivalent to creqv crbD,crbD,crbD

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 289 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-37

crnand crnand
Condition Register NAND (x’4C00 01C2’)

crnand crbD,crbA,crbB

CR[crb D] ← ¬ (CR[crb A] & CR[crb B])

The bit in the condition register specified bycrbA is ANDed with the bit in the condition register
specified bycrbB and the complemented result is placed into the condition register bit specified by
crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operandcrbD

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 225 0

IBM Confidential

Page 12-38 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

crnor crnor
Condition Register NOR (x’4C00 0042’)

crnor crb D,crbA,crbB

CR[crb D] ← ¬ (CR[crb A] | CR[crb B])

The bit in the condition register specified bycrbA is ORed with the bit in the condition register
specified bycrbB and the complemented result is placed into the condition register bit specified by
crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operandcrbD

Simplified mnemonics:

crnot crbD,crbA equivalent to crnor crbD,crbA,crbA

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 33 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-39

cror cror
Condition Register OR (x’4C00 0382’)

cror crb D,crbA,crbB

CR[crb D] ← CR[crb A] | CR[crb B]

The bit in the condition register specified bycrbA is ORed with the bit in the condition register
specified bycrbB. The result is placed into the condition register bit specified bycrbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operandcrbD

Simplified mnemonics:

crmove crbD,crbA equivalent to cror crbD,crbA,crbA

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 449 0

IBM Confidential

Page 12-40 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

crorc crorc
Condition Register OR with Complement (x’4C00 0342’)

crorc crbD,crbA,crbB

CR[crb D] ← CR[crb A] | ¬ CR[crb B]

The bit in the condition register specified bycrbA is ORed with the complement of the condition
register bit specified bycrbB and the result is placed into the condition register bit specified bycrbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operandcrbD

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 417 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-41

crxor crxor
Condition Register XOR (x’4C00 0182’)

crxor crb D,crbA,crbB

CR[crb D] ← CR[crb A] ⊕ CR[crb B]

The bit in the condition register specified bycrbA is XORed with the bit in the condition register
specified bycrbB and the result is placed into the condition register specified bycrbD.

Other registers altered:

• Condition Register:

Affected: Bit specified bycrbD

Simplified mnemonics:

crclr crb D equivalent to crxor crbD,crbD,crbD

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 193 0

IBM Confidential

Page 12-42 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

dcbf dcbf
Data Cache Block Flush (x’7C00 00AC’)

dcbf rA,rB

EA is the sum (rA|0) + (rB).

Thedcbf instruction invalidates the block in the data cache addressed by EA, copying the block to
memory first, if there is any dirty data in it. Unmodified block—Invalidates the block in the
processor’s data cache. The list below describes the action taken if the block containing the byte
addressed by EA is or is not in the cacche:

— Unmodified block—Invalidates the block in the processor’s data cache.
— Modified block—Copies the block to memory. Invalidates the block in the

processor’s data cache.
— Absent block (target block not in cache)—No action is taken.

The function of this instruction is independent of the write-through, write-back and
caching-inhibited/allowed modes of the block containing the byte addressed by EA. This instruction
is treated as a load from the addressed byte with respect to address translation and memory protection.
It is also treated as a load for referenced and changed bit recording except that referenced and changed
bit recording may not occur.

When HID2[LCE] = 1 and the byte addressed by EA is in the locked cache, the instruction is not
forwarded to the L2 cache for sector invalidation/push, nor forwarded to the 60x bus for broadcast.
Otherwise, the instruction will be forwarded to the L2 cache and to the 60x bus as described in
Sections 3.4.2.4 and 9.2.1, in thePowerPC Microprocessor Family: The Programming Environments
manual.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

VEA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 86 031 0 0 0 0 0 A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-43

dcbi dcbi
Data Cache Block Invalidate (x’7C00 03AC’)

dcbi rA,rB

EA is the sum (rA|0) + (rB).

The action taken is dependent on the memory mode associated with the block containing the byte
addressed by EA and on the state of that block. The list below describes the action taken if the block
containing the byte addressed by EA is or is not in the cache.

— Unmodified block—Invalidates the block in the processor’s data cache.
— Modified block—Invalidates the block in the processor’s data cache. (Discards

the modified contents.)
— Absent block (target block not in cache)—No action is taken.

When data address translation is enabled, MSR[DR] = 1, and the virtual address has no translation,
a DSI exception occurs.

The function of this instruction is independent of the write-through and caching-inhibited/allowed
modes of the block containing the byte addressed by EA. This instruction operates as a store to the
addressed byte with respect to address translation and protection. The referenced and changed bits
are modified appropriately.

When HID2[LCE] = 1 and the byte addressed by EA is in the locked cache, the instruction is not
forwarded to the L2 cache for sector invalidation, nor forwarded to the 60x bus for broadcast.
Otherwise, the instruction will be forwarded to teh L2 cache and to the 60x bus as described in
Sections 3.4.2.4 and 9.2.1, in thePowerPC Microprocessor Family: The Programming
Environments manual.

This is a supervisor-level instruction.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

VEA Yes X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 470 031 0 0 0 0 0 A

IBM Confidential

Page 12-44 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

dcbst dcbst
Data Cache Block Store (x’7C00 006C’)

dcbst rA,rB

EA is the sum (rA|0) + (rB).

Thedcbst instruction executes as follows:

• If the block containing the byte addressed by EA is in coherency-not-required mode,
and a block containing the byte addressed by EA is in the data cache of this processor
and has been modified, the writing of it to main memory is initiated.

The function of this instruction is independent of the write-through and caching-inhibited/allowed
modes of the block containing the byte addressed by EA.

The processor treats this instruction as a load from the addressed byte with respect to address
translation and memory protection. It is also treated as a load for referenced and changed bit recording
except that referenced and changed bit recording may not occur.

When HID2[LCE] = 1 and the byte addressed by EA is in the locked cache, the instruction is not
forwarded to the L2 cache for sector invalidation/push, nor forwarded to the 60x bus for broadcast.
Otherwise, the instruction will be forwarded to the L2 cache and to the 60x bus as described in
Sections 3.4.2.4 and 9.2.1, in thePowerPC Microprocessor Family: The Programming Environments
manual.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

VEA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 54 031 0 0 0 0 0 A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-45

dcbt dcbt
Data Cache Block Touch (x’7C00 022C’)

dcbt rA,rB

EA is the sum (rA|0) + (rB).

This instruction is a hint that performance will possibly be improved if the block containing the
byte addressed by EA is fetched into the data cache, because the program will probably soon load
from the addressed byte. If the block is caching-inhibited, the hint is ignored and the instruction is
treated as a no-op. Executingdcbt does not cause the system alignment error handler to be invoked.

If HID2[LCE] = 1 and the byte addressed by EA is in neither the locked nor the normal cache, then
this instruction loads the cache line into the “normal” cache.

This instruction is treated as a load from the addressed byte with respect to address translation,
memory protection, and reference and change recording except that referenced and changed bit
recording may not occur. Additionally, no exception occurs in the case of a translation fault or
protection violation.

The program uses thedcbt instruction to request a cache block fetch before it is actually needed
by the program. The program can later execute load instructions to put data into registers. However,
the processor is not obliged to load the addressed block into the data cache. Note that this
instruction is defined architecturally to perform the same functions as thedcbtst instruction. Both
are defined in order to allow implementations to differentiate the bus actions when fetching into the
cache for the case of a load and for a store.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

VEA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 278 031 0 0 0 0 0 A

IBM Confidential

Page 12-46 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

dcbtst dcbtst
Data Cache Block Touch for Store (x’7C00 01EC’)

dcbtst rA,rB

EA is the sum (rA|0) + (rB).

This instruction is a hint that performance will possibly be improved if the block containing the byte
addressed by EA is fetched into the data cache, because the program will probably soon store from
the addressed byte. If the block is caching-inhibited, the hint is ignored and the instruction is treated
as a no-op. Executingdcbtst does not cause the system alignment error handler to be invoked.

If HID2[LCE] = 1 and the byte addressed by EA is in neither the locked nor the normal cache, then
this instruction loads the cache line into the “normal” cache.

This instruction is treated as a load from the addressed byte with respect to address translation,
memory protection, and reference and change recording except that referenced and changed bit
recording may not occur. Additionally, no exception occurs in the case of a translation fault or
protection violation.

The program usesdcbtst to request a cache block fetch to potentially improve performance for a
subsequent store to that EA, as that store would then be to a cached location. However, the processor
is not obliged to load the addressed block into the data cache. Note that this instruction is defined
architecturally to perform the same functions as thedcbt instruction. Both are defined in order to
allow implementations to differentiate the bus actions when fetching into the cache for the case of a
load and for a store.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

VEA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 246 031 0 0 0 0 0 A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-47

dcbz dcbz
Data Cache Block Clear to Zero (x’7C00 07EC’)

dcbz rA,rB

EA is the sum (rA|0) + (rB).

This instruction is treated as a store to the addressed byte with respect to address translation,
memory protection, referenced and changed recording. It is also treated as a store with respect to
the ordering enforced byeieioand the ordering enforced by the combination of caching-inhibited
and guarded attributes for a page (or block).

Thedcbz instruction executes as follows:

• If the cache block containing the byte addressed by EA is in the data cache, all bytes are
cleared and the cache line is matked “M”..

• If the cache block containing the byte addressed by EA is not in the data cache and the
corresponding memory page or block is caching-allowed, the cache block is allocated (and
made valid) in the data cache (or in the normal cache if HID2[LCE] = 1) without fetching
the block from main memory, and all bytes are cleared.

• If the page containing the byte addressed by EA is in caching-inhibited or write-through
mode, either all bytes of main memory that correspond to the addressed cache block are
cleared or the alignment exception handler is invoked. The exception handler can then clear
all bytes in main memory that correspond to the addressed cache block.

• If the cache block containing the byte addressed by EA is in coherency-required
mode, and the cache block exists in the data cache(s) of any other processor(s), it is
kept coherent in those caches (i.e. the processor performs the appropriate bus
transactions to enforce this).

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

VEA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 1014 031 0 0 0 0 0 A

IBM Confidential

Page 12-48 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

dcbz_l dcbz_l
Data Cache Block Set to Zero Locked (x’1000 07EC’)

dcbz_l rA,rB

EA is the sum (rA|0) + (rB).

If HID2[LCE] = 0 then the invalid instruction error handler is envolked.

When HID2[LCE] = 1, thedcbz_l instruction executes as follows:

• If the cache block containing the byte addressed by EA is neither in the “locked” nor in the
“normal” data cache, the block is allocated in the “locked” data cache without fetching the
block from main memory. All bytes are cleared and the block is marked as M (modified).
Cache block allocation is done using the psudo-LRU used rule among the four ways in the
locked cache.

• If the cache block containing the byte addressed by EA is already either in the “locked” or in
the “normal” data cache, all bytes are cleared and the block is marked M (modified). The
hardware indicates this situation by setting HID2[DCHERR] to 1 and raising a Machine
Check condition as described in Section 9.2.2.2.1, in thePowerPC Microprocessor Family:
The Programming Environments manual.

• The dcbz_l instruction is not forwarded to the L2 cache nor the 60x bus for broadcast.
NOTE: The data cache should be invalidated prior to setting HID2[LCE]=1.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

VEA Yes X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 1014 04 0 0 0 0 0 A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-49

divw x divw x
Divide Word (x’7C00 03D6’)

divw r D,rA,rB (OE = 0 Rc = 0)
divw. rD,rA,rB (OE = 0 Rc = 1)
divwo rD,rA,rB (OE = 1 Rc = 0)
divwo. rD,rA,rB (OE = 1 Rc = 1)

dividend ← (r A)
divisor ← r B)
r D ← dividend / divisor

The dividend is the contents ofrA. The divisor is the contents ofrB. The remainder is not supplied
as a result. Both the operands and the quotient are interpreted as signed integers. The quotient is
the unique signed integer that satisfies the equation—dividend = (quotient * divisor) + r where 0
r < |divisor| (if the dividend is non-negative), and –|divisor| < r 0 (if the dividend is negative).

If an attempt is made to perform either of the divisions—0x8000_0000 –1 or
<anything> 0, then the contents ofrD are undefined, as are the contents of the LT, GT, and EQ bits
of the CR0 field (if Rc = 1). In this case, if OE = 1 then OV is set.

The 32-bit signed remainder of dividing the contents ofrA by the contents ofrB can be computed
as follows, except in the case that the contents ofrA = –231 and the contents ofrB = –1.

divw r D,rA,rB# rD = quotient
mullw r D,rD,rB# rD = quotient ∗ divisor
subf rD,rD,rA# rD = remainder

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

• XER:

Affected: SO, OV (if OE = 1)

NOTE: For more information on condition codes see Section 2.1.3, “Condition
Register,” and Section 2.1.5, “XER Register,” in thePowerPC
Microprocessor Family: The Programming Environments manual.

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 491 Rc

IBM Confidential

Page 12-50 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

divwu x divwu x
Divide Word Unsigned (x’7C00 0396’)

divwu r D,rA,rB (OE = 0 Rc = 0)
divwu. rD,rA,rB (OE = 0 Rc = 1)
divwuo rD,rA,rB (OE = 1 Rc = 0)
divwuo. rD,rA,rB (OE = 1 Rc = 1)

dividend ← (r A)
divisor ← (r B)
r D← dividend divisor

The dividend is the contents ofrA. The divisor is the contents ofrB. The remainder is not supplied
as a result.

Both operands and the quotient are interpreted as unsigned integers, except that if Rc = 1 the first three
bits of CR0 field are set by signed comparison of the result to zero. The quotient is the unique
unsigned integer that satisfies the equation—dividend = (quotient∗ divisor) + r (where 0 r < divisor).
If an attempt is made to perform the division—<anything> 0—then the contents ofrD are undefined
as are the contents of the LT, GT, and EQ bits of the CR0 field (if Rc = 1). In this case, if OE = 1 then
OV is set.

The 32-bit unsigned remainder of dividing the contents ofrA by the contents ofrB can be computed
as follows:

divwur D,rA,rB # rD = quotient
mullw r D,rD,rB # rD = quotient ∗ divisor
subf rD,rD,rA # rD = remainder

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

• XER:

Affected: SO, OV (if OE = 1)

NOTE: For more information on condition codes see Section 2.1.3, “Condition
Register,” and Section 2.1.5, “XER Register,” in thePowerPC
Microprocessor Family: The Programming Environments manual.

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 459 Rc

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-51

eciwx eciwx
External Control In Word Indexed (x’7C00 026C’)

eciwx rD,rA,rB

The eciwx instruction and the EAR register can be very efficient when mapping special devices
such as graphics devices that use addresses as pointers.

if r A = 0
then b ← 0
else b ← (r A)

EA ← b + (r B)
paddr ← address translation of EA
send load word request for paddr to device identified by EAR[RID]
r D ← word from device

EA is the sum (rA|0) + (rB).
A load word request for the physical address (referred to as real address in the architecture
specification) corresponding to EA is sent to the device identified by EAR[RID], bypassing the
cache. The word returned by the device is placed inrD.
EAR[E] must be 1. If it is not, a DSI exception is generated.
EA must be a multiple of four. If it is not, one of the following occurs:

• A system alignment exception is generated.
• A DSI exception is generated (possible only if EAR[E] = 0).
• The results are boundedly undefined.

Theeciwx instruction is supported for EAs that reference memory segments in which SR[T] = 1(or
STE[T] = 1) and for EAs mapped by the DBAT registers. If the EA references a direct-store
segment (SR[T] = 1 or STE[T] = 1), either a DSI exception occurs or the results are boundedly
undefined. However, note that the direct-store facility is being phased out of the architecture and
will not likely be supported in future devices. Thus, software should not depend on its effects.
If this instruction is executed when MSR[DR] = 0 (real addressing mode), the results are boundedly
undefined.
This instruction is treated as a load from the addressed byte with respect to address translation,
memory protection, referenced and changed bit recording, and the ordering performed byeieio.

This instruction is optional in the PowerPC architecture.
Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

VEA X X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 D A B 310 0

IBM Confidential

Page 12-52 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

ecowx ecowx
External Control Out Word Indexed (x’7C00 036C’)

ecowx rS,rA,rB

Theecowxinstruction and the EAR register can be very efficient when mapping special devices such
as graphics devices that use addresses as pointers.

if r A = 0
then b ← 0
else b ← (r A)

EA ← b + (r B)
paddr ← address translation of EA
send store word request for paddr to device identified by EAR[RID]
send r S to device

EA is the sum (rA|0) + (rB).
A store word request for the physical address corresponding to EA and the contents ofrS are sent to
the device identified by EAR[RID], bypassing the cache.
EAR[E] must be 1, if it is not, a DSI exception is generated.
EA must be a multiple of four. If it is not, one of the following occurs:

• A system alignment exception is generated.
• A DSI exception is generated (possible only if EAR[E] = 0).
• The results are boundedly undefined.

Theecowxinstruction is supported for effective addresses that reference memory segments in which
SR[T] = 0 or STE[T] = 0), and for EAs mapped by the DBAT registers. If the EA references a
direct-store segment (SR[T] = 1 or STE[T] = 1), either a DSI exception occurs or the results are
boundedly undefined. However, note that the direct-store facility is being phased out of the
architecture and will not likely be supported in future devices. Thus, software should not depend on
its effects.
If this instruction is executed when MSR[DR] = 0 (real addressing mode), the results are boundedly
undefined.
This instruction is treated as a store from the addressed byte with respect to address translation,
memory protection, and referenced and changed bit recording, and the ordering performed byeieio.
Note that software synchronization is required in order to ensure that the data access is performed in
program order with respect to data accesses caused by other store orecowxinstructions, even though
the addressed byte is assumed to be caching-inhibited and guarded.
This instruction is optional in the PowerPC architecture.
Other registers altered: None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

VEA X X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A B 438 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-53

eieio eieio
Enforce In-Order Execution of I/O (x’7C00 06AC’)

The eieio instruction provides an ordering function for the effects of load and store instructions
executed by a processor. These loads and stores are divided into two sets, which are ordered
separately. The memory accesses caused by adcbz or adcba instruction are ordered like a store.
The two sets follow:

1. Loads and stores to memory that is both caching-inhibited and guarded, and stores
to memory that is write-through required.

Theeieioinstruction controls the order in which the accesses are performed in main
memory. It ensures that all applicable memory accesses caused by instructions
preceding theeieioinstruction have completed with respect to main memory before
any applicable memory accesses caused by instructions following theeieio
instruction access main memory. It acts like a barrier that flows through the memory
queues and to main memory, preventing the reordering of memory accesses across
the barrier. No ordering is performed fordcbz if the instruction causes the system
alignment error handler to be invoked.

All accesses in this set are ordered as a single set—that is, there is not one order for
loads and stores to caching-inhibited and guarded memory and another order for
stores to write-through required memory.

2. Stores to memory that have all of the following attributes—caching-allowed,
write-through not required, and memory-coherency required.

Theeieio instruction controls the order in which the accesses are performed with
respect to coherent memory. It ensures that all applicable stores caused by
instructions preceding theeieioinstruction have completed with respect to coherent
memory before any applicable stores caused by instructions following theeieio
instruction complete with respect to coherent memory.

With the exception ofdcbzanddcba, eieiodoes not affect the order of cache operations (whether
caused explicitly by execution of a cache management instruction, or implicitly by the cache
coherency mechanism). For more information, refer to Chapter 5, “Cache Model and Memory
Coherency” of thePowerPC Microprocessor Family: The Programming Environmentsmanual.
Theeieioinstruction does not affect the order of accesses in one set with respect to accesses in the
other set.

Theeieio instruction may complete before memory accesses caused by instructions preceding the
eieio instruction have been performed with respect to main memory or coherent memory as
appropriate.

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

IBM Confidential

Page 12-54 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

The eieio instruction is intended for use in managing shared data structures, in accessing
memory-mapped I/O, and in preventing load/store combining operations in main memory. For the
first use, the shared data structure and the lock that protects it must be altered only by stores that are
in the same set (1 or 2; see previous discussion). For the second use,eieiocan be thought of as placing
a barrier into the stream of memory accesses issued by a processor, such that any given memory
access appears to be on the same side of the barrier to both the processor and the I/O device.

Because the processor performs store operations in order to memory that is designated as both
caching-inhibited and guarded (refer to Section 5.1.1, “Memory Access Ordering” in thePowerPC
Microprocessor Family: The Programming Environmentsmanual), theeieioinstruction is needed for
such memory only when loads must be ordered with respect to stores or with respect to other loads.

Note that theeieio instruction does not connect hardware considerations to it such as multiprocessor
implementations that send aneieioaddress-only broadcast (useful in some designs). For example, if
a design has an external buffer that re-orders loads and stores for better bus efficiency, theeieio
broadcast signals to that buffer that previous loads/stores (marked caching-inhibited, guarded, or
write-through required) must complete before any following loads/stores (marked caching-inhibited,
guarded, or write-through required).

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

VEA X

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-55

eqvx eqvx
Equivalent (x’7C00 0238’)

eqv rA,rS,rB (Rc = 0)
eqv. rA,rS,rB (Rc = 1)

r A ← (r S) ≡ (r B)

The contents ofrS are XORed with the contents ofrB and the complemented result is placed into
rA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 21 22 30 31

31 S A B 284 Rc

IBM Confidential

Page 12-56 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

extsb x extsb x
Extend Sign Byte (x’7C00 0774’)

extsb rA,rS (Rc = 0)
extsb. rA,rS (Rc = 1)

S ← r S[24]
r A[24-31] ← r S[24-31]
r A[0–23] ← (24)S

The contents of the low-order eight bits ofrS are placed into the low-order eight bits ofrA.

Bit 24 of rS is placed into the remaining bits ofrA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A 0 0 0 0 0 954 Rc

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-57

extsh x extsh x
Extend Sign Half Word (x’7C00 0734’)

extsh rA,rS (Rc = 0)
extsh. rA,rS (Rc = 1)

S ← r S[16]
r A[16-31] ← r S[16-31]
r A[0–15] ← (16)S

The contents of the low-order 16 bits ofrS are placed into the low-order 16 bits ofrA[16-31]. Bit
48 of rS is placed into the remaining bits ofrA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A 0 0 0 0 0 922 Rc

IBM Confidential

Page 12-58 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

fabs x fabs x
Floating Absolute Value (x’FC00 0210’)

fabs frD,frB (Rc = 0)
fabs. frD,frB (Rc = 1)

The contents offr B with bit 0 cleared are placed intofr D.

Note that thefabs instruction treats NaNs just like any other kind of value. That is, the sign bit of a
NaN may be altered byfabs. This instruction does not alter the FPSCR.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

B 264 Rc

0 5 6 10 11 15 16 20 21 30 31

Reserved

63 D 0 0 0 0 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-59

fadd x fadd x
Floating Add (Double-Precision) (x’FC00 002A’)

fadd fr D,frA,frB (Rc = 0)
fadd. frD,frA,frB (Rc = 1)

The floating-point operand infr A is added to the floating-point operand infr B. If the most-
significant bit of the resultant significand is not a one, the result is normalized. The result is rounded
to double-precision under control of the floating-point rounding control field RN of the FPSCR and
placed intofr D.

Floating-point addition is based on exponent comparison and addition of the two significands. The
exponents of the two operands are compared, and the significand accompanying the smaller
exponent is shifted right, with its exponent increased by one for each bit shifted, until the two
exponents are equal. The two significands are then added or subtracted as appropriate, depending
on the signs of the operands. All 53 bits in the significand as well as all three guard bits (G, R, and
X) enter into the computation.

If a carry occurs, the sum's significand is shifted right one bit position and the exponent is increased
by one. FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX,VXSNAN, VXISI

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

63 D A B 0 0 0 0 0 21 Rc

IBM Confidential

Page 12-60 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

fadds x fadds x
Floating Add Single (x’EC00 002A’)

fadds frD,frA,frB (Rc = 0)
fadds. frD,frA,frB (Rc = 1)

The following operations are performed:

if HID2[PSE] = 0
then fr D ← fr A + fr B
else fr D(ps0) ← fr A(ps0) + fr B(ps0)

fr D(ps1) ← fr D(ps0)

The floating-point operand infr A is added to the floating-point operand infr B. If the most-significant
bit of the resultant significand is not a one, the result is normalized. The result is rounded to the
single-precision under control of the floating-point rounding control field RN of the FPSCR and
placed intofr D.

Floating-point addition is based on exponent comparison and addition of the two significands. The
exponents of the two operands are compared, and the significand accompanying the smaller exponent
is shifted right, with its exponent increased by one for each bit shifted, until the two exponents are
equal. The two significands are then added or subtracted as appropriate, depending on the signs of the
operands. All 53 bits in the significand as well as all three guard bits (G, R, and X) enter into the
computation.

If a carry occurs, the sum's significand is shifted right one bit position and the exponent is increased
by one. FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions
when FPSCR[VE] = 1.

If the HID2[PSE] = 1 then the sum is placed in bothfr D(ps0) andfr D(ps1).

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX,VXSNAN, VXIS

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

59 D A B 0 0 0 0 0 21 Rc

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-61

fcmpo fcmpo
Floating Compare Ordered (x’FC00 0040’)

fcmpo crfD,frA,frB

if ((fr A) is a NaN or (fr B) is a NaN)
then c ← 0b0001
else if (fr A)< (fr B)

then c ← 0b1000
else if (fr A)> (fr B)

then c ← 0b0100
else c ← 0b0010

FPCC ← c
CR[(4 * crf D)–(4 * crf D + 3)] ← c

if ((fr A) is an SNaN or (fr B) is an SNaN)
then VXSNAN ← 1

if VE = 0
then VXVC ← 1
else if ((fr A) is a QNaN or (fr B) is a QNaN)

then VXVC ← 1

The floating-point operand infr A is compared to the floating-point operand infr B. The result of
the compare is placed into CR fieldcrfD and the FPCC.

If one of the operands is a NaN, either quiet or signaling, then CR fieldcrfD and the FPCC are set
to reflect unordered. If one of the operands is a signaling NaN, then VXSNAN is set, and if invalid
operation is disabled (VE = 0) then VXVC is set. Otherwise, if one of the operands is a QNaN, then
VXVC is set.

Other registers altered:

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, UN

• Floating-Point Status and Control Register:

Affected: FPCC, FX, VXSNAN, VXVC

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 32 063 crfD 0 0 A

IBM Confidential

Page 12-62 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

fcmpu fcmpu
Floating Compare Unordered (x’FC00 0000’)

fcmpu crfD,frA,frB

if ((fr A) is a NaN or (fr B) is a NaN)
then c← 0b0001
else if (fr A) < (fr B)

then c← 0b1000
else if (fr A) > (fr B)

then c← 0b0100
else c← 0b0010

FPCC← c
CR[(4 ∗ crfD)-(4 ∗ crfD + 3)] ← c

if ((fr A) is an SNaN or (fr B) is an SNaN)
then VXSNAN← 1

The floating-point operand in registerfr A is compared to the floating-point operand in registerfr B.
The result of the compare is placed into CR fieldcrfD and the FPCC.

If one of the operands is a NaN, either quiet or signaling, then CR fieldcrfD and the FPCC are set to
reflect unordered. If one of the operands is a signaling NaN, then VXSNAN is set.

Other registers altered:

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, UN

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 0 0 0 0 0 0 0 0 0 0 063 crfD 0 0 A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-63

fctiw x fctiw x
Floating Convert to Integer Word (x’FC00 001C’)

fctiw fr D,frB (Rc = 0)
fctiw. fr D,frB (Rc = 1)

The floating-point operand in registerfr B is converted to a 32-bit signed integer, using the rounding
mode specified by FPSCR[RN], and placed in bits 32–63 offr D. Bits 0–31 offr D are undefined.

If the operand infr B are greater than 231 – 1, bits 32–63 of frD are set to 0x7FFF_FFFF.

If the operand in frB are less than –231, bits 32–63 of frD are set to 0x8000_0000.

The conversion is described fully in Section D.4.2, “Floating-Point Convert to Integer Model,”in
thePowerPC Microprocessor Family: The Programming Environments manual.

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR] is
set if the result is incremented when rounded. FPSCR[FI] is set if the result is inexact.

Do not use this instruction if the floating point register contains paired-single formatted data.

(programmers note: Astiwz instruction should be used to store the 32 bit resultant integer because
bits 0–31 offr D are undefined. A store double-precision instruction, e.g.,stfd, will store the 64 bit
result but 4 superfluous bytes are stored (bitsfr D[0-31]). This may cause wasted bus traffic.)

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 14 Rc63 D 0 0 0 0 0

IBM Confidential

Page 12-64 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

fctiwz x fctiwz x
Floating Convert to Integer Word with Round toward Zero (x’FC00 001E’)

fctiwz fr D,frB (Rc = 0)
fctiwz. fr D,frB (Rc = 1)

The floating-point operand in registerfr B is converted to a 32-bit signed integer, using the rounding
mode round toward zero, and placed in bits 32–63 offr D. Bits 0–31 offr D are undefined.

If the operand in frB is greater than 231 – 1, bits 32–63 of frD are set to 0x7FFF_FFFF.

If the operand in frB is less than –231, bits 32–63 of frD are set to 0x 8000_0000.

The conversion is described fully in Section D.4.2, “Floating-Point Convert to Integer Model” in the
PowerPC Microprocessor Family: The Programming Environments manual.

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR] is set
if the result is incremented when rounded. FPSCR[FI] is set if the result is inexact.

Do not use this instruction if the floating point register contains paired-single formatted data.

(Programmers Note: Astiwz instruction should be used to store the 32 bit resultant integer because
bits 0–31 offr D are undefined. A store double-precision instruction, e.g.,stfd, will store the 64 bit
result but 4 superfluous bytes are stored (bitsfr D[0-31]). This may cause wasted bus traffic.)

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 15 Rc63 D 0 0 0 0 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-65

fdiv x fdiv x
Floaiting Divide (Double-Precision),(x’FC00 0024’)

fdiv fr D,frA,frB (Rc = 0)
fdiv. fr D,frA,frB (Rc = 1)

The floating-point operand in registerfr A is divided by the floating-point operand in
register frB. The remainder is not supplied as a result.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to double-precision under control of the floating-point rounding
control field RN of the FPSCR and placed intofr D.

Floating-point division is based on exponent subtraction and division of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1 and zero divide exceptions when FPSCR[ZE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX(if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, ZX, XX, VXSNAN, VXIDI, VXZDZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 18 Rc63 D A

IBM Confidential

Page 12-66 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

fdivs x fdivs x
Floating Divide Single (x’EC00 0024’)

fdivs fr D,frA,frB (Rc = 0)
fdivs. frD,frA,frB (Rc = 1)

The floating-point operand in registerfr A is divided by the floating-point operand in register
fr B. The remainder is not supplied as a result.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The
result is rounded to single-precision under control of the floating-point rounding control field
RN of the FPSCR and placed intofr D.

Floating-point division is based on exponent subtraction and division of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions
when FPSCR[VE] = 1 and zero divide exceptions when FPSCR[ZE] = 1.

If the HID2[PSE] = 1 then the quotient is placed in both frD(ps0) and frD(ps1).

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX(if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, ZX, XX, VXSNAN, VXIDI, VXZDZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 18 Rc59 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-67

fmadd x fmadd x
Floating Multiply-Add (Double-Precision),(x’FC00 003A’)

fmadd fr D,frA,frC,frB (Rc = 0)
fmadd. frD,frA,frC,frB (Rc = 1)

The following operation is performed:

fr D ← (fr A ∗ fr C) + fr B

The floating-point operand in registerfr A is multiplied by the floating-point operand in
registerfr C. The floating-point operand in registerfr B is added to this intermediate result.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to double-precision under control of the floating-point rounding
control field RN of the FPSCR and placed intofr D.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX(if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 29 Rc63 D A

IBM Confidential

Page 12-68 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

fmadds x fmadds x
Floaiting Multiply-Add Single (x’EC00 003A’)

fmadds frD,frA,frC,frB (Rc = 0)
fmadds. frD,frA,frC,frB (Rc = 1)

The followings operation are performed:

if HID2[PSE] = 0
then fr D ← (fr A ∗ fr C) + fr B
else fr D(ps0) ← (fr A(ps0) ∗ fr C(ps0)) + fr B(ps0)

fr D(ps1) ← fr D(ps0)

The floating-point operand in registerfr A is multiplied by the floating-point operand in
register frC. The floating-point operand in register frB is added to this intermediate result.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The
result is rounded to single-precision under control of the floating-point rounding control field
RN of the FPSCR and placed intofr D.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions
when FPSCR[VE] = 1.

If the HID2[PSE] = 1 then the result is placed in bothfr D(ps0) andfr D(ps1).

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX(if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 29 Rc59 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-69

fmr x fmr x
Floating Move Register(Double-Precision),(x’FC00 0090’)

fmr fr D,frB (Rc = 0)
fmr. fr D,frB (Rc = 1)

The content of register frB is placed intofr D.

When HID2[PSE] = 1 and the content infr B is a double-precision floating point operand,
then the operand is copied tofr D.

When HID2[PSE] = 1 and the content offr B contains a paired-single floating-point
operand, thefr B[ps0] is copied tofr D[ps0] and the content offr D[ps1] is unchanged.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX(if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 72 Rc63 D 0 0 0 0 0

IBM Confidential

Page 12-70 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

fmsub x fmsub x
Floating Multiply-Subtract (Double-Precision),(x’FC00 0038’)

fmsub frD,frA,frC,frB (Rc = 0)
fmsub. frD,frA,frC,frB (Rc = 1)

The following operation is performed:

fr D ← [fr A ∗ fr C] – fr B

The floating-point operand in registerfr A is multiplied by the floating-point operand in
registerfr C. The floating-point operand in registerfr B is subtracted from this intermediate
result.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The
result is rounded to double-precision under control of the floating-point rounding control field
RN of the FPSCR and placed intofr D.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions
when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX(if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 28 Rc63 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-71

fmsubs x fmsubs x
Floating Multiply-Subtact Single (x’EC00 0038’)

fmsubs frD,frA,frC,frB (Rc = 0)
fmsubs. frD,frA,frC,frB (Rc = 1)

The following operations are performed:

if HID2[PSE] = 0
then fr D ← [fr A ∗ fr C] – fr B
else fr D(ps0) ← [fr A(ps0) ∗ fr C(ps0)] - fr B(ps0)

fr D(ps1) ← fr D(ps0)

The floating-point operand in registerfr A is multiplied by the floating-point operand in
registerfr C. The floating-point operand in registerfr B is subtracted from this intermediate
result.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to single-precision under control of the floating-point rounding
control field RN of the FPSCR and placed intofr D.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

If the HID2[PSE] = 1 then the result is placed in bothfr D(ps0) andfr D(ps1).

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX(if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 28 Rc59 D A

IBM Confidential

Page 12-72 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

fmul x fmul x
Floating Multiply (Double-Precision),(x’FC00 0032’)

fmul fr D,frA,frC (Rc = 0)
fmul. fr D,frA,frC (Rc = 1)

The floating-point operand in registerfr A is multiplied by the floating-point operand in
register frC.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The
result is rounded to double-precision under control of the floating-point rounding control field
RN of the FPSCR and placed intofr D.

Floating-point multiplication is based on exponent addition and multiplication of the
significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions
when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX(if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXIMZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

0 0 0 0 0 C 25 Rc63 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-73

fmuls x fmuls x
Floating Multiply Single (x’EC00 0032’)

fmuls fr D,frA,frC (Rc = 0)
fmuls. frD,frA,frC (Rc = 1)

The following operations are performed:

if HID2[PSE] = 0
then fr D ← fr A ∗ fr C
else fr D(ps0) ← fr A(ps0) ∗ fr C(ps0)

fr D(ps1) ← fr D(ps0)

The floating-point operand in registerfr A is multiplied by the floating-point operand in
register frC.

If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to single-precision under control of the floating-point rounding
control field RN of the FPSCR and placed intofr D.

Floating-point multiplication is based on exponent addition and multiplication of the
significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

If the HID2[PSE] = 1 then the result is placed in both frD(ps0) andfr D(ps1).

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXIMZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

0 0 0 0 0 C 25 Rc59 D A

IBM Confidential

Page 12-74 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

fnabs x fnabs x
Floating Negative Absolute Value (x’FC00 0110’)

fnabs frD,frB (Rc = 0)
fnabs. frD,frB (Rc = 1)

The contents of register fr B with bit 0 set are placed intofr D.

Note that thefnabs instruction treats NaNs just like any other kind of value. That is, the sign
bit of a NaN may be altered byfnabs. This instruction does not alter the FPSCR.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 136 Rc63 D 0 0 0 0 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-75

fneg x fneg x
Floating Negate (x’FC00 0050’)

fneg frD,frB (Rc = 0)
fneg. frD,frB (Rc = 1)

The contents of register fr B with bit 0 inverted are placed intofr D.

Note that thefneg instruction treats NaNs just like any other kind of value. That is, the sign
bit of a NaN may be altered byfneg. This instruction does not alter the FPSCR.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 40 Rc63 D 0 0 0 0 0

IBM Confidential

Page 12-76 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

fnmadd x fnmadd x
Floating Negative Multiply-Add (Double-Precision),(x’FC00 003E’)

fnmadd fr D,frA,frC,frB (Rc = 0)
fnmadd. frD,frA,frC,frB (Rc = 1)

The following operation is performed:

fr D ← – ([fr A ∗ fr C] + fr B)

The floating-point operand in registerfr A is multiplied by the floating-point operand in
registerfr C. The floating-point operand in registerfr B is added to this intermediate result. If
the most-significant bit of the resultant significand is not a one, the result is normalized. The
result is rounded to double-precision under control of the floating-point rounding control field
RN of the FPSCR, then negated and placed intofr D.

This instruction produces the same result as would be obtained by using the Floating
Multiply-Add (fmaddx) instruction and then negating the result, with the following
exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception have
a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions
when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 31 Rc63 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-77

fnmadds x fnmadds x
Floating Negative Multiply-Add Single (x’EC00 003E’)

fnmadds frD,frA,frC,frB (Rc = 0)
fnmadds. frD,frA,frC,frB (Rc = 1)

The following operations are performed:

if HID2[PSE] = 0
then fr D ← -([fr A ∗ fr C] + fr B)
else fr D(ps0) ← -([fr A(ps0) ∗ fr C(ps0)] + fr B(ps0))

fr D(ps1) ← fr D(ps0)

The floating-point operand in registerfr A is multiplied by the floating-point operand in
registerfr C. The floating-point operand in registerfr B is added to this intermediate result.
If the most-significant bit of the resultant significand is not a one, the result is normalized.
The result is rounded to single-precision under control of the floating-point rounding
control field RN of the FPSCR, then negated and placed intofr D.

This instruction produces the same result as would be obtained by using the Floating
Multiply-Add Single (fmaddsx) instruction and then negating the result, with the following
exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception have
a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.
If the HID2[PSE] = 1 then the result is placed in bothfr D(ps0) andfr D(ps1).
Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 31 Rc59 D A

IBM Confidential

Page 12-78 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

fnmsub x fnmsub x
Floating Negative Multiply-Subtract (Double-Precision),(x’FC00 003C’)

fnmsub frD,frA,frC,frB (Rc = 0)
fnmsub. frD,frA,frC,frB (Rc = 1)

]

The following operation is performed:

fr D ← – ([fr A ∗ fr C] – fr B)

The floating-point operand in registerfr A is multiplied by the floating-point operand in
registerfr C. The floating-point operand in registerfr B is subtracted from this intermediate
result.

If the most-significant bit of the resultant significand is not one, the result is normalized. The
result is rounded to double-precision under control of the floating-point rounding control field
RN of the FPSCR, then negated and placed intofr D.

This instruction produces the same result obtained by negating the result of a Floating
Multiply-Subtract (fmsubx) instruction with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception have
a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions
when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field)

Affected: FX, FEX, VX, OX(if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 30 Rc63 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-79

fnmsubs x fnmsubs x
Floating Negative Multiply-Subtract Single (x’EC00 003C’)

fnmsubs frD,frA,frC,frB (Rc = 0)
fnmsubs. frD,frA,frC,frB (Rc = 1)

)

The following operations are performed:
if HID2[PSE] = 0
then fr D ← -([fr A ∗ fr C] - fr B)
else fr D(ps0) ← -([fr A(ps0) ∗ fr C(ps0)] - fr B(ps0))

fr D(ps1) ← fr D(ps0)

The floating-point operand in registerfr A is multiplied by the floating-point operand in
registerfr C. The floating-point operand in registerfr B is subtracted from this intermediate
result.
If the most-significant bit of the resultant significand is not one, the result is normalized.
The result is rounded to single-precision under control of the floating-point rounding
control field RN of the FPSCR, then negated and placed intofr D.
This instruction produces the same result obtained by negating the result of a Floating
Multiply-Subtract Single (fmsubsx) instruction with the following exceptions:

• QNaNs propagate with no effect on their sign bit.
• QNaNs that are generated as the result of a disabled invalid operation exception have

a sign bit of zero.
• SNaNs that are converted to QNaNs as the result of a disabled invalid operation

exception retain the sign bit of the SNaN.
FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.
If the HID2[PSE] = 1 then the result is placed in bothfr D(ps0) andfr D(ps1).
Other registers altered:

• Condition Register (CR1 field)
Affected: FX, FEX, VX, OX(if Rc = 1)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 30 Rc59 D A

IBM Confidential

Page 12-80 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

fres x fres x
Floating Reciprocal Estimate Single (x’EC00 0030’)

fres frD,frB (Rc = 0)
fres. frD,frB (Rc = 1)

if HID2[PSE] = 0
then fr D ← estimate[1/ fr B]
else fr D(ps0) ← estimate[1/ fr B(ps0)]

fr D(ps1) ← fr D(ps0)

A single-precision estimate of the reciprocal of the floating-point operand in registerfr B is
placed into registerfr D. The estimate placed into registerfr D is correct to a precision of one
part in 4096 of the reciprocal offr B. That is,

where x is the initial value infr B. Note that the value placed into registerfr D may vary
between implementations, and between different executions on the same implementation.

Operation with various special values of the operand is summarized below:

Operand Result Exception

– –0 None

–0 – * ZX

+0 + * ZX

+ +0 None

SNaN QNaN** VXSNAN

QNaN QNaN None

Notes: * No result if FPSCR[ZE] = 1

** No result if FPSCR[VE] = 1

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions
when FPSCR[VE] = 1 and zero divide exceptions when FPSCR[ZE] = 1.

B 0 0 0 0 0 24 Rc

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

59 D 0 0 0 0 0

ABS

estimate
1
x
--- 

 –

1
x
--- 

 

 
 
 
 
 

1
4096()

----------------≤

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-81

NOTE: The PowerPC architecture makes no provision for a double-precision version of the
fresx instruction. This is because graphics applications are expected to need only the
single-precision version, and no other important performance-critical applications are
expected to require a double-precision version of thefresx instruction.

If the HID2[PSE] = 1 then the result is placed in bothfr D(ps0) andfr D(ps1).

This instruction is optional in the PowerPC architecture.Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR (undefined), FI (undefined), FX, OX, UX, ZX, VXSNAN

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA YES A

IBM Confidential

Page 12-82 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

frsp x frsp x
Floating Round to Single (x’FC00 0018’)

frsp fr D,frB (Rc = 0)
frsp. fr D,frB (Rc = 1)

If HID2[PSE] = 0 then the floating-point operand in registerfr B is rounded to
single-precision using the rounding mode specified by FPSCR[RN] and placed intofr D.

If HID2[PSE] = 1 then the source operand in registerfr B is rounded to single-precision using
the rounding mode specified by FPSCR[RN] and placed intofr D(ps0). The value infr D(ps1)
is undefined.

The rounding is described fully in Section D.4.1, “Floating-Point Round to Single-Precision
Model,” in The Programming Environments Manual.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions
when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX(if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 12 Rc63 D 0 0 0 0 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-83

frsqrte x frsqrte x
Floating Reciprocal Square Root Estimate (x’FC00 0034’)

frsqrte fr D,frB (Rc = 0)
frsqrte. fr D,frB (Rc = 1)

A double-precision estimate of the reciprocal of the square root of the floating-point
operand in registerfr B is placed into registerfr D. The estimate placed into registerfr D is
correct to a precision of one part in 4096 of the reciprocal of the square root offr B. That is,

where x is the initial value infr B. Note that the value placed into registerfr D may vary
between implementations, and between different executions on the same implementation.

Operation with various special values of the operand is summarized below:

Operand Result Exception

– QNaN** VXSQRT

<0 QNaN** VXSQRT

–0 – * ZX

+0 + * ZX

+ +0 None

SNaN QNaN** VXSNAN

QNaN QNaN None

Notes: * No result if FPSCR[ZE] = 1

** No result if FPSCR[VE] = 1

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1 and zero divide exceptions when FPSCR[ZE] = 1.

NOTE: No single-precision version of thefrsqrte instruction is provided; however, bothfr B
andfr D are representable in single-precision format.

This instruction is optional in the PowerPC architecture.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

ABS

estimate
1

x
------- 

 –

1

x
------- 

 

 
 
 
 
 

1
4096
------------≤

IBM Confidential

Page 12-84 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX(if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR (undefined), FI (undefined), FX, ZX, VXSNAN, VXSQRT

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-85

fsel x fsel x
Floating Select (x’FC00 002E’)

fsel frD,frA,frC,frB (Rc = 0)
fsel. frD,frA,frC,frB (Rc = 1)

if (fr A) ≥ 0.0
then fr D ← (fr C)
else fr D← (fr B)

The floating-point operand in registerfr A is compared to the value zero. If the operand is
greater than or equal to zero, registerfr D is set to the contents of registerfr C. If the operand
is less than zero or is a NaN, registerfr D is set to the contents of registerfr B. The
comparison ignores the sign of zero (that is, regards +0 as equal to –0).

Care must be taken in usingfsel if IEEE compatibility is required, or if the values being
tested can be NaNs or infinities.

For examples of uses of this instruction, see Section D.3, “Floating-Point Conversions,”
and Section D.5, “Floating-Point Selection,” inThe Programming Environments Manual.

This instruction is optional in the PowerPC architecture.

When HID2[PSE] = 1 and the selected source is a double-precision floating-point operand,
then the selected operand fromfr B or fr C is copied tofr D (as described above).

When HID2[PSE] = 1 and the selected source contains paired-single floating-point
operands, onlyfr A(ps0) is compared to zero and the selected operand fromfr B(ps0) or
fr C(ps0) is copied tofr D[ps0]. The content offr D[ps1] is undefined.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX(if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes A

B C 23 Rc

0 5 6 10 11 15 16 20 21 25 26 30 31

63 D A

IBM Confidential

Page 12-86 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

fsub x fsub x
Floating Subtract (Double-Precision),(x’FC00 0028’)

fsub frD,frA,frB (Rc = 0)
fsub. frD,frA,frB (Rc = 1)

The floating-point operand in registerfr B is subtracted from the floating-point operand in
registerfr A. If the most-significant bit of the resultant significand is not a one, the result is
normalized. The result is rounded to double-precision under control of the floating-point
rounding control field RN of the FPSCR and placed intofr D.

The execution of thefsub instruction is identical to that offadd, except that the contents of
fr B participate in the operation with its sign bit (bit 0) inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions
when FPSCR[VE] = 1.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX(if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 20 Rc63 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-87

fsubsx fsubs x
Floating Subtract Single (x’EC00 0028’)

fsubs frD,frA,frB (Rc = 0)
fsubs. frD,frA,frB (Rc = 1)

The following operations are performed:

if HID2[PSE] = 0
then fr D ← fr A – fr B
else fr D(ps0) ← fr A(ps0) - fr B(ps0)

fr D(ps1) ← fr D(ps0)

The floating-point operand in registerfr B is subtracted from the floating-point operand in
registerfr A. If the most-significant bit of the resultant significand is not a one, the result is
normalized. The result is rounded to single-precision under control of the floating-point
rounding control field RN of the FPSCR and placed intofr D.

The execution of thefsubs instruction is identical to that offadds, except that the contents
of frB participate in the operation with its sign bit (bit 0) inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation
exceptions when FPSCR[VE] = 1.

If the HID2[PSE] = 1 then the result is placed in bothfr D(ps0) andfr D(ps1).

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 20 Rc59 D A

IBM Confidential

Page 12-88 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

icbi icbi
Instruction Cache Block Invalidate (x’7C00 07AC’)

icbi r A,rB

EA is the sum (rA|0) + (rB).

If the block containing the byte addressed by EA is in coherency-required mode, and a block
containing the byte addressed by EA is in the instruction cache of any processor, the block is
made invalid in all such instruction caches, so that subsequent references cause the block to
be refetched.
If the block containing the byte addressed by EA is in coherency-not-required mode, and a
block containing the byte addressed by EA is in the instruction cache of this processor, the
block is made invalid in that instruction cache, so that subsequent references cause the block
to be refetched.
The function of this instruction is independent of the write-through, write-back, and
caching-inhibited/allowed modes of the block containing the byte addressed by EA.
This instruction is treated as a load from the addressed byte with respect to address translation
and memory protection. It may also be treated as a load for referenced and changed bit
recording except that referenced and changed bit recording may not occur. Implementations
with a combined data and instruction cache treat theicbi instruction as a no-op, except that
they may invalidate the target block in the instruction caches of other processors if the block
is in coherency-required mode.Theicbi instruction invalidates the block at EA (rA|0 + rB).
If the processor is a multiprocessor implementation (for example, the 601, 604, or 620) and
the block is marked coherency-required, the processor will send an address-only broadcast to
other processors causing those processors to invalidate the block from their instruction
caches.
For faster processing, many implementations will not compare the entire EA (rA|0 + rB) with
the tag in the instruction cache. Instead, they will use the bits in the EA to locate the set that
the block is in, and invalidate all blocks in that set.
Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

VEA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 982 031 0 0 0 0 0 A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-89

isync isync
Instruction Synchronize (x’4C00 012C’)

isync

The isync instruction provides an ordering function for the effects of all instructions
executed by a processor. Executing anisync instruction ensures that all instructions
preceding theisync instruction have completed before theisync instruction completes,
except that memory accesses caused by those instructions need not have been performed
with respect to other processors and mechanisms. It also ensures that no subsequent
instructions are initiated by the processor until after theisync instruction completes.
Finally, it causes the processor to discard any prefetched instructions, with the effect that
subsequent instructions will be fetched and executed in the context established by the
instructions preceding the isync instruction. Theisync instruction has no effect on the other
processors or on their caches.

This instruction is context synchronizing.

Context synchronization is necessary after certain code sequences that perform complex
operations within the processor. These code sequences are usually operating system tasks
that involve memory management. For example, if an instruction A changes the memory
translation rules in the memory management unit (MMU), theisync instruction should be
executed so that the instructions following instruction A will be discarded from the pipeline
and refetched according to the new translation rules.

NOTE: All exceptions and the rfi andsc instructions are also context synchronizing.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

VEA XL

0 0 0 0 0 150 0

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 0 0 0 0 0 0 0 0 0 0

IBM Confidential

Page 12-90 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

lbz lbz
Load Byte and Zero (x’8800 0000’)

lbz rD,d(rA)

if r A = 0
then b ← 0
else b ← (r A)
EA ← b + EXTS(d)
r D ← (24)0 || MEM(EA, 1)

EA is the sum (rA|0) + d. The byte in memory addressed by EA is loaded into the low-order
eight bits ofrD. The remaining bits inrD are cleared.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d34 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-91

lbzu lbzu
Load Byte and Zero with Update (x’8C00 0000’)

lbzu rD,d(rA)

EA ← (r A) + EXTS(d)
r D ← (24)0 || MEM(EA, 1)
r A ← EA

EA is the sum (rA) + d. The byte in memory addressed by EA is loaded into the low-order
eight bits ofrD. The remaining bits inrD are cleared.

EA is placed intorA.

If rA = 0, orrA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d35 D A

IBM Confidential

Page 12-92 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

lbzux lbzux
Load Byte and Zero with Update Indexed (x’7C00 00EE’)

lbzux rD,rA,rB

EA ← (r A) + (r B)
r D ← (24)0 || MEM(EA, 1)
r A ← EA

EA is the sum (rA) + (rB). The byte in memory addressed by EA is loaded into the low-order
eight bits ofrD. The remaining bits inrD are cleared.

EA is placed intorA.

If rA = 0 orrA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 119 031 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-93

lbzx lbzx
Load Byte and Zero Indexed (x’7C00 00AE’)

lbzx rD,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA ← b + (r B)
r D ← (24)0 || MEM(EA, 1)

EA is the sum (rA|0) + (rB). The byte in memory addressed by EA is loaded into the
low-order eight bits ofrD. The remaining bits inrD are cleared.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 87 031 D A

IBM Confidential

Page 12-94 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

lfd lfd
Load Floating-Point Double (x’C800 0000’)

lfd fr D,d(rA)

if r A = 0
then b ← 0
else b ← (r A)
EA ← b + EXTS(d)
fr D ← MEM(EA, 8)

EA is the sum (rA|0) + d.

The double word in memory addressed by EA is placed intofr D.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d50 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-95

lfdu lfdu
Load Floating-Point Double with Update (x’CC00 0000’)

lfdu fr D,d(rA)

EA ← (r A) + EXTS(d)
fr D ← MEM(EA, 8)
r A ← EA

EA is the sum (rA) + d.

The double word in memory addressed by EA is placed intofr D.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d51 D A

IBM Confidential

Page 12-96 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

lfdux lfdux
Load Floating-Point Double with Update Indexed (x’7C00 04EE’)

lfdux fr D,rA,rB

EA ← (r A) + (r B)
fr D ← MEM(EA, 8)
r A ← EA

EA is the sum (rA) + (rB).

The double word in memory addressed by EA is placed intofr D.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 631 031 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-97

lfdx lfdx
Load Floating-Point Double Indexed (x’7C00 04AE’)

lfdx fr D,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA ← b + (r B)
fr D ← MEM(EA, 8)

EA is the sum (rA|0) + (rB).

The double word in memory addressed by EA is placed intofr D.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 599 031 D A

IBM Confidential

Page 12-98 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

lfs lfs
Load Floating-Point Single (x’C000 0000’)

lfs fr D,d(rA)

if r A = 0
then b ← 0
else b ← (r A)
EA ← b + EXTS(d)
if HID2[PSE] = 0
then fr D ← DOUBLE(MEM(EA, 4))
else fr D(ps0) ← Single(MEM(EA, 4))

 fr D(ps1) ← Single(MEM(EA, 4))

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand.

If HID2[PSE] = 0 then this word is converted to floating-point double-precision and placed
into fr D.

If HID2[PSE] = 1 then this word is interpreted as a floating-point single-precision operand
and placed intofr D(ps0) and replicated infr D(ps1).

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d48 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-99

lfsu lfsu
Load Floating-Point Single with Update (x’C400 0000’)

lfsu fr D,d(rA)

EA ← (r A) + EXTS(d)
r A ← EA
if HID2[PSE] = 0
then fr D ← DOUBLE(MEM(EA, 4))
else fr D(ps0) ← Single(MEM(EA, 4))

fr D(ps1) ← Single(MEM(EA, 4))

EA is the sum (rA) + d.

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand.

If HID2[PSE] = 0 then this word is converted to floating-point double-precision and placed
into fr D.

If HID2[PSE] = 1 then this word is interpreted as a floating-point single-precision operand
and placed intofr D(ps0) and replicated infr D(ps1).

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d49 D A

IBM Confidential

Page 12-100 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

lfsux lfsux
Load Floating-Point Single with Update Indexed (x’7C00 046E’)

lfsux frD,rA,rB

EA ← (r A) + (r B)
if HID2[PSE] = 0
then fr D ← DOUBLE(MEM(EA, 4))
else fr D(ps0) ← Single(MEM(EA, 4))

fr D(ps1) ← Single(MEM(EA, 4))
r A ← EA

EA is the sum (rA) + d.

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand.

If HID2[PSE] = 0 then this word is converted to floating-point double-precision (see
Section D.6, “Floating-Point Load Instructions,” inThe Programming Environments Manual)
and placed intofr D.

If HID2[PSE] = 1 then this word is interpreted as a floating-point single-precision operand
and placed intofr D(ps0) and replicated infr D(ps1).

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 567 031 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-101

lfsx lfsx
Load Floating-Point Single Indexed (x’7C00 042E’)
lfsx frD,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA ← b + (r B)
if HID2[PSE] = 0
then fr D ← DOUBLE(MEM(EA, 4))
else fr D(ps0) ← Single(MEM(EA, 4))

fr D(ps1) ← Single(MEM(EA, 4))

EA is the sum (rA|0) + (rB).

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand.

If HID2[PSE] = 0 then this word is converted to floating-point double-precision and placed
into fr D.

If HID2[PSE] = 1 then this word is interpreted as a floating-point single-precision operand
and placed intofr D(ps0) and replicated infr D(ps1).

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 535 031 D A

IBM Confidential

Page 12-102 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

lha lha
Load Half Word Algebraic (x’A800 0000’)

lha rD,d(rA)

if r A = 0
then b ← 0
else b ← (r A)
EA ← b + EXTS(d)
r D ← EXTS(MEM(EA, 2))

EA is the sum (rA|0) + d. The half word in memory addressed by EA is loaded into the
low-order 16 bits ofrD. The remaining bits inrD are filled with a copy of the most-significant
bit of the loaded half word.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d42 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-103

lhau lhau
Load Half Word Algebraic with Update (x’AC00 0000’)

lhau rD,d(rA)

EA ← (r A) + EXTS(d)
r D ← EXTS(MEM(EA, 2))
r A ← EA

EA is the sum (rA) + d. The half word in memory addressed by EA is loaded into the
low-order 16 bits of rD. The remaining bits inrD are filled with a copy of the
most-significant bit of the loaded half word.

EA is placed intorA.

If rA = 0 orrA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d43 D A

IBM Confidential

Page 12-104 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

lhaux lhaux
Load Half Word Algebraic with Update Indexed (x’7C00 02EE’)

lhaux rD,rA,rB

EA ← (r A) + (r B)
r D ← EXTS(MEM(EA, 2))
r A ← EA

EA is the sum (rA) + (rB). The half word in memory addressed by EA is loaded into the
low-order 16 bits ofrD. The remaining bits inrD are filled with a copy of the most-significant
bit of the loaded half word.

EA is placed intorA.

If rA = 0 orrA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 375 031 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-105

lhax lhax
Load Half Word Algebraic Indexed (x’7C00 02AE’)

lhax rD,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA ← b + (r B)
r D ← EXTS(MEM(EA, 2)

EA is the sum (rA|0) + (rB). The half word in memory addressed by EA is loaded into the
low-order 16 bits of rD. The remaining bits inrD are filled with a copy of the
most-significant bit of the loaded half word.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 343 031 D A

IBM Confidential

Page 12-106 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

lhbrx lhbrx
Load Half Word Byte-Reverse Indexed (x’7C00 062C’)

lhbrx r D,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA ← b + (r B)
r D ← (16)0 || MEM(EA + 1, 1) || MEM(EA, 1)

EA is the sum (rA|0) + (rB). Bits 0–7 of the half word in memory addressed by EA are loaded
into the low-order eight bits ofrD. Bits 8–15 of the half word in memory addressed by EA
are loaded into the subsequent low-order eight bits ofrD. The remaining bits inrD are
cleared.

The PowerPC architecture cautions programmers that some implementations of the
architecture may run thelhbrx instructions with greater latency than other types of load
instructions.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 790 031 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-107

lhz lhz
Load Half Word and Zero (x’A000 0000’)

lhz rD,d(rA)

if r A = 0
then b ← 0
else b ← (r A)
EA← b + EXTS(d)
r D← (16)0 || MEM(EA, 2)

EA is the sum (rA|0) + d. The half word in memory addressed by EA is loaded into the
low-order 16 bits ofrD. The remaining bits inrD are cleared.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d40 D A

IBM Confidential

Page 12-108 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

lhzu lhzu
Load Half Word and Zero with Update (x’A400 0000’)

lhzu rD,d(rA)

EA ← r A + EXTS(d)
r D← (16)0 || MEM(EA, 2)
r A ← EA

EA is the sum (rA) + d. The half word in memory addressed by EA is loaded into the
low-order 16 bits ofrD. The remaining bits inrD are cleared.

EA is placed intorA.

If rA = 0 orrA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d41 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-109

lhzux lhzux
Load Half Word and Zero with Update Indexed (x’7C00 026E’)

lhzux rD,rA,rB

EA ← (r A) + (r B)
r D ← (16)0 || MEM(EA, 2)
r A ← EA

EA is the sum (rA) + (rB). The half word in memory addressed by EA is loaded into the
low-order 16 bits ofrD. The remaining bits inrD are cleared.

EA is placed intorA.

If rA = 0 orrA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 311 031 D A

IBM Confidential

Page 12-110 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

lhzx lhzx
Load Half Word and Zero Indexed (x’7C00 022E’)

lhzx rD,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA← b + (r B)
r D← (16)0 || MEM(EA, 2)

EA is the sum (rA|0) + (rB). The half word in memory addressed by EA is loaded into the
low-order 16 bits ofrD. The remaining bits inrD are cleared.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 279 031 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-111

lmw lmw
Load Multiple Word (x’B800 0000’)

lmw r D,d(rA)

if r A = 0
then b ← 0
else b ← (r A)
EA← b + EXTS(d)
r ← r D
do while r ≤ 31
GPR(r) ← MEM(EA, 4)
r ← r + 1
EA← EA + 4

EA is the sum (rA|0) + d.

n = (32 –rD).

n consecutive words starting at EA are loaded into GPRsrD throughr31.

EA must be a multiple of four. If it is not, either the system alignment exception handler is
invoked or the results are boundedly undefined. For additional information about alignment
and DSI exceptions, see Section 6.4.3, “DSI Exception (0x00300),” inThe Programming
Environments Manual.

If rA is in the range of registers specified to be loaded, including the case in whichrA = 0,
the instruction form is invalid.

Note that, in some implementations, this instruction is likely to have a greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.

Other registers altered:

None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d46 D A

IBM Confidential

Page 12-112 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

lswi lswi
Load String Word Immediate (x’7C00 04AA’)

lswi rD,rA,NB

if r A = 0
then EA ← 0
else EA ← (r A)
if NB = 0
then n ← 32
else n ← NB
r ← r D – 1
i ← 0
do while n > 0

if i = 0
then r ← r + 1 (mod 32)

GPR(r) ← 0
GPR(r)[i,i + 7] ← MEM(EA, 1)
i ← i + 8
if i = 32 then i ← 0
EA ← EA + 1
n ← n – 1

EA is (rA|0).
Let n = NB if NB 0,n = 32 if NB = 0;n is the number of bytes to load.
Let nr = CEIL(n , 4);nr is the number of registers to be loaded with data.
n consecutive bytes starting at EA are loaded into GPRsrD throughrD + nr – 1.
Bytes are loaded left to right in each register. The sequence of registers wraps around tor0 if
required. If the 4 bytes of registerrD + nr – 1 are only partially filled, the unfilled low-order
byte(s) of that register are cleared.
If rA is in the range of registers specified to be loaded, including the case in whichrA = 0,
the instruction form is invalid.
Under certain conditions (for example, segment boundary crossing) the data alignment
exception handler may be invoked. For additional information about data alignment excep-
tions, see Section 6.4.3, “DSI Exception (0x00300),” inThe Programming Environments
Manual.Note that, in some implementations, this instruction is likely to have greater latency
and take longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.
Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

NB 597 031 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-113

lswx lswx
Load String Word Indexed (x’7C00 042A’)

lswx rD,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA← b + (r B)
n ← XER[25–31]
r ← r D – 1
i ← 0
r D ← undefined
 do while n > 0

if i = 0
then r ← r + 1 (mod 32)

GPR(r) ← (32)0
GPR(r)[i,i + 7] ← MEM(EA, 1)
i ← i + 8
if i = 32 then i ← 0
EA ← EA + 1
n ← n – 1

EA is the sum (rA|0) + (rB). Letn = XER[25–31];n is the number of bytes to load. Let
nr = CEIL(n 4); nr is the number of registers to receive data. Ifn > 0, n consecutive bytes
starting at EA are loaded into GPRsrD throughrD + nr – 1. Bytes are loaded left to right
in each register. The sequence of registers wraps around throughr0 if required. If the four
bytes ofrD + nr – 1 are only partially filled, the unfilled low-order byte(s) of that register
are cleared. Ifn = 0, the contents ofrD are undefined.
If rA or rB is in the range of registers specified to be loaded, including the case in which
rA = 0, either the system illegal instruction error handler is invoked or the results are
boundedly undefined. IfrD = rA or rD = rB, the instruction form is invalid; IfrD andrA
both specify GPR0, the form is invalid.
Under certain conditions (for example, segment boundary crossing) the data alignment
exception handler may be invoked. For additional information about data alignment
exceptions, see Section 6.4.3, “DSI Exception (0x00300),” inThe Programming
Environments Manual.

NOTE: In some implementations, this instruction is likely to have a greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.
Other registers altered:None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 533 031 D A

IBM Confidential

Page 12-114 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

lwarx lwarx
Load Word and Reserve Indexed (x’7C00 0028’)

lwarx r D,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA← b + (r B)
RESERVE← 1
RESERVE_ADDR← physical_addr(EA)
r D← MEM(EA,4)

EA is the sum (rA|0) + (rB).
The word in memory addressed by EA is loaded intorD.
This instruction creates a reservation for use by a store word conditional indexed
(stwcx.)instruction. The physical address computed from EA is associated with the
reservation, and replaces any address previously associated with the reservation.
EA must be a multiple of four. If it is not, either the system alignment exception handler is
invoked or the results are boundedly undefined. For additional information about alignment
and DSI exceptions, see Section 6.4.3, “DSI Exception (0x00300),” inThe Programming
Environments Manual.

When the RESERVE bit is set, the processor enables hardware snooping for the block of
memory addressed by the RESERVE address. If the processor detects that another processor
writes to the block of memory it has reserved, it clears the RESERVE bit. Thestwcx.
instruction will only do a store if the RESERVE bit is set. Thestwcx. instruction sets the
CR0[EQ] bit if the store was successful and clears it if it failed. Thelwarx and stwcx.
combination can be used for atomic read-modify-write sequences. Note that the atomic
sequence is not guaranteed, but its failure can be detected if CR0[EQ] = 0 after thestwcx.
instruction.
Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 20 031 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-115

lwbrx lwbrx
Load Word Byte-Reverse Indexed (x’7C00 042C’)

lwbrx r D,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA← b + (r B)
r D← MEM(EA + 3, 1) || MEM(EA + 2, 1) || MEM(EA + 1, 1) || MEM(EA, 1)

EA is the sum (rA|0) + rB. Bits 0–7 of the word in memory addressed by EA are loaded
into the low-order 8 bits ofrD. Bits 8–15 of the word in memory addressed by EA are
loaded into the subsequent low-order 8 bits ofrD. Bits 16–23 of the word in memory
addressed by EA are loaded into the subsequent low-order eight bits ofrD. Bits 24–31 of
the word in memory addressed by EA are loaded into the subsequent low-order 8 bits ofrD.

The PowerPC architecture cautions programmers that some implementations of the
architecture may run thelwbrx instructions with greater latency than other types of load
instructions.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 534 031 D A

IBM Confidential

Page 12-116 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

lwz lwz
Load Word and Zero (x’8000 0000’)

lwz rD,d(rA)

if r A = 0
then b ← 0
else b ← (r A)
EA← b + EXTS(d)
r D← MEM(EA, 4)

EA is the sum (rA|0) + d. The word in memory addressed by EA is loaded intorD.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d32 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-117

lwzu lwzu
Load Word and Zero with Update (x’8400 0000’)

lwzu rD,d(rA)

EA ← r A + EXTS(d)
r D← MEM(EA, 4)
r A ← EA

EA is the sum (rA) + d. The word in memory addressed by EA is loaded intorD.

EA is placed intorA.

If rA = 0, orrA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d33 D A

IBM Confidential

Page 12-118 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

lwzux lwzux
Load Word and Zero with Update Indexed (x’7C00 006E’)

lwzux rD,rA,rB

EA ← (r A) + (r B)
r D← MEM(EA, 4)
r A ← EA

EA is the sum (rA) + (rB). The word in memory addressed by EA is loaded intorD

EA is placed intorA.

If rA = 0, orrA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 55 031 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-119

lwzx lwzx
Load Word and Zero Indexed (x’7C00 002E’)

lwzx rD,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA← b + r B
r D← MEM(EA, 4)

EA is the sum (rA|0) + (rB). The word in memory addressed by EA is loaded intorD.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 23 031 D A

IBM Confidential

Page 12-120 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

mcrf mcrf
Move Condition Register Field (x’4C00 0000’)

mcrf crf D,crfS

CR[4 ∗ crf D–4 ∗ crf D + 3] ← CR[4 ∗ crf S–4 ∗ crf S + 3]

The contents of condition register fieldcrfS are copied into condition register fieldcrfD. All
other condition register fields remain unchanged.

Other registers altered:

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XL

0 5 6 8 9 10 11 13 14 15 16 20 21 30 31

Reserved

19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-121

mcrfs mcrfs
Move to Condition Register from FPSCR (x’FC00 0080’)

mcrfs crfD,crfS

The contents of FPSCR fieldcrfS are copied to CR fieldcrfD. All exception bits copied
(except FEX and VX) are cleared in the FPSCR.

Other registers altered:

• Condition Register (CR field specified by operandcrfD):

Affected: FX, FEX, VX, OX

• Floating-Point Status and Control Register:

Affected: FX, OX (ifcrfS = 0)

Affected: UX, ZX, XX, VXSNAN (if crfS = 1)

Affected: VXISI, VXIDI, VXZDZ, VXIMZ (if crfS = 2)

Affected: VXVC (if crfS = 3)

Affected: VXSOFT, VXSQRT, VXCVI (ifcrfS = 5)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 8 9 10 11 13 14 15 16 20 21 30 31

Reserved

63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

IBM Confidential

Page 12-122 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

mcrxr mcrxr
Move to Condition Register from XER (x’7C00 0400’)

mcrxr crf D

CR[4 ∗ crf D , 4 ∗ crf D + 3] ← XER[0–3]
XER[0–3] ← 0b0000

The contents of XER[0–3] are copied into the condition register field designated bycrfD. All
other fields of the condition register remain unchanged. XER[0–3] is cleared.

Other registers altered:

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, SO

• XER[0–3]

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-123

mfcr mfcr
Move from Condition Register (x’7C00 0026’)

mfcr r D

r D← CR

The contents of the condition register (CR) are placed intorD.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 19 031 D 0 0 0 0 0

IBM Confidential

Page 12-124 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

mffs x mffs x
Move from FPSCR (x’FC00 048E’)

mffs fr D (Rc = 0)
mffs. frD (Rc = 1)

f r D[32-63] ← FPSCR

The contents of the floating-point status and control register (FPSCR) are placed into the
low-order bits of registerfr D. The high-order bits of registerfr D are undefined.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 583 Rc63 D 0 0 0 0 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-125

mfmsr mfmsr
Move from Machine State Register (x’7C00 00A6’)

mfmsr r D

rD← MSR

The contents of the MSR are placed intorD.

This is a supervisor-level instruction.

Other registers altered

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

OEA Yes X

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 83 031 D 0 0 0 0 0

IBM Confidential

Page 12-126 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

mfspr mfspr
Move from Special-Purpose Register (x’7C00 02A6’)

mfspr r D,SPR

n ← spr[5–9] || spr[0–4]
r D← SPR(n)

In the PowerPC UISA, the SPR field denotes a special-purpose register, encoded as shown in
Table 12-9 .The contents of the designated special purpose register are placed intorD.

If the SPR field contains any value other than one of the values shown in Table 12-9 (and the
processor is in user mode), one of the following occurs:

• The system illegal instruction error handler is invoked.
• The system supervisor-level instruction error handler is invoked.
• The results are boundedly undefined.

Other registers altered:

• None

Simplified mnemonics:

mfxerr D equivalent to mfspr r D,1
mflr r D equivalent to mfspr r D,8
mfctrr D equivalent to mfspr r D,9

Table 12-9. Gekko UISA SPR Encodings for mfspr

SPR**
Register Name

Decimal spr[5–9] spr[0–4]

1 00000 00001 XER

8 00000 01000 LR

9 00000 01001 CTR

** Note that the order of the two 5-bit halves of the SPR
number is reversed compared with the actual instruction
coding.

0 5 6 10 11 20 21 30 31

Reserved

spr* 339 031 D

*Note: This is a split field.

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-127

In the PowerPC OEA, the SPR field denotes a special-purpose register, encoded as shown
in Table 12-10. The contents of the designated SPR are placed intorD.

In the PowerPC UISA, the SPR field denotes a special-purpose register, encoded as shown
in Table 12-10. If the SPR[0] = 0 (Access type User), the contents of the designated SPR
are placed intorD.

SPR[0] = 1 if and only if reading the register is supervisor-level. Execution of this
instruction specifying a defined and supervisor-level register when MSR[PR] = 1 will result
in a privileged instruction type program exception.

If MSR[PR] = 1, the only effect of executing an instruction with an SPR number that is not
shown in Table 12-10 and has SPR[0] = 1 is to cause a supervisor-level instruction type
program exception or an illegal instruction type program exception. For all other cases,
MSR[PR] = 0 or SPR[0] = 0.

If the SPR field contains any value that is not shown in Table 12-10, either an illegal
instruction type program exception occurs or the results are boundedly undefined.

Table 12-10. Gekko OEA SPR Encodings for mfspr

SPR
1

Register
Name

Access
Decimal spr[5–9] spr[0–4]

1 00000 00001 XER User

8 00000 01000 LR User

9 00000 01001 CTR User

18 00000 10010 DSISR Supervisor

19 00000 10011 DAR Supervisor

22 00000 10110 DEC Supervisor

25 00000 11001 SDR1 Supervisor

26 00000 11010 SRR0 Supervisor

27 00000 11011 SRR1 Supervisor

272 01000 10000 SPRG0 Supervisor

273 01000 10001 SPRG1 Supervisor

274 01000 10010 SPRG2 Supervisor

275 01000 10011 SPRG3 Supervisor

282 01000 11010 EAR Supervisor

287 01000 11111 PVR Supervisor

528 10000 10000 IBAT0U Supervisor

529 10000 10001 IBAT0L Supervisor

530 10000 10010 IBAT1U Supervisor

531 10000 10011 IBAT1L Supervisor

532 10000 10100 IBAT2U Supervisor

533 10000 10101 IBAT2L Supervisor

534 10000 10110 IBAT3U Supervisor

535 10000 10111 IBAT3L Supervisor

IBM Confidential

Page 12-128 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

536 10000 11000 DBAT0U Supervisor

537 10000 11001 DBAT0L Supervisor

538 10000 11010 DBAT1U Supervisor

539 10000 11011 DBAT1L Supervisor

540 10000 11100 DBAT2U Supervisor

541 10000 11101 DBAT2L Supervisor

542 10000 11110 DBAT3U Supervisor

543 10000 11111 DBAT3L Supervisor

912 11100 10000 GQR0 Supervisor

913 11100 10001 GQR1 Supervisor

914 11100 10010 GQR2 Supervisor

915 11100 10011 GQR3 Supervisor

916 11100 10100 GQR4 Supervisor

917 11100 10101 GQR5 Supervisor

918 11100 10110 GQR6 Supervisor

919 11100 10111 GQR7 Supervisor

920 11100 11000 HID2 Supervisor

921 11100 11001 WPAR Supervisor

922 11100 11010 DMA_U Supervisor

923 11100 11011 DMA_L Supervisor

936 11101 01000 UMMCR0 User

937 11101 01001 UPMC1 User

938 11101 01010 UPMC2 User

939 11101 01011 USIA User

940 11101 01100 UMMCR1 User

941 11101 01101 UPMC3 User

942 11101 01110 UPMC4 User

943 11101 01111 USDA User

952 11101 11000 MMCR0 Supervisor

953 11101 11001 PMC1 Supervisor

954 11101 11010 PMC2 Supervisor

955 11101 11011 SIA Supervisor

956 11101 11100 MMCR1 Supervisor

957 11101 11101 PMC3 Supervisor

958 11101 11110 PMC4 Supervisor

959 11101 11111 SDA Supervisor

1008 11111 10000 HID0 Supervisor

1009 11111 10001 HID1 Supervisor

1010 11111 10010 IABR Supervisor

Table 12-10. Gekko OEA SPR Encodings for mfspr (Continued)

SPR
1

Register
Name

Access
Decimal spr[5–9] spr[0–4]

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-129

1013 11111 10101 DABR Supervisor

1017 11111 11001 L2CR Supervisor

1019 11111 11011 ICTC Supervisor

1020 11111 11100 THRM1 Supervisor

1021 11111 11101 THRM2 Supervisor

1022 11111 11110 THRM3 Supervisor

1Note that the order of the two 5-bit halves of the SPR number is reversed
compared with actual instruction coding.

For mtspr and mfspr instructions, the SPR number coded in assembly
language does not appear directly as a 10-bit binary number in the
instruction. The number coded is split into two 5-bit halves that are
reversed in the instruction, with the high-order five bits appearing in bits
16–20 of the instruction and the low-order five bits in bits 11–15.

* Note that mfspr is supervisor-level only if SPR[0] = 1.

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA/OEA Yes* XFX

Table 12-10. Gekko OEA SPR Encodings for mfspr (Continued)

SPR
1

Register
Name

Access
Decimal spr[5–9] spr[0–4]

IBM Confidential

Page 12-130 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

mfsr mfsr
 Move from Segment Register (x’7C00 04A6’)

mfsr rD,SR

r D← SEGREG(SR)

The contents of the segment register SR are copied intorD.

This is a supervisor-level instruction.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

OEA Yes X

0 5 6 1011 12 15 16 20 21 30 31

Reserved

0 0 0 0 0 595 031 D 0 SR

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-131

mfsrin mfsrin
Move from Segment Register Indirect (x’7C00 0526’)

mfsrin r D,rB

r D← SEGREG(r B[0–3])

The contents of the segment register selected by bits 0–3 ofrB are copied intorD.

This is a supervisor-level instruction.

NOTE: TherA field is not defined for themfsrin instruction in the PowerPC architecture.
However,mfsrin performs the same function in the PowerPC architecture as does the
mfsri instruction in the POWER architecture (ifrA = 0).

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

OEA Yes X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 659 031 D 0 0 0 0 0

IBM Confidential

Page 12-132 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

mftb mftb
Move from Time Base (x’7C00 02E6’)

mftb r D,TBR

n ← tbr[5–9] || tbr[0–4]
if n = 268
then r D← TBL
else if n = 269

then r D← TBU
else error(invalid TBR field)

The contents of TBL or TBU are copied into rD, as designated by the value in TBR, encoded
as shown here.

If the TBR field contains any value other than one of the values shown in Table 12-11, then
one of the following occurs:

• The system illegal instruction error handler is invoked.
• The system supervisor-level instruction error handler is invoked.
• The results are boundedly undefined.

Important Note: Some implementations may implementmftb and mfspr identically,
therefore, a TBR number should not match an SPR number.

For more information on the time base refer to Section 2.2, “PowerPC VEA Register
Set—Time Base,” in thePowerPC Microprocessor Family: The Programming Environments
manual.

Other registers altered:

• None

Table 12-11. TBR Encodings for mftb

TBR* Register
Name

Access
Decimal tbr[5–9] tbr[0–4]

268 01000 01100 TBL User

269 01000 01101 TBU User

*Note that the order of the two 5-bit halves of the TBR number is
reversed.

0 5 6 10 11 20 21 30 31

Reserved

31 D tbr* 371 0

*Note: This is a split field.

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-133

Simplified mnemonics:

mftb r D equivalent to mftb r D,268
mftbur D equivalent to mftb r D,269

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

VEA XFX

IBM Confidential

Page 12-134 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

mtcrf mtcrf
Move to Condition Register Fields (x’7C00 0120’)

mtcrf CRM,rS

mask ← (4)(CRM[0]) || (4)(CRM[1]) ||... (4)(CRM[7])
CR← (r S & mask) | (CR & ¬ mask)

The contents ofrS are placed into the condition register under control of the field mask
specified by CRM. The field mask identifies the 4-bit fields affected. Let i be an integer in the
range 0–7. If CRM(i) = 1, CR field i (CR bits 4∗ i through 4∗ i + 3) is set to the contents of
the corresponding field ofrS.

NOTE: Updating a subset of the eight fields of the condition register may have substantially
poorer performance on some implementations than updating all of the fields.

Other registers altered:

• CR fields selected by mask

Simplified mnemonics:

mtcr r S equivalent to mtcrf 0xFF,rS

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XFX

0 5 6 10 11 12 19 20 21 30 31

Reserved

CRM 0 144 031 S 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-135

mtfsb0 x mtfsb0 x
Move to FPSCR Bit 0 (x’FC00 008C’)

mtfsb0 crbD (Rc = 0)
mtfsb0. crbD (Rc = 1)

FPSRC(crb D)← 0

Bit crbD of the FPSCR is cleared.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX(if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPSCR bitcrbD

NOTE: Bits 1 and 2 (FEX and VX) cannot be explicitly cleared.

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 70 Rc63 crbD 0 0 0 0 0

IBM Confidential

Page 12-136 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

mtfsb1 x mtfsb1 x
Move to FPSCR Bit 1 (x’FC00 004C’)

mtfsb1 crbD (Rc = 0)
mtfsb1. crbD (Rc = 1)

FPSRC(crb D)← 1

Bit crbD of the FPSCR is set.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX(if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPSCR bitcrbD and FX

NOTE: Bits 1 and 2 (FEX and VX) cannot be explicitly set.

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 38 Rc63 crbD 0 0 0 0 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-137

mtfsf x mtfsf x
Move to FPSCR Fields (x’FC00 058E’)

mtfsf FM,frB (Rc = 0)
mtfsf. FM,frB (Rc = 1)

The low-order 32 bits offr B are placed into the FPSCR under control of the field mask
specified by FM. The field mask identifies the 4-bit fields affected. Let i be an integer in the
range 0–7. If FM[i] = 1, FPSCR field i (FPSCR bits 4 * i through 4* i + 3) is set to the
contents of the corresponding field of the low-order 32 bits of registerfr B.

FPSCR[FX] is altered only if FM[0] = 1.

Updating fewer than all eight fields of the FPSCR may have substantially poorer
performance on some implementations than updating all the fields.

When FPSCR[0–3] is specified, bits 0 (FX) and 3 (OX) are set to the values offr B[32] and
fr B[35] (that is, even if this instruction causes OX to change from 0 to 1, FX is set from
fr B[32] and not by the usual rule that FX is set when an exception bit changes from 0 to 1).
Bits 1 and 2 (FEX and VX) are set according to the usual rule and not fromfr B[33–34].

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX(if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPSCR fields selected by mask

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XFL

0 5 6 7 14 15 16 20 21 30 31

Reserved

63 0 FM 0 B 711 Rc

IBM Confidential

Page 12-138 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

mtfsfi x mtfsfi x
 Move to FPSCR Field Immediate (x’FC00 010C’)

mtfsfi crf D,IMM (Rc = 0)
mtfsfi. crfD,IMM (Rc = 1)

FPSCR[crf D] ← IMM

The value of the IMM field is placed into FPSCR fieldcrfD.

FPSCR[FX] is altered only ifcrfD = 0.

When FPSCR[0–3] is specified, bits 0 (FX) and 3 (OX) are set to the values of IMM[0] and
IMM[3] (that is, even if this instruction causes OX to change from 0 to 1, FX is set from
IMM[0] and not by the usual rule that FX is set when an exception bit changes from 0 to 1).
Bits 1 and 2 (FEX and VX) are set according to the usual rule and not from IMM[1–2].

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX(if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPSCR fieldcrfD

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 8 9 10 1112 15 16 19 20 21 30 31

Reserved

63 crfD 0 0 0 0 0 0 0 IMM 0 134

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-139

mtmsr mtmsr
 Move to Machine State Register (x’7C00 0124’)

mtmsr rS

MSR← (r S)

The contents ofrS are placed into the MSR.

This is a supervisor-level instruction. It is also an execution synchronizing instruction
except with respect to alterations to the POW and LE bits. Refer to Section 2.3.18,
“Synchronization Requirements for Special Registers and for Lookaside Buffers” in the the
PowerPC Microprocessor Family: The Programming Environmentsmanual for more
information.

In addition, alterations to the MSR[EE] and MSR[RI] bits are effective as soon as the
instruction completes. Thus if MSR[EE] = 0 and an external or decrementer exception is
pending, executing anmtmsr instruction that sets MSR[EE] = 1 will cause the external or
decrementer exception to be taken before the next instruction is executed, if no higher
priority exception exists.

Other registers altered:

• MSR

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

OEA Yes X

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 146 031 S 0 0 0 0 0

IBM Confidential

Page 12-140 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

mtspr mtspr
Move to Special-Purpose Register (x’7C00 03A6’)

mtspr SPR,rS

n ← spr[5–9] || spr[0–4]

In the PowerPC UISA, the SPR field denotes a special-purpose register, encoded as shown in
Table 12-12. The contents ofrS are placed into the designated special-purpose register

If the SPR field contains any value other than one of the values shown in Table 12-12, and the
processor is operating in user mode, one of the following occurs:

• The system illegal instruction error handler is invoked.
• The system supervisor instruction error handler is invoked.
• The results are boundedly undefined.

Simplified mnemonics:

mtxerr D equivalent to mtspr 1,rD
mtlr r D equivalent to mtspr 8,rD
mtctrr D equivalent to mtspr 9,rD

In the PowerPC OEA, the SPR field denotes a special-purpose register, encoded as shown in
Table 12-13. The contents ofrS are placed into the designated special-purpose registerIn the
PowerPC UISA, if the SPR[0]=0 (Access is User) the contents ofrS are placed into the
designated special-purpose register

Table 12-12. Gekko UISA SPR Encodings for mtspr

 SPR**
Register Name

Decimal spr[5–9] spr[0–4]

1 00000 00001 XER

8 00000 01000 LR

9 00000 01001 CTR

** Note that the order of the two 5-bit halves of the SPR
number is reversed compared with actual instruction
coding.

0 5 6 10 11 20 21 30 31

Reserved

spr* 467 031 S

*Note: This is a split field.

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-141

For this instruction, SPRs TBL and TBU are treated as separate 32-bit registers; setting one
leaves the other unaltered.

The value of SPR[0] = 1 if and only if writing the register is a supervisor-level operation.
Execution of this instruction specifying a defined and supervisor-level register when
MSR[PR] = 1 results in a privileged instruction type program exception.

If MSR[PR] = 1 then the only effect of executing an instruction with an SPR number that
is not shown in Table 12-13 and has SPR[0] = 1 is to cause a privileged instruction type
program exception or an illegal instruction type program exception. For all other cases,
MSR[PR] = 0 or SPR[0] = 0, if the SPR field contains any value that is not shown in
Table 12-13, either an illegal instruction type program exception occurs or the results are
boundedly undefined.

Other registers altered:

• See Table 12-13.

Table 12-13. Gekko OEA SPR Encodings for mtspr

 SPR
1

Register
Name

Access
Decimal spr[5–9] spr[0–4]

1 00000 00001 XER User

8 00000 01000 LR User

9 00000 01001 CTR User

18 00000 10010 DSISR Supervisor

19 00000 10011 DAR Supervisor

22 00000 10110 DEC Supervisor

25 00000 11001 SDR1 Supervisor

26 00000 11010 SRR0 Supervisor

27 00000 11011 SRR1 Supervisor

272 01000 10000 SPRG0 Supervisor

273 01000 10001 SPRG1 Supervisor

274 01000 10010 SPRG2 Supervisor

275 01000 10011 SPRG3 Supervisor

282 01000 11010 EAR Supervisor

284 01000 11100 TBL Supervisor

285 01000 11101 TBU Supervisor

528 10000 10000 IBAT0U Supervisor

529 10000 10001 IBAT0L Supervisor

530 10000 10010 IBAT1U Supervisor

531 10000 10011 IBAT1L Supervisor

532 10000 10100 IBAT2U Supervisor

533 10000 10101 IBAT2L Supervisor

534 10000 10110 IBAT3U Supervisor

IBM Confidential

Page 12-142 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

535 10000 10111 IBAT3L Supervisor

536 10000 11000 DBAT0U Supervisor

537 10000 11001 DBAT0L Supervisor

538 10000 11010 DBAT1U Supervisor

539 10000 11011 DBAT1L Supervisor

540 10000 11100 DBAT2U Supervisor

541 10000 11101 DBAT2L Supervisor

542 10000 11110 DBAT3U Supervisor

543 10000 11111 DBAT3L Supervisor

912 11100 10000 GQR0 Supervisor

913 11100 10001 GQR1 Supervisor

914 11100 10010 GQR2 Supervisor

915 11100 10011 GQR3 Supervisor

916 11100 10100 GQR4 Supervisor

917 11100 10101 GQR5 Supervisor

918 11100 10110 GQR6 Supervisor

919 11100 10111 GQR7 Supervisor

920 11100 11000 HID2 Supervisor

921 11100 11001 WPAR Supervisor

922 11100 11010 DMA_U Supervisor

923 11100 11011 DMA_L Supervisor

936 11101 01000 UMMCR0 User

937 11101 01001 UPMC1 User

938 11101 01010 UPMC2 User

939 11101 01011 USIA User

940 11101 01100 UMMCR1 User

941 11101 01101 UPMC3 User

942 11101 01110 UPMC4 User

943 11101 01111 USDA User

952 11101 11000 MMCR0 Supervisor

953 11101 11001 PMC1 Supervisor

954 11101 11010 PMC2 Supervisor

955 11101 11011 SIA Supervisor

956 11101 11100 MMCR1 Supervisor

957 11101 11101 PMC3 Supervisor

958 11101 11110 PMC4 Supervisor

959 11101 11111 SDA Supervisor

1008 11111 10000 HID0 Supervisor

1009 11111 10001 HID1 Supervisor

Table 12-13. Gekko OEA SPR Encodings for mtspr (Continued)

 SPR
1

Register
Name

Access
Decimal spr[5–9] spr[0–4]

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-143

1010 11111 10010 IABR Supervisor

1013 11111 10101 DABR Supervisor

1017 11111 11001 L2CR Supervisor

1019 11111 11011 ICTC Supervisor

1020 11111 11100 THRM1 Supervisor

1021 11111 11101 THRM2 Supervisor

1022 11111 11110 THRM3 Supervisor

1Note that the order of the two 5-bit halves of the SPR number is reversed. For mtspr
and mfspr instructions, the SPR number coded in assembly language does not appear
directly as a 10-bit binary number in the instruction. The number coded is split into two
5-bit halves that are reversed in the instruction, with the high-order five bits appearing
in bits 16–20 of the instruction and the low-order five bits in bits 11–15.

NOTE: mfspr is supervisor-level only if SPR[0] = 1.

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

OEA Yes XFX

Table 12-13. Gekko OEA SPR Encodings for mtspr (Continued)

 SPR
1

Register
Name

Access
Decimal spr[5–9] spr[0–4]

IBM Confidential

Page 12-144 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

mtsr mtsr
Move to Segment Register (x’7C00 01A4’)

mtsr SR,rS

SEGREG(SR)← (r S)

The contents ofrS are placed into SR.

This is a supervisor-level instruction.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

OEA Yes X

0 5 6 10 11 12 15 16 20 21 30 31

Reserved

0 0 0 0 0 210 031 S 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-145

mtsrin mtsrin
 Move to Segment Register Indirect (x’7C00 01E4’)

mtsrin r S,rB

SEGREG(r B[0–3]) ← (r S)

The contents ofrS are copied to the segment register selected by bits 0–3 ofrB.

This is a supervisor-level instruction.

NOTE: The PowerPC architecture does not define therA field for themtsrin instruction.
However,mtsrin performs the same function in the PowerPC architecture as does the
mtsri instruction in the POWER architecture (ifrA = 0).

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

OEA Yes X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 242 031 S 0 0 0 0 0

IBM Confidential

Page 12-146 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

mulhw x mulhw x
Multiply High Word (x’7C00 0096’)

mulhw r D,rA,rB (Rc = 0)
mulhw. rD,rA,rB (Rc = 1)

prod[0–63] ← (r A ∗ (r B
r D← prod

The 32-bit product is formed from the contentsrA andrB. The high-order 32 bits of the 64-bit
product of the operands are placed intorD. Both the operands and the product are interpreted
as signed integers.

This instruction may execute faster on some implementations ifrB contains the operand
having the smaller absolute value.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XO

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B 0 75 Rc

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-147

mulhwu x mulhwu x
Multiply High Word Unsigned (x’7C00 0016’)

mulhwu r D,rA,rB (Rc = 0)
mulhwu. rD,rA,rB (Rc = 1)

prod[0–63] ← (r A) ∗ (r B
r D← prod[0–31]

The 32-bit operands are the contentsrA and rB. The high-order 32 bits of the 64-bit
product of the operands are placed intorD.

Both the operands and the product are interpreted as unsigned integers, except that if
Rc = 1 the first three bits of CR0 field are set by signed comparison of the result to zero.

This instruction may execute faster on some implementations ifrB contains the operand
having the smaller absolute value.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XO

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B 0 11 Rc

IBM Confidential

Page 12-148 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

mulli mulli
 Multiply Low Immediate (x’1C00 0000’)

mulli r D,rA,SIMM

prod[0–48] ← (r A) ∗ SIMM
r D← prod[16-48]

The first operand isrA. The second operand is the value of the SIMM field. The low-order
32-bits of the 48-bit product of the operands are placed intorD.

Both the operands and the product are interpreted as signed integers. The low-order of the
product are calculated independently of whether the operands are treated as signed or
unsigned 32-bit integers.

This instruction can be used withmulhdx or mulhwx to calculate a full 64-bit product.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

SIMM07 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-149

mullw x mullw x
Multiply Low Word (x’7C00 01D6’)

mullw r D,rA,rB (OE = 0 Rc = 0)
mullw. r D,rA,rB (OE = 0 Rc = 1)
mullwo r D,rA,rB (OE = 1 Rc = 0)
mullwo. rD,rA,rB (OE = 1 Rc = 1)

prod[0–48] ← (r A) ∗ (r B
r D← prod[16-48]

The 32-bit operands are the contents ofrA andrB. The low-order of the 64-bit product (rA)
* (rB) are placed into rD.

The low-order 32-bits of the product are independent of whether the operands are regarded
as signed or unsigned 32-bit integers.

If OE = 1, then OV is set if the product cannot be represented in 32 bits. Both the operands
and the product are interpreted as signed integers.

NOTE: This instruction may execute faster on some implementations ifrB contains the
operand having the smaller absolute value.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see
XER below).

• XER:

Affected: SO, OV (if OE = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 235 Rc

IBM Confidential

Page 12-150 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

nand x nand x
NAND (x’7C00 03B8’)

nand rA,rS,rB (Rc = 0)
nand. rA,rS,rB (Rc = 1)

r A ← ¬ ((r S) & (r B))

The contents ofrS are ANDed with the contents ofrB and the complemented result is placed
into rA.

nand with rS = rB can be used to obtain the one's complement.

Other registers altered:

• Condition Register (CR0 field):

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 476 Rc

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-151

negx negx
Negate (x’7C00 00D0’)

neg rD,rA (OE = 0 Rc = 0)
neg. rD,rA (OE = 0 Rc = 1)
nego rD,rA (OE = 1 Rc = 0)
nego. rD,rA (OE = 1 Rc = 1)

r D← ¬ (r A) + 1

The value 1 is added to the complement of the value inrA, and the resulting two’s
complement is placed intorD.

If rA contains the most negative 32-bit number (0x8000_0000), the reseult is the most
negative number and if OE = 1, OV is set.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

• XER:

Affected: SO OV (if OE = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XO

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

31 D A 0 0 0 0 0 OE 104 Rc

IBM Confidential

Page 12-152 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

nor x nor x
 NOR (x’7C00 00F8’)

nor r A,rS,rB (Rc = 0)
nor. rA,rS,rB (Rc = 1)

r A ← ¬ ((r S) | (r B))

The contents ofrS are ORed with the contents ofrB and the complemented result is placed
into rA.

nor with rS =rB can be used to obtain the one’s complement.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

Simplified mnemonics:

not rD,rS equivalent to nor r A,rS,rS

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 124 Rc

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-153

orx orx
OR (x’7C00 0378’)

or r A,rS,rB (Rc = 0)
or. rA,rS,rB (Rc = 1)

r A ← (r S) | (r B)

The contents ofrS are ORed with the contents ofrB and the result is placed intorA.

The example under simplified mnemonicmr demonstrates the use of theor instruction to
move register contents.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

Simplified mnemonics:

mr rA,rS equivalent to or rA,rS,rS

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 444 Rc

IBM Confidential

Page 12-154 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

orc x orc x
OR with Complement (x’7C00 0338’)

orc rA,rS,rB (Rc = 0)
orc. rA,rS,rB (Rc = 1)

r A ← (r S) | ¬ (r B)

The contents ofrS are ORed with the complement of the contents ofrB and the result is
placed intorA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 412 Rc

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-155

ori ori
OR Immediate (x’6000 0000’)

ori r A,rS,UIMM

r A ← (r S) | ((16)0 || UIMM)

The contents ofrS are ORed with 0x0000 || UIMM and the result is placed intorA.

The preferred no-op (an instruction that does nothing) is ori 0,0,0.

Other registers altered:

• None

Simplified mnemonics:

nop equivalent to ori 0,0,0

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

24 S A UIMM

IBM Confidential

Page 12-156 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

oris oris
OR Immediate Shifted (x’6400 0000’)

oris rA,rS,UIMM

r A ← (r S) | (UIMM || (16)0)

The contents ofrS are ORed with UIMM || 0x0000 and the result is placed intorA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

25 S A UIMM

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-157

psq_l psq_l
Paired Single Quantized Load, (x’E000 0000’)

psq_l frD,d(rA),W,I

if HID2[PSE] = 0 | HID2[LSQE] = 0 then Goto illegal instruction error handler
if r A = 0
then b ← 0
else b ← (r A)
EA← b + EXTS(d)
lt ← qr I[LD_TYPE]
ls ← qr I[LD_SCALE]
c ← 4
if lt = (4|6) then c ← 10
if lt = (5|7) then c ← 20
if W = 0
then

fr D(ps0) ← dequantized(MEM(EA,c),lt,ls)
fr D(ps1) ← dequantized(MEM(EA+c,c),lt,ls)

else
fr D(ps0) ← dequantized(MEM(EA,c),lt,ls)
fr D(ps1) ← 1.0

PS0 and PS1 infr D are loaded with a pair of single precision floating point numbers.
Memory is accessed at the effective address (EA is the sum (rA|0) + d) as defined by the
instruction. A pair of numbers from memory are converted as defined by the indicated GQR
control registers and the results are placed into PS0 and PS1. However, if W=1 then only
one number is accessed from memory, converted according to GQR and placed into PS0.
PS1 is loaded with a floating point value of 1.0.
The 3 bit field I selects one of the eight 32 bit GQR control registers. From this register the
LOAD_SCALE and the LD_TYPE fields are used. The LD_TYPE field defines whether
the data in memory is floating point or integer format. If the latter it also defines whether
each integer is 8-bits or 16-bits, signed or unsigned. The LOAD_SCALE field is applied
only to integer numbers and is a signed integer that is subtracted from the exponent after
the integer number from memory has been converted to floating point format.
(See Section 2.3.4.3.12 for dequantized operation.)
Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes DW

0 5 6 10 11 15 16 17 19 20 31

W I d56 D A

IBM Confidential

Page 12-158 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

psq_lu psq_lu
Paired Single Quantized Load with Update, (x’E400 0000’)

psq_lu frD,d(rA),W,I

if HID2[PSE] = 0 | HID2[LSQE] = 0 then Goto illegal instruction error handler
EA← (r A) + EXTS(d)
lt ← qr I[LD_TYPE]
ls ← qr I[LD_SCALE]
c ← 4
if lt = (4|6) then c ← 10
if lt = (5|7) then c ← 20
if W = 0
then

fr D(ps0) ← dequantized(MEM(EA,c),lt,ls)
fr D(ps1) ← dequantized(MEM(EA+c,c),lt,ls)

else
fr D(ps0) ← dequantized(MEM(EA,c),lt,ls)
fr D(ps1) ← 1.0

r A ← EA

PS0 and PS1 infr D are loaded with a pair of single-precision floating-point numbers.
Memory is accessed at the effective address (EA is the sum (rA) + d) as defined by the
instruction. A pair of numbers from memory are converted as defined by the indicated GQR
control registers and the results are placed into PS0 and PS1. However, if W=1 then only one
number is accessed from memory, converted according to GQR and placed into PS0. PS1 is
loaded with a floating point value of 1.0.
The 3 bit field I selects one of the eight 32 bit GQR control registers. From this register the
LOAD_SCALE and the LD_TYPE fields are used. The LD_TYPE field defines whether the
data in memory is floating point or integer format. If the latter it also defines whether each
integer is 8-bits or 16-bits, signed or unsigned. The LOAD_SCALE field is applied only to
integer numbers and is a signed integer that is subtracted from the exponent after the integer
number from memory has been converted to floating point format.
(See Section 2.3.4.3.12 for dequantized operation.)
The effective address is placed into rA.
If rA = 0, the instruction form is invalid.
Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes DW

0 5 6 10 11 15 16 17 19 20 31

W I d57 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-159

psq_lux psq_lux
Paired Single Quantized Load with update Indexed, (x’1000 004C’)

psq_lux frD, rA,rB,W,I

if (HID2[PSE] = 0) then Goto illegal instruction error handler
EA← (r A) + (r B)
lt ← qr I[LD_TYPE]
ls ← qr I[LD_SCALE]
c ← 4
if lt = (4|6) then c ← 10
if lt = (5|7) then c ← 20
if W = 0
then

fr D(ps0) ← dequantized(MEM(EA,c),lt,ls)
fr D(ps1) ← dequantized(MEM(EA+c,c),lt,ls)

else
fr D(ps0) ← dequantized(MEM(EA,c),lt,ls)
fr D(ps1) ← 1.0

r A←EA

PS0 and PS1 in frD are loaded with a pair of single precision floating point numbers.
Memory is accessed at the effective address (EA is the sum (rA) + (rB)) as defined by the
instruction. A pair of numbers from memory are converted as defined by the indicated GQR
control registers and the results are placed into PS0 and PS1. However, if W=1 then only
one number is accessed from memory, converted according to GQR and placed into PS0.
PS1 is loaded with a floating point value of 1.0.
The 3 bit field I selects one of the eight 32 bit GQR control registers. From this register the
LOAD_SCALE and the LD_TYPE fields are used. The LD_TYPE field defines whether
the data in memory is floating point or integer format. If the latter it also defines whether
each integer is 8-bits or 16-bits, signed or unsigned. The LOAD_SCALE field is applied
only to integer numbers and is a signed integer that is subtracted from the exponent after
the integer number from memory has been converted to floating point format.
(See Section 2.3.4.3.12 for dequantized operation.)
The effective address is placed into register rA.
If rA = 0, the instruction form is invalid.
Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes XW

0 5 6 10 11 15 16 20 21 22 24 25 30 31

B W I 38 04 D A

IBM Confidential

Page 12-160 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

psq_lx psq_lx
Paired Single Quantized Load Indexed, (x’1000 000C’)

psq_lx frD, rA,rB,W,I

if HID2[PSE] = 0 then Goto illegal instruction error handler
if r A = 0
then b ← 0
else b ← (r A)
EA← b + (r B)
lt ← qr I[LD_TYPE]
ls ← qr I[LD_SCALE]
c ← 4
if lt = (4|6) then c ← 10
if lt = (5|7) then c ← 20
if W = 0
then

fr D(ps0) ← dequantized(MEM(EA,c),lt,ls)
fr D(ps1) ← dequantized(MEM(EA+c,c),lt,ls)

else
fr D(ps0) ← dequantized(MEM(EA,c),lt,ls)
fr D(ps1) ← 1.0

PS0 and PS1 infr D are loaded with a pair of single precision floating point numbers.
Memory is accessed at the effective address (EA is the sum (rA|0) + (rB)) as defined by the
instruction. A pair of numbers from memory are converted as defined by the indicated GQR
control registers and the results are placed into PS0 and PS1. However, if W=1 then only one
number is accessed from memory, converted according to GQR and placed into PS0. PS1 is
loaded with a floating point value of 1.0.
The 3 bit field I selects one of the eight 32 bit GQR control registers. From this register the
LOAD_SCALE and the LD_TYPE fields are used. The LD_TYPE field defines whether the
data in memory is floating point or integer format. If the latter it also defines whether each
integer is 8-bits or 16-bits, signed or unsigned. The LOAD_SCALE field is applied only to
integer numbers and is a signed integer that is subtracted from the exponent after the integer
number from memory has been converted to floating point format.
(See Section 2.3.4.3.12 for dequantized operation.)
Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes XW

0 5 6 10 11 15 16 20 21 22 24 25 30 31

B W I 6 04 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-161

psq_st psq_st
Paired Single Quantized Store, (x’F000 0000’)

psq_st frS,d(rA),W,I

if HID2[PSE] = 0 | HID2[LSQE] = 0 then Goto illegal instruction error handler
if r A = 0
then b ← 0
else b ← (r A)
EA← b + EXTS(d)
stt ← qr I[ST_TYPE]
sts ← qr I[ST_SCALE]
c ← 4
if stt = (4|6) then c ← 10
if stt = (5|7) then c ← 20
if W = 0
then

MEM(EA,c) ← quantized(frS(ps0),stt,sts)
MEM(EA+c,c) ← quantized(frS(ps1),stt,sts)

else
MEM(EA,c) ← quantized(frS(ps0),stt,sts)

The effective address is the sum of (rA|0) + d as defined by the instruction. If W=1 only
one floating point number fromfr S(ps0) is quantized and stored to memory starting at the
effective address. If W=0 a pair of floating point numbers fromfr S(ps0) andfr S(ps1) are
quantized and stored to memory starting at the effective address.

The 3 bit field I selects one of the eight 32 bit GQR control registers. From this register the
STORE_SCALE and the ST_TYPE fields are used. The ST_TYPE field defines whether
the data stored to memory is to be floating-point or integer format. If the latter it also defines
whether each integer is 8-bits or 16-bits, signed or unsigned. The STORE_SCALE field is
a signed integer that is added to the exponent of the floating point number before it is
converted to integer and stored to memory.
(See Section 2.3.4.3.12 for dequantized operation.)

For floating point numbers stored to memory the addition of the STORE_SCALE field to
the exponent does not take place.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes DW

0 5 6 10 11 15 16 17 19 20 31

W I d60 S A

IBM Confidential

Page 12-162 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

psq_stu psq_stu
Paired Single Quantized Store with update, (x’ F400 0000’)

psq_stu frS,d(rA),W,I

if HID2[PSE] = 0 | HID2[LSQE] = 0 then Goto illegal instruction error handler
EA← (r A) + EXTS(d)
stt ← qr I[ST_TYPE]
sts ← qr I[ST_SCALE]
c ← 4
if stt = (4|6) then c ← 10
if stt = (5|7) then c ← 20
if W = 0
then

MEM(EA,c) ← quantized(fr S(ps0),stt,sts)
MEM(EA+c,c) ← quantized(fr S(ps1),stt,sts)

else
MEM(EA,c) ← quantized(fr S(ps0),stt,sts)

r A ← EA

The effective address is the sum of (rA) + d as defined by the instruction. If W=1 only one
floating point number fromfr S(ps0) is quantized and stored to memory starting at the
effective address. If W=0 a pair of floating point numbers fromfr S(ps0) andfr S(ps1) are
quantized and stored to memory starting at the effective address.
The 3 bit field I selects one of the eight 32 bit GQR control registers. From this register the
STORE_SCALE and the ST_TYPE fields are used. The ST_TYPE field defines whether the
data stored to memory is to be floating-point or integer format. If the latter it also defines
whether each integer is 8-bits or 16-bits, signed or unsigned. The STORE_SCALE field is a
signed integer that is added to the exponent of the floating point number before it is converted
to integer and stored to memory.
For floating point numbers stored to memory the addition of the STORE_SCALE field to the
exponent field does not take place. (See Section 2.3.4.3.12 for dequantized operation.)

The effective address is placed into register rA.
If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes DW

0 5 6 10 11 15 16 17 19 20 31

W I d61 S A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-163

psq_stux psq_stux
Paired Single Quantized Store with update Indexed, (x’1000 004E’)

psq_stux frS, rA,rB,W,I

if HID2[PSE] = 0 then Goto illegal instruction error handler
EA← (r A) + (r B)
stt ← qr I[ST_TYPE]
sts ← qr I[ST_SCALE]
c ← 4
if stt = (4|6) then c ← 10
if stt = (5|7) then c ← 20
if W = 0
then

MEM(EA,c) ← quantized(fr S(ps0),stt,sts)
MEM(EA+c,c) ← quantized(fr S(ps1),stt,sts)

else
MEM(EA,c) ← quantized(fr S(ps0),stt,sts)

r A ← EA

The effective address is the sum of (rA) + (rB) as defined by the instruction. If W=1 only
one floating point number fromfr S(ps0) is quantized and stored to memory starting at the
effective address. If W=0 a pair of floating point numbers fromfr S(ps0) andfr S(ps1) are
quantized and stored to memory starting at the effective address.

The 3 bit field I selects one of the eight 32 bit GQR control registers. From this register the
STORE_SCALE and the ST_TYPE fields are used. The ST_TYPE field defines whether
the data stored to memory is to be floating-point or integer format. If the latter it also defines
whether each integer is 8-bits or 16-bits, signed or unsigned. The STORE_SCALE field is
a signed integer that is added to the exponent of the floating point number before it is
converted to integer and stored to memory.
(See Section 2.3.4.3.12 for dequantized operation.)

For floating point numbers stored to memory the addition of the STORE_SCALE field to
the exponent field does not take place.

The effective address is placed intorA.
If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes XW

0 5 6 10 11 15 16 20 21 22 24 25 30 31

B W I 39 04 S A

IBM Confidential

Page 12-164 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

psq_stx psq_stx
Paired Single Quantized Store Indexed, (x’1000 000E’)

psq_stx frS, rA,rB,W,I

if HID2[PSE] = 0 then Goto illegal instruction error handler
if r A = 0
then b ← 0
else b ← (r A)
EA← b + (r B)
stt ← qr I[ST_TYPE]
sts ← qr I[ST_SCALE]
c ← 4
if stt = (4|6) then c ← 10
if stt = (5|7) then c ← 20
if W = 0
then

MEM(EA,c) ← quantized(fr S(ps0),stt,sts)
MEM(EA+c,c) ← quantized(fr S(ps1),stt,sts)

else
MEM(EA,c) ← quantized(fr S(ps0),stt,sts)

The effective address is the sum of (rA|0) + (rB) as defined by the instruction. If W=1 only
one floating point number fromfr S(ps0) is quantized and stored to memory starting at the
effective address. If W=0 a pair of floating point numbers fromfr S(ps0) andfr S(ps1) are
quantized and stored to memory starting at the effective address.

The 3 bit field I selects one of the eight 32 bit GQR control registers. From this register the
STORE_SCALE and the ST_TYPE fields are used. The ST_TYPE field defines whether the
data stored to memory is to be floating-point or integer format. If the latter it also defines
whether each integer is 8-bits or 16-bits, signed or unsigned. The STORE_SCALE field is a
signed integer that is added to the exponent of the floating point number before it is converted
to integer and stored to memory.
(See Section 2.3.4.3.12 for dequantized operation.)

For floating point numbers stored to memory the addition of the STORE_SCALE field to the
exponent field does not take place.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes XW

0 5 6 10 11 15 16 20 21 22 24 25 30 31

B W I 7 04 S A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-165

ps_abs x ps_abs x
Paired Single Absolute Value (x’1000 0210’)

ps_abs frD,frB (Rc = 0)
ps_abs. frD,frB (Rc = 1)

The following operations are performed:

If HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← b’0’ || fr B(ps0)[1-31]
fr D(PS1) ← b’0’ || fr B(ps1)[1-31]

The contents offr B(ps0) with bit 0 cleared are placed intofr D(ps0).

The contents offr B(ps1) with bit 0 cleared are placed intofr D(ps1).

Note that theps_absinstruction treats NaNs just like any other kind of value. That is, the
sign bit of a NaN may be altered byps_abs. This instruction does not alter the FPSCR.

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX(if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes X

B 264 Rc

0 5 6 10 11 15 16 20 21 30 31

Reserved

4 D 0 0 0 0 0

IBM Confidential

Page 12-166 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

ps_add x ps_add x
Paired Single Add (x’1000 002A’)

ps_add frD,frA,frB (Rc = 0)
ps_add. frD,frA,frB (Rc = 1)

The following operations are performed:
If HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← fr A(ps0) + fr B(ps0)
fr D(ps1) ← fr A(ps1) + fr B(ps1)

The floating-point operand infr A(ps0) is added to the floating-point operand infr B(ps0). If
the most-significant bit of the resultant significand is not a one, the result is normalized. The
result is rounded to single-precision under control of the floating-point rounding control field
RN of the FPSCR and placed intofr D(ps0).

The floating-point operand infr A(ps1) is added to the floating-point operand infr B(ps1). If
the most-significant bit of the resultant significand is not a one, the result is normalized. The
result is rounded to single-precision under control of the floating-point rounding control field
RN of the FPSCR and placed intofr D(ps1).
Floating-point addition is based on exponent comparison and addition of the two significands.
The exponents of the two operands are compared, and the significand accompanying the
smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until
the two exponents are equal. The two significands are then added or subtracted as appropriate,
depending on the signs of the operands. All 25 bits in the significand as well as all three guard
bits (G, R, and X) enter into the computation.
If a carry occurs, the sum's significand is shifted right one bit position and the exponent is
increased by one. FPSCR[FPRF] is set to the class and sign of the ps0 result, except for invalid
operation exceptions when FPSCR[VE] = 1.
Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control register(FPSCR):
Affected: FPRF(ps0 only), FR, FI, FX, OX, UX, XX,VXSNAN, VXISI

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

4 D A B 0 0 0 0 0 21 Rc

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-167

ps_cmpo0 ps_cmpo0
Paired Singles Compare Ordered High (x’1000 0040’)

ps_cmpo0 crfD,frA,frB

if HID2[PSE] = 0 then invoke the illegal instruction error handler
if (fr A(ps0) is a NaN or (fr B(ps0) is a NaN)
then c← 0b0001
else if (fr A(ps0)<fr B(ps0))

then c← 0b1000
else if (fr A(ps0)>fr B(ps0))

then c← 0b0100
else c← 0b0010

FPCC← c
CR[(4 ∗ crfD),(4 ∗ crfD + 3)] ← c

if (fr A(ps0) is an SNaN orfr B(ps0) is an SNaN)
then

VXSNAN ← 1
if VE = 0 then VXVC← 1

else if (fr A(ps0) is a QNaN orfr B(ps0) is a QNaN)
then VXVC← 1

The floating-point operand infr A(ps0) is compared to the floating-point operand in
fr B(ps0). The result of the compare is placed into CR fieldcrfD and the FPCC.

If one of the operands is a NaN, either quiet or signaling, then CR fieldcrfD and the FPCC
are set to reflect unordered. If one of the operands is a signaling NaN, then VXSNAN is set,
and if invalid operation is disabled (VE = 0) then VXVC is set. Otherwise, if one of the
operands is a QNaN, then VXVC is set.

Other registers altered: (exception conditions are based on ps0 values)

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, UN

• Floating-Point Status and Control Register:

Affected: FPCC(ps0 only), FX, VXSNAN, VXVC

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes X

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 32 04 crfD 0 0 A

IBM Confidential

Page 12-168 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

ps_cmpo1 ps_cmpo1
Paired Singles Compare Ordered Low (x’1000 00C0’)

ps_cmpol crfD,frA,frB

if HID2[PSE] = 0 then invoke the illegal instruction error handler
if (fr A(ps1) is a NaN or fr B(ps1) is a NaN)
then c ← 0b0001
else if (fr A(ps1)< fr B(ps1))

then c ← 0b1000
else if (fr A(ps1)> fr B(ps1))

then c ← 0b0100
else c ← 0b0010

FPCC ← c
CR[(4 * crf D),(4 * crf D + 3)] ← c

if (fr A(ps1) is an SNaN or fr B(ps1) is an SNaN)
then

VXSNAN← 1
if VE = 0 then VXVC ← 1

else if (fr A(ps1)) is a QNaN or fr B(ps1)) is a QNaN)
then VXVC ← 1

The floating-point operand infr A(ps1) is compared to the floating-point operand infr B(ps1).
The result of the compare is placed into CR fieldcrfD and the FPCC.

If one of the operands is a NaN, either quiet or signaling, then CR fieldcrfD and the FPCC
are set to reflect unordered. If one of the operands is a signaling NaN, then VXSNAN is set,
and if invalid operation is disabled (VE = 0) then VXVC is set. Otherwise, if one of the
operands is a QNaN, then VXVC is set.

Other registers altered: (exception conditions are based on ps1 values)

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, UN

• Floating-Point Status and Control Register:

Affected: FPCC(ps1 only), FX, VXSNAN, VXVC

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes X

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 96 04 crfD 0 0 A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-169

ps_cmpu0 ps_cmpu0
Paired Singles Compare Unordered High (x’1000 0000’)

ps_cmpu0 crfD,frA,frB

if HID2[PSE] = 0 then invoke the illegal instruction error handler
if (fr A(ps0) is a NaN or fr B(ps0) is a NaN)
then c ← 0b0001
else if (fr A(ps0)< fr B(ps0))

then c ← 0b1000
else if (fr A(ps0)> fr B(ps0))

then c ← 0b0100
else c ← 0b0010

FPCC ← c
CR[(4 * crf D),(4 * crf D + 3)] ← c

if (fr A(ps0)) is an SNaN or (fr B(ps0)) is an SNaN)
then VXSNAN ← 1

The floating-point operand infr A(ps0) is compared to the floating-point operand in
fr B(ps0). The result of the compare is placed into CR field crfD and the FPCC

If one of the operands is a NaN, either quiet or signaling, then CR fieldcrfD and the FPCC
are set to reflect unordered. If one of the operands is a signaling NaN, then VXSNAN is set.

Other registers altered: (exception conditions are based on ps0 values)

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, UN

• Floating-Point Status and Control Register:

Affected: FPCC(ps0 only), FX, VXSNAN

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes X

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 0 04 crfD 0 0 A

IBM Confidential

Page 12-170 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

ps_cmpu1 ps_cmpu1
Paired Singles Compare Unordered Low(x’1000 0080’)

ps_cmpul crfD,frA,frB

if HID2[PSE] = 0 then invoke the illegal instruction error handler
if (fr A(ps1) is a NaN or fr B(ps1) is a NaN)
 then c ← 0b0001
 else if (fr A(ps1)< fr B(ps1))

then c ← 0b1000
else if (fr A(ps1)> (fr B(ps1))

 then c ← 0b0100
 else c ← 0b0010

FPCC ← c
CR[(4 * crf D),(4 * crf D + 3)] ← c

if (fr A(ps1) is an SNaN or fr B(ps1) is an SNaN)
then VXSNAN ← 1

The floating-point operand infr A(ps1) is compared to the floating-point operand infr B(ps1).
The result of the compare is placed into CR fieldcrfD and the FPCC.

If one of the operands is a NaN, either quiet or signaling, then CR fieldcrfD and the FPCC
are set to reflect unordered. If one of the operands is a signaling NaN, then VXSNAN is set.

Other registers altered: (exception conditions are based on ps1 values)

• Condition Register (CR field specified by operandcrfD):

Affected: LT, GT, EQ, UN

• Floating-Point Status and Control Register:

Affected: FPCC(ps1 only), FX, VXSNAN

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes X

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 64 04 crfD 0 0 A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-171

ps_div x ps_div x
Paired Single Divide (x’1000 0024’)

ps_div frD,frA,frB (Rc = 0)
ps_div. frD,frA,frB (Rc = 1)

The following operations are performed:

If HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← fr A(ps0) ÷ fr B(ps0)
fr D(ps1) ← fr A(ps1) ÷ fr B(ps1)

The floating-point operand in registerfr A(ps0) is divided by the floating-point operand in
registerfr B(ps0). The remainder is not supplied as a result. If the most-significant bit of the
resultant significand is not a one, the result is normalized. The result is rounded to
single-precision under control of the floating-point rounding control field RN of the FPSCR
and placed intofr D(ps0).

The floating-point operand in registerfr A(ps1) is divided by the floating-point operand in
registerfr B(ps1). The remainder is not supplied as a result. If the most-significant bit of the
resultant significand is not a one, the result is normalized. The result is rounded to
single-precision under control of the floating-point rounding control field RN of the FPSCR
and placed intofr D(ps1).

Floating-point division is based on exponent subtraction and division of the significands.

FPSCR[FPRF] is set to the class and sign of the ps0 result, except for invalid operation
exceptions when FPSCR[VE] = 1 and zero divide exceptions when FPSCR[ZE] = 1.

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control register (FPSCR):

Affected: FPRF (ps0 only), FR, FI, FX, OX, UX, ZX, XX, VXSNAN, VXIDI, VXZDZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 18 Rc4 D A

IBM Confidential

Page 12-172 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

ps_madd x ps_madd x
Paired Single Multiply-Add (x’1000 003A’)

ps_madd frD,frA,frC,frB (Rc = 0)
ps_madd. frD,frA,frC,frB (Rc = 1)

The following operations are performed:

If HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← [fr A(ps0) ∗ fr C(ps0)] + fr B(ps0)
fr D(ps1) ← [fr A(ps1) ∗ fr C(ps1)] + fr B(ps1)

The floating-point operand in registerfr A(ps0) is multiplied by the floating-point operand in
registerfr C(ps0). The floating-point operand in registerfr B(ps0) is added to this intermediate
product. If the most-significant bit of the resultant significand is not a one, the result is
normalized. The result is rounded to single-precision under control of the floating-point
rounding control field RN of the FPSCR and placed intofr D(ps0).

The floating-point operand in registerfr A(ps1) is multiplied by the floating-point operand in
registerfr C(ps1). The floating-point operand in registerfr B(ps1) is added to this intermediate
product. If the most-significant bit of the resultant significand is not a one, the result is
normalized. The result is rounded to single-precision under control of the floating-point
rounding control field RN of the FPSCR and placed intofr D(ps1).

FPSCR[FPRF] is set to the class and sign of the ps0 result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control register(FPSCR):

Affected: FPRF(ps0 only), FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 29 Rc4 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-173

ps_madds0 x ps_madds0 x
Paired Single Multiply-Add Scalar high(x’1000 001C’)

ps_madds0 frD,frA,frC,frB (Rc = 0)
ps_madds0. frD,frA,frC,frB (Rc = 1)

The following operations are performed:

if HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← [fr A(ps0) * fr C(ps0)] + fr B(ps0)
fr D(ps1) ← [fr A(ps1) * fr C(ps0)] + fr B(ps1)

The floating-point operand in registerfr A(ps0) is multiplied by the floating-point operand
in register fr C(ps0). The floating-point operand in registerfr B(ps0) is added to this
intermediate result, if the most-significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to single-precision under control of the
floating-point rounding control field RN of the FPSCR and is placed intofr D(ps0).

The floating-point operand in registerfr A(ps1) is multiplied by the floating-point operand
in register fr C(ps0). The floating-point operand in registerfr B(ps1) is added to this
intermediate result, if the most-significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to single-precision under control of the
floating-point rounding control field RN of the FPSCR and is placed intofr D(ps1).

FPSCR[FPRF] is set to the class and sign of the ps0 result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF (ps0 only), FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 14 Rc4 D A

IBM Confidential

Page 12-174 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

ps_madds1 x ps_madds1 x
Paired Single Multiply-Add Scalar low(x’1000 001E’)

ps_madds1 frD,frA,frC,frB (Rc = 0)
ps_madds1. frD,frA,frC,frB (Rc = 1)

The following operations are performed:

if HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← [fr A(ps0) * fr C(ps1)] + fr B(ps0)
fr D(ps1) ← [fr A(ps1) * fr C(ps1)] + fr B(ps1)

The floating-point operand in registerfr A(ps0) is multiplied by the floating-point operand in
registerfr C(ps1). The floating-point operand in registerfr B(ps0) is added to this intermediate
product. If the most-significant bit of the resultant significand is not a one, the result is
normalized. The result is rounded to single-precision under control of the floating-point
rounding control field RN of the FPSCR and placed intofr D(ps0) .

The floating-point operand in registerfr A(ps1) is multiplied by the floating-point operand in
registerfr C(ps1). The floating-point operand in registerfr B(ps1) is added to this intermediate
product. If the most-significant bit of the resultant significand is not a one, the result is
normalized. The result is rounded to single-precision under control of the floating-point
rounding control field RN of the FPSCR and placed intofr D(ps1) .

FPSCR[FPRF] is set to the class and sign of the ps0 result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF (ps0 only), FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 15 Rc4 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-175

ps_merge00 x ps_merge00 x
Paired Single MERGE high (x’1000 0420’)

ps_merge00 frD,frA,frB (Rc = 0)
ps_merge00. frD,frA,frB (Rc = 1)

The following operations are performed:

if HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← fr A(ps0)
fr D(ps1) ← fr B(ps0)

The floating-point operand in registerfr A(ps0) is moved to registerfr D(ps0) and
floating-point operand in register fr B(ps0) is moved to registerfr D(ps1).

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes X

0 5 6 10 11 15 16 20 21 25 26 30 31

B 528 Rc4 D A

IBM Confidential

Page 12-176 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

ps_merge01 x ps_merge01 x
Paired Single MERGE direct(x’1000 0460’)

ps_merge01 frD,frA,frB (Rc = 0)
ps_merge01. frD,frA,frB (Rc = 1)

The following operations are performed:

if HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← fr A(ps0)
fr D(ps1) ← fr B(ps1)

The floating-point operand in registerfr A(ps0) is moved to registerfr D(ps0) and
floating-point operand in register frB(ps1) is moved to registerfr D(ps1).

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes X

0 5 6 10 11 15 16 20 21 25 26 30 31

B 560 Rc4 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-177

ps_merge10 x ps_merge10 x
Paired Single MERGE swapped(x’1000 04A0’)

ps_merge10 frD,frA,frB (Rc = 0)
ps_merge10. frD,frA,frB (Rc = 1)

The following operations are performed:

if HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← fr A(ps1)
fr D(ps1) ← fr B(ps0)

The floating-point operand in registerfr A(ps1) is moved to registerfr D(ps0) and
floating-point operand in register fr B(ps0) is moved to registerfr D(ps1).

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes X

0 5 6 10 11 15 16 20 21 25 26 30 31

B 592 Rc4 D A

IBM Confidential

Page 12-178 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

ps_merge11 x ps_merge11 x
Paired Single MERGE low(x’1000 04E0’)

ps_merge11 frD,frA,frB (Rc = 0)
ps_merge11. frD,frA,frB (Rc = 1)

The following operations are performed:

if HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← fr A(ps1)
fr D(ps1) ← fr B(ps1)

The floating-point operand in registerfr A(ps1) is moved to registerfr D(ps0) and
floating-point operand in register frB(ps1) is moved to register fr D(ps1).

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes X

0 5 6 10 11 15 16 20 21 25 26 30 31

B 624 Rc4 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-179

ps_mr x ps_mr x
Paired Single Move Register (x’1000 0090’)

ps_mr frD,frB (Rc = 0)
ps_mr. frD,frB (Rc = 1)

The following operations are performed:

If HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← fr B(ps0)
fr D(ps1) ← fr B(ps1)

The contents of register fr B(ps0) are placed intofr D(ps0).
The contents of register fr B(ps1) are placed intofr D(ps1).

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 72 Rc4 D 0 0 0 0 0

IBM Confidential

Page 12-180 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

ps_msub x ps_msub x
Paired Single Multiply-Subtract (x’1000 0038’)

ps_msub frD,frA,frC,frB (Rc = 0)
ps_msub. frD,frA,frC,frB (Rc = 1)

The following operations are performed:

if HID2[PSE] = 0 then invoke the illegal instruction error handler fr D(ps0)
← [fr A(ps0) * fr C(ps0)] - fr B(ps0)
fr D(ps1) ← [fr A(ps1) * fr C(ps1)] - fr B(ps1)

The floating-point operand in registerfr A(ps0) is multiplied by the floating-point operand in
registerfr C(ps0). The floating-point operand in registerfr B(ps0) is subtracted from this
intermediate product. If the most-significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to single-precision under control of the
floating-point rounding control field RN of the FPSCR and placed intofr D(ps0).

The floating-point operand in registerfr A(ps1) is multiplied by the floating-point operand in
registerfr C(ps1). The floating-point operand in registerfr B(ps1) is subtracted from this
intermediate product. If the most-significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to single-precision under control of the
floating-point rounding control field RN of the FPSCR and placed intofr D(ps1).

FPSCR[FPRF] is set to the class and sign of the ps0 result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control register (FPSCR):

Affected: FPRF (ps0 only), FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 28 Rc4 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-181

ps_mul x ps_mul x
Paired Single Multiply (x’1000 0032’)

ps_mul frD,frA,frC (Rc = 0)
ps_mul. frD,frA,frC (Rc = 1)

The following operations are performed:

if HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← fr A(ps0) * fr C(ps0)
fr D(ps1) ← fr A(ps1) * fr C(ps1)

The floating-point operand in registerfr A(ps0) is multiplied by the floating-point operand
in registerfr C(ps0). If the most-significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to single-precision under control of the
floating-point rounding control field RN of the FPSCR and placed intofr D(ps0).

The floating-point operand in registerfr A(ps1) is multiplied by the floating-point operand
in registerfr C(ps1). If the most-significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to single-precision under control of the
floating-point rounding control field RN of the FPSCR and placed intofr D(ps1).

Floating-point multiplication is based on exponent addition and multiplication of the
significands.

FPSCR[FPRF] is set to the class and sign of the ps0 result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control register (FPSCR):

Affected: FPRF (ps0 only), FR, FI, FX, OX, UX, XX, VXSNAN, VXIMZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

0 0 0 0 0 C 25 Rc4 D A

IBM Confidential

Page 12-182 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

ps_muls0 x ps_muls0 x
Paired Single Multiply Scalar high(x’1000 0018’)

ps_muls0 frD,frA,frC (Rc = 0)
ps_muls0. frD,frA,frC (Rc = 1)

The following operations are performed:

if HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← fr A(ps0) * fr C(ps0)
fr D(ps1) ← fr A(ps1) * fr C(ps0)

The floating-point operand in registerfr A(ps0) is multiplied by the floating-point operand
in registerfr C(ps0). If the most-significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to single-precision under control of the
floating-point rounding control field RN of the FPSCR and placed intofr D(ps0).

The floating-point operand in registerfr A(ps1) is multiplied by the floating-point operand
in registerfr C(ps0). If the most-significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to single-precision under control of the
floating-point rounding control field RN of the FPSCR and placed intofr D(ps1).

FPSCR[FPRF] is set to the class and sign of the ps0 result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register (FPSCR):

Affected: FPRF (ps0 only), FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

0 0 0 0 0 C 12 Rc4 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-183

ps_muls1 x ps_muls1 x
Paired Single Multiply Scalar low(x’1000 001A’)

ps_muls1 frD,frA,frC (Rc = 0)
ps_muls1. frD,frA,frC (Rc = 1)

The following operations are performed:

if HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← fr A(ps0) * fr C(ps1)
fr D(ps1) ← fr A(ps1) * fr C(ps1)

The floating-point operand in registerfr A(ps0) is multiplied by the floating-point operand
in registerfr C(ps1). If the most-significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to single-precision under control of the
floating-point rounding control field RN of the FPSCR and are placed intofr D(ps0).

The floating-point operand in registerfr A(ps1) is multiplied by the floating-point operand
in registerfr C(ps1). If the most-significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to single-precision under control of the
floating-point rounding control field RN of the FPSCR and are placed intofr D(ps1).

FPSCR[FPRF] is set to the class and sign of the ps0 result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register (FPSCR):

Affected: FPRF (ps0 only), FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

0 0 0 0 0 C 13 Rc4 D A

IBM Confidential

Page 12-184 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

ps_nabs x ps_nabs x
Paired Single Negative Absolute Value (x’1000 0110’)

ps_nabs frD,frB (Rc = 0)
ps_nabs. frD,frB (Rc = 1)

The following operations are performed:

If HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← b’1’ || fr B(ps0)[1-31]
fr D(ps1) ← b’1’ || fr B(ps1)[1-31]

The contents of register fr B(ps0) with bit 0 set are placed intofr D(ps0).
The contents of register fr B(ps1) with bit 0 set are placed intofr D(ps1).

NOTE: Theps_nabsinstruction treats NaNs just like any other kind of value. That is, the sign bit
of a NaN may be altered byps_nabs. This instruction does not alter the FPSCR.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes X

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 136 Rc4 D 0 0 0 0 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-185

ps_neg x ps_neg x
Paired Single Negate (x’1000 0050’)

ps_neg frD,frB (Rc = 0)
ps_neg. frD,frB (Rc = 1)

The following operations are performed:

If HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← ¬(fr B(ps0)[0] || fr B(ps0)[1-31])
fr D(ps1) ← ¬(fr B(ps1)[0] || fr B(ps1)[1-31])

The contents of register fr B(ps0) with bit 0 inverted are placed intofr D(ps0).
The contents of register fr B(ps1) with bit 0 inverted are placed intofr D(ps1).

Note that theps_neginstruction treats NaNs just like any other kind of value. That is, the
sign bit of a NaN may be altered byps_neg. This instruction does not alter the FPSCR.

Other registers altered:

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 40 Rc4 D 0 0 0 0 0

IBM Confidential

Page 12-186 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

ps_nmadd x ps_nmadd x
Paired Single Negative Multiply-Add (x’1000 003E’)

ps_nmadd frD,frA,frC,frB (Rc = 0)
ps_nmadd. frD,frA,frC,frB (Rc = 1)

The following operations are performed:
if HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← -[fr A(ps0) * fr C(ps0) + fr B(ps0)]
fr D(ps1) ← -[fr A(ps1) * fr C(ps1) + fr B(ps1)]

The floating-point operand in registerfr A(ps0) is multiplied by the floating-point operand in register
fr C(ps0).

The floating-point operand in registerfr B(ps0) is added to this intermediate product and the result is
negated.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The result
is rounded to single-precision under control of the floating-point rounding control field RN of the
FPSCR and placed intofr D(ps0).

The floating-point operand in registerfr A(ps1) is multiplied by the floating-point operand in register
fr C(ps1).

The floating-point operand in registerfr B(ps1) is added to this intermediate product and the result is
negated.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The result
is rounded to single-precision under control of the floating-point rounding control field RN of the
FPSCR and placed intofr D(ps1).

This instruction produces the same result as would be obtained by using the Paired Single
Multiply-Add (ps_maddx) instruction and then negating the result, with the following exceptions:

• QNaNs propagate with no effect on their sign bit.
• QNaNs that are generated as the result of a disabled invalid operation exception have a sign

bit of zero.
• SNaNs that are converted to QNaNs as the result of a disabled invalid operation exception

retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the ps0 result, except for invalid operation exceptions
when FPSCR[VE] = 1.

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 31 Rc4 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-187

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control register (FPSCR):
Affected: FPRF (ps0 only), FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes A

IBM Confidential

Page 12-188 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

ps_nmsub x ps_nmsub x
Paired Single Negative Multiply-Subtract (x’1000 003C’)

ps_nmsub frD,frA,frC,frB (Rc = 0)
ps_nmsub. frD,frA,frC,frB (Rc = 1)

]

The following operations are performed:
if HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← -[fr A(ps0) * fr C(ps0) - fr B(ps0)]
fr D(ps1) ← -[fr A(ps1) * fr C(ps1) - fr B(ps1)]

The floating-point operand in registerfr A(ps0) is multiplied by the floating-point operand in
registerfr C(ps0). The floating-point operand in registerfr B(ps0) is subtracted from this
intermediate product. If the most-significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to single-precision under control of the
floating-point rounding control field RN of the FPSCR, then negated and placed into
fr D(ps0).
The floating-point operand in registerfr A(ps1) is multiplied by the floating-point operand in
registerfr C(ps1). The floating-point operand in registerfr B(ps1) is subtracted from this
intermediate product. If the most-significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to single-precision under control of the
floating-point rounding control field RN of the FPSCR, then negated and placed into
fr D(ps1).
This instruction produces the same result obtained by negating the result of a Floating
Multiply-Subtract (ps_msubx) instruction with the following exceptions:

• QNaNs propagate with no effect on their sign bit.
• QNaNs that are generated as the result of a disabled invalid operation exception have

a sign bit of zero.
• SNaNs that are converted to QNaNs as the result of a disabled invalid operation

exception retain the sign bit of the SNaN.
FPSCR[FPRF] is set to the class and sign of the ps0 result, except for invalid operation
exceptions when FPSCR[VE] = 1.
Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field)
Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control register (FPSCR):
Affected: FPRF (ps0 only), FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 30 Rc4 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-189

ps_res x ps_res x
Paired Single Reciprocal Estimate (x’1000 0030’)

ps_res frD,frB (Rc = 0)
ps_res. frD,frB (Rc = 1)

A single-precision estimate of the reciprocal of the floating-point operand in register
fr B(ps0) is placed into registerfr D(ps0) and a single-precision estimate of the reciprocal
of the floating-point operand in registerfr B(ps1) is placed into registerfr D(ps1). These
estimates placed into registerfr D(ps0) andfr D(ps1) are correct to a precision of one part
in 4096 of the reciprocal offr B(ps0) and fr B(ps1), respectively. That is, for each
calculation:

where x is thefr B(ps0) orfr B(ps1) value in the source registers.
Operation with various special values of the operand is summarized below:

Operand ResultException

–∞ –0 None

–0 –∞∗ZX

+0 +∞∗ZX

+∞ +0None

SNaN QNaN**VXSNAN

QNaN QNaNNone

Notes: * No result if FPSCR[ZE] = 1

** No result if FPSCR[VE] = 1

FPSCR[FPRF] is set to the class and sign of the ps0 result, except for invalid operation
exceptions when FPSCR[VE] = 1 and zero divide exceptions when FPSCR[ZE] = 1.
Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control register (FPSCR):
Affected: FPRF (ps0 only), FR (undefined), FI (undefined), FX, OX, UX, ZX, VXSNAN

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes A

B 0 0 0 0 0 24 Rc

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

4 D 0 0 0 0 0

ABS

estimate
1
x
--- 

 –

1
x
--- 

 

 
 
 
 
 

1
4096
------------≤

IBM Confidential

Page 12-190 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

ps_rsqrte x ps_rsqrte x
Paired Single Reciprocal Square Root Estimate (x’1000 0034’)

ps_rsqrte frD,frB (Rc = 0)
ps_rsqrte. frD,frB (Rc = 1)

A single-precision estimate of the reciprocal of the square root of the floating-point operand
in register fr B(ps0) is placed into registerfr D(ps0). A single-precision estimate of the
reciprocal of the square root of the floating-point operand in registerfr B(ps1) is placed into
registerfr D(ps1).These estimates placed into registerfr D(ps0) andfr D(ps1) are correct to a
precision of one part in 4096 of the reciprocal of the square root offr B(ps0) andfr B(ps1),
respectively. That is, for each calculation:

where x is thefr B(ps0) orfr B(ps1) value in the source registers.

Operations with various special values of the operand is summarized below:

Operand ResultException

–∞ QNaN**VXSQRT

<0 QNaN**VXSQRT

–0 –∞*ZX

+0 +∞∗
∞* ZX

+∞ +0None

SNaN QNaN**VXSNAN

QNaN QNaNNone

Notes: * No result if FPSCR[ZE] = 1

** No result if FPSCR[VE] = 1

FPSCR[FPRF] is set to the class and sign of the ps0 result, except for invalid operation
exceptions when FPSCR[VE] = 1 and zero divide exceptions when FPSCR[ZE] = 1.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

4 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

ABS

estimate
1

x
------- 

 –

1

x
------- 

 

 
 
 
 
 

1
4096
------------≤

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-191

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control register (FPSCR):

Affected: FPRF (ps0 only), FR (undefined), FI (undefined), FX, ZX, VXSNAN, VXSQRT

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes A

IBM Confidential

Page 12-192 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

ps_sel x ps_sel x
Paired Single Select (x’1000 002E’)

ps_sel frD,frA,frC,frB (Rc = 0)
ps_sel. frD,frA,frC,frB (Rc = 1)

The following operations are performed:

If HID2[PSE] = 0 then invoke the illegal instruction error handler
if (fr A(ps0) ≥ 0.0)

then fr D(ps0) ← fr C(ps0)
else fr D(ps0) ← fr B(ps0)

if (fr A(ps1) ≥ 0.0)
then fr D(ps1) ← fr C(ps1)
else fr D(ps1) ← fr B(ps1)

The floating-point operand in registerfr A(ps0) is compared to the value zero. If the operand
is greater than or equal to zero, registerfr D(ps0) is set to the contents of registerfr C(ps0). If
the operand is less than zero or is a NaN, registerfr D(ps0) is set to the contents of register
fr B(ps0).

The floating-point operand in registerfr A(ps1) is compared to the value zero. If the operand
is greater than or equal to zero, registerfr D(ps1) is set to the contents of registerfr C(ps1). If
the operand is less than zero or is a NaN, registerfr D(ps1) is set to the contents of register
fr B(ps1).

These comparisons ignore the sign of zero (that is, regard +0 as equal to –0).

Care must be taken in usingps_selif IEEE compatibility is required, or if the values being
tested can be NaNs or infinities.

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes A

B C 23 Rc

0 5 6 10 11 15 16 20 21 25 26 30 31

4 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-193

ps_sub x ps_sub x
Paired Single Subtract (x’1000 0028’)

ps_sub frD,frA,frB (Rc = 0)
ps_sub. frD,frA,frB (Rc = 1)

The following operations are performed:

If HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← fr A(ps0) - fr B(ps0)
fr D(ps1) ← fr A(ps1) - fr B(ps1)

The floating-point operand in registerfr B(ps0) is subtracted from the floating-point
operand in registerfr A(ps0). If the most-significant bit of the resultant significand is not a
one, the result is normalized. The result is rounded to single-precision under control of the
floating-point rounding control field RN of the FPSCR and placed intofr D(ps0).

The floating-point operand in registerfr B(ps1) is subtracted from the floating-point
operand in registerfr A(ps1). If the most-significant bit of the resultant significand is not a
one, the result is normalized. The result is rounded to single-precision under control of the
floating-point rounding control field RN of the FPSCR and placed intofr D(ps1).

FPSCR[FPRF] is set to the class and sign of the ps0 result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control register (FPSCR):

Affected: FPRF (ps0 only), FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes A

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 20 Rc4 D A

IBM Confidential

Page 12-194 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

ps_sum0 x ps_sum0 x
Paired Single vector SUM high (x’1000 0014’)

ps_sum0 frD,frA,frC,frB (Rc = 0)
ps_sum0. frD,frA,frC,frB (Rc = 1)

The following operations are performed:

if HID2[PSE] = 0 then invoke the illegal instruction error handler
fr D(ps0) ← fr A(ps0) + fr B(ps1)
fr D(ps1) ← fr C(ps1)

The floating-point operand in registerfr A(ps0) is added to the floating-point operand from
registerfr B(ps1). If the most-significant bit of the resultant significand is not a one, the result
is normalized. The result is rounded to single-precision under control of the floating-point
rounding control field RN of the FPSCR and placed intofr D(ps0).

The floating-point operand in register frC(ps1) is placed intofr D(ps1).

FPSCR[FPRF] is set to the class and sign of the ps0 result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF (ps0 only), FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 10 Rc4 D A

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-195

ps_sum1 x ps_sum1 x
Paired Single vector SUM low(x’1000 0016’)

ps_sum1 frD,frA,frC,frB (Rc = 0)
ps_sum1. frD,frA,frC,frB (Rc = 1)

The following operations are performed:

if HID2[PSE] = 0 then Goto illegal instruction error handler
fr D(ps0) ← fr C(ps0)
fr D(ps1) ← fr A(ps0) + fr B(ps1)

The floating-point operand in register frC(ps0) is placed intofr D(ps0).

The floating-point operand in registerfr A(ps0) is added to the floating-point operand from
registerfr B(ps1). If the most-significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to single-precision under control of the
floating-point rounding control field RN of the FPSCR and placed intofr D(ps1).

FPSCR[FPRF] is set to the class and sign of the ps1 result, except for invalid operation
exceptions when FPSCR[VE] = 1.

Other registers altered: (exception conditions are based on either ps0 or ps1 values)

• Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)

• Floating-Point Status and Control Register:

Affected: FPRF (ps1 only), FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA Yes A

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 11 Rc4 D A

IBM Confidential

Page 12-196 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

rfi rfi
Return from Interrupt (x’4C00 0064’)

MSR[0,5-9,16–23, 25–27, 30–31] ← SRR1[0,5-9,16–23, 25–27, 30–31]
MSR[13] ← b’0’
NIA ←ieaSRR0[0–29] || 0b00

Bits SRR1[0,5-9,16–23, 25–27, 30–31] are placed into the corresponding bits of the MSR.
MSR[13] is set to 0. If the new MSR value does not enable any pending exceptions, then the
next instruction is fetched, under control of the new MSR value, from the address
SRR0[0–29] || 0b00. If the new MSR value enables one or more pending exceptions, the
exception associated with the highest priority pending exception is generated; in this case the
value placed into SRR0 by the exception processing mechanism is the address of the
instruction that would have been executed next had the exception not occurred. Note that an
implementation may define additional MSR bits, and in this case, may also cause them to be
saved to SRR1 from MSR on an exception and restored to MSR from SRR1 on anrfi .

This is a supervisor-level, context synchronizing instruction.

Other registers altered:

• MSR

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

OEA YES XL

0 0 0 0 0 00 000 50 0

Reserved

0 5 6 10 11 15 16 20 21 30 31

19 00 000

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-197

rlwimi x rlwimi x
Rotate Left Word Immediate then Mask Insert (x’5000 0000’)

rlwimi r A,rS,SH,MB,ME (Rc = 0)
rlwimi. r A,rS,SH,MB,ME (Rc = 1)

n ← SH
r ← ROTL(r S, n)
m← MASK(MB, ME)
r A ← (r & m) | (r A & ¬ m)

The contents ofrS are rotated left the number of bits specified by operand SH. A mask is
generated having 1 bits from bit MBthrough bit ME and 0 bits elsewhere. The rotated data
is inserted intorA under control of the generated mask.

NOTE: rlwimi can be used to copy a bit field of any length from registerrS into the contents
of rA. This field can start from any bit position inrS and be placed into any position in
rA. The length of the field can range from 0 to 32 bits. The remaining bits in register
rA remain unchanged. :

• To copy byte_0 (bits 0-7) from rS into byte_3 (bits 24-31) of rA , set SH = 8 ,
set MB = 24, and set ME = 31.

• In general, to copy ann-bit field that starts in bit position b in register rS into register
rA starting a bit position c: set SH = 32 - c + b Mod(32), set MB =c, and set
ME = (c + n) – 1 Mod(32).

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Simplified mnemonics:

inslwi rA,rS,n,b equivalent to rlwimi rA,rS,32 – b,b,b + n – 1
insrw i rA,rS,n,b (n > 0) equivalent to rlwim i rA,rS,32 – (b + n),b,(b + n) – 1

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA M

0 5 6 10 11 15 16 20 21 25 26 30 31

20 S A SH MB ME Rc

IBM Confidential

Page 12-198 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

rlwinm x rlwinm x
Rotate Left Word Immediate then AND with Mask (x’5400 0000’)

rlwinm r A,rS,SH,MB,ME (Rc = 0)
rlwinm. r A,rS,SH,MB,ME (Rc = 1)

n ← SH
r ← ROTL(r S, n)
m← MASK(MB, ME)
r A ← r & m

The contents ofrS are rotated left the number of bits specified by operand SH. A mask is
generated having 1 bits from bit MBthrough bit MEand 0 bits elsewhere. The rotated data is
ANDed with the generated mask and the result is placed intorA.

NOTE: rlwinm can be used to extract, rotate, shift, and clear bit fields using the methods shown
below:

• To extract ann-bit field, that starts at bit positionb in rS, right-justified intorA
(clearing the remaining 32 – n bits ofrA), set SH = b + n,
set MB = 32 – n, and set ME = 31.

• To extract ann-bit field, that starts at bit positionb in rS, left-justified intorA (clearing
the remaining 32 – n bits ofrA), set SH = b, set MB = 0, and set ME = n – 1.

• To rotate the contents of a register left (or right) byn bits, set SH = n (32 – n), set
MB = 0, and set ME = 31.

• To shift the contents of a register right byn bits, by setting SH = 32 –n, MB = n, and
ME = 31.

It can also be used to clear the high-orderb bits of a register and then shift the result left byn
bits by setting SH = n, by setting MB = b – n, and by setting ME = 31 – n.

• To clear the low-ordern bits of a register, by setting SH = 0, MB = 0, and
ME = 31 – n.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

0 5 6 10 11 15 16 20 21 25 26 30 31

21 S A SH MB ME Rc

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-199

Simplified mnemonics:

extlwi rA,rS,n,b (n > 0) equivalent to rlwinm r A,rS,b,0,n – 1
extrwi r A,rS,n,b (n > 0) equivalent to rlwinm r A,rS,b + n,32 – n,31
rotlwi r A,rS,n equivalent to rlwinm r A,rS,n,0,31
rotrwi r A,rS,n equivalent to rlwinm r A,rS,32– n,0,31
slwi rA,rS,n (n < 32) equivalent to rlwinm r A,rS,n,0,31–n
srwi r A,rS,n (n < 32) equivalent to rlwinm r A,rS,32 – n,n,31
clrlwi r A,rS,n (n < 32) equivalent to rlwinm r A,rS,0,n,31
clrrwi r A,rS,n (n < 32) equivalent to rlwinm r A,rS,0,0,31 – n
clrlslwi r A,rS,b,n (n b < 32) equivalent to rlwinm r A,rS,n,b – n,31 – n

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA M

IBM Confidential

Page 12-200 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

rlwnm x rlwnm x
Rotate Left Word then AND with Mask (x’5C00 0000’)

rlwnm r A,rS,rB,MB,ME (Rc = 0)
rlwnm. r A,rS,rB,MB,ME (Rc = 1)

n ← r B[27-31]
r ← ROTL(r S, n)
m← MASK(MB, ME)
r A ← r & m

The contents ofrS are rotated left the number of bits specified by the low-order five bits of
rB. A mask is generated having 1 bits from bit MB through bit ME and 0 bits elsewhere. The
rotated data is ANDed with the generated mask and the result is placed intorA.

NOTE: rlwnm can be used to extract and to rotate bit fields using one of these methods:

• To extract ann-bit field, that starts at variable bit positionb in rS, right-justified into
rA (clearing the remaining 32 – n bits ofrA), set the low-order five bits ofrB to b +
n, set MB = 32 –n, and set ME = 31.

• To extract ann-bit field, that starts at variable bit positionb in rS, left-justified intorA
(clearing the remaining 32 –n bits ofrA), set the low-order five bits ofrB to b, set MB
= 0, and set ME =n – 1.

• To rotate the contents of a register left (or right) byn bits, set the low-order five bits of
rB to n (32 –n), set MB = 0, and set ME = 31.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Simplified mnemonics:

rotlwr A,rS,rB equivalent to rlwnm r A,rS,rB,0,31

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA M

0 5 6 10 11 15 16 20 21 25 26 30 31

23 S A B MB ME Rc

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-201

sc sc
System Call (x’4400 0002’)

In the PowerPC UISA, thesc instruction calls the operating system to perform a service.
When control is returned to the program that executed the system call, the content of the
registers depends on the register conventions used by the program providing the system
service.

This instruction is context synchronizing, as described in Section 4.1.5.1, “Context
Synchronizing Instructions,” in thePowerPC Microprocessor Family: The Programming
Environments manual.

Other registers altered:

• Dependent on the system service

In PowerPC OEA, thesc instruction does the following:

SRR0 ←iea CIA + 4
SRR1[1-41-4, 10-151] ← 0
SRR1[0,5-9, 16-23, 25-27, 30-31] ← MSR[0,5-9, 16-23, 25-27, 30-31]
MSR← new_value (see below)
NIA ←iea base_ea + 0xC00 (see below)

The EA of the instruction following thesc instruction is placed into SRR0. Bits 0,
5-9,16-23, 25-27, and 30-31 of the MSR are placed into the corresponding bits of SRR1,
and bits 1-4 and 10-15 of SRR1 are set to undefined values.
NOTE: An implementation may define additional MSR bits, and in this case, may also cause

them to be saved to SRR1 from MSR on an exception and restored to MSR from SRR1
on anrfi ; then a system call exception is generated. The exception causes the MSR to
be altered as described in Section 6.4, “Exception Definitions” inThe Programming
Environments Manual.

The exception causes the next instruction to be fetched from offset 0xC00 from the physical
base address determined by the new setting of MSR[IP].
Other registers altered:

• SRR0
• SRR1
• MSR

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA/OEA SC

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Reserved

0 5 6 10 11 15 16 29 30 31

17 0 0 0 0 0 0 0 0 0 0

IBM Confidential

Page 12-202 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

slw x slw x
Shift Left Word (x’7C00 0030’)

slw rA,rS,rB (Rc = 0)
slw. rA,rS,rB (Rc = 1)

n ← r B[27-31]
r ← ROTL(r S , n)
if r B[26] = 0
then m ← MASK(0 , 31 – n)
else m ← (32)0
r A ← r & m

The contents ofrS are shifted left the number of bits specified by the low-order five bits of
rB. Bits shifted out of position 0 are lost. Zeros are supplied to the vacated positions on the
right. The 32-bit result is placed intorA. However, shift amounts from 32 to 63 give a zero
result.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 24 Rc

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-203

sraw x sraw x
Shift Right Algebraic Word (x’7C00 0630’)

sraw rA,rS,rB (Rc = 0)
sraw. rA,rS,rB (Rc = 1)

n ← r B[27-31]
r ← ROTL(r S, 32– n)
if r B[26] = 0
then m ← MASK(n, 31)
else m ← (32)0
S ← r S(0)
r A ← r & m | (32)S & ¬ m
XER[CA] ← S & (r & ¬ m[0-31] ≠ 0

The contents ofrS are shifted right the number of bits specified by the low-order five bits
of rB (shift amounts between 0-31). Bits shifted out of position 31 are lost. Bit 0 ofrS is
replicated to fill the vacated positions on the left. The 32-bit result is placed intorA.
XER[CA] is set if rS contains a negative number and any 1 bits are shifted out of position
31; otherwise XER[CA] is cleared. A shift amount of zero causesrA to receive the 32 bits
of rS, and XER[CA] to be cleared. However, shift amounts from 32 to 63 give a result of
32 sign bits, and cause XER[CA] to receive the sign bit ofrS.

NOTE: Thesraw instruction, followed byaddze, can be used to divide quickly by 2n.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

• XER:

Affected: CA

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 792 Rc

IBM Confidential

Page 12-204 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

srawi x srawi x
Shift Right Algebraic Word Immediate (x’7C00 0670’)

srawi rA,rS,SH (Rc = 0)
srawi. rA,rS,SH (Rc = 1)

n ← SH
r ← ROTL(r S, 32 – n)
m← MASK(n, 31)
S ← r S(0)
r A ← r & m | (32)S & ¬ m
XER[CA] ← S(0) & ((r & ¬ m) ≠ 0)

The contents ofrS are shifted right SH bits. Bits shifted out of position 31 are lost. Bit 0 of
rS is replicated to fill the vacated positions on the left. The result is placed intorA. XER[CA]
is set if the 32 bits ofrS contain a negative number and any 1 bits are shifted out of position
31; otherwise XER[CA] is cleared. A shift amount of zero causesrA to receive the value of
rS, and XER[CA] to be cleared.

NOTE: Thesrawi instruction followed byaddzeinstruction can be used to divide quickly by 2n.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

• XER:

Affected: CA

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A SH 824 Rc

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-205

srw x srw x
Shift Right Word (x’7C00 0430’)

srw rA,rS,rB (Rc = 0)
srw. rA,rS,rB (Rc = 1)

n ← r B[27-31]
r ← ROTL(r S, 32– n)
if r B[26] = 0
then m ← MASK(n , 31)
else m ← (32)0
r A ← r & m

The contents ofrS are shifted right the number of bits specified by the low-order five bits
of rB (shift amounts between 0-31). Bits shifted out of position 31 are lost. Zeros are
supplied to the vacated positions on the left. The 32-bit result is placed intorA. However,
shift amounts from 32 to 63 give a zero result.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 536 Rc

IBM Confidential

Page 12-206 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

stb stb
Store Byte (x’9800 0000’)

stb rS,d(rA)

if r A = 0
then b ← 0
else b ← (r A)
EA← b + EXTS(d)
MEM(EA, 1) ← r S[24-31]

EA is the sum (rA|0) + d. The contents of the low-order eight bits ofrS are stored into the
byte in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

38 S A d

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-207

stbu stbu
Store Byte with Update (x’9C00 0000’)

stbu rS,d(rA)

EA← (r A) + EXTS(d)
MEM(EA, 1) ← r S[24-31]
r A ← EA

EA is the sum (rA) + d. The contents of the low-order eight bits ofrS are stored into the
byte in memory addressed by EA.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

39 S A d

IBM Confidential

Page 12-208 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

stbux stbux
Store Byte with Update Indexed (x’7C00 01EE’)

stbux rS,rA,rB

EA← (r A) + (r B)
MEM(EA, 1) ← r S[24-31]
r A ← EA

EA is the sum (rA) + (rB). The contents of the low-order eight bits ofrS are stored into the
byte in memory addressed by EA.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 21 22 30 31

31 S A B 247 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-209

stbx stbx
Store Byte Indexed (x’7C00 01AE’)

stbx rS,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA← b + (r B)
MEM(EA, 1) ← r S[24-31]

EA is the sum (rA|0) + (rB). The contents of the low-order eight bits ofrS are stored into
the byte in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 21 22 30 31

31 S A B 215 0

IBM Confidential

Page 12-210 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

stfd stfd
Store Floating-Point Double (x’D800 0000’)

stfd frS,d(rA)

if r A = 0
then b ← 0
else b ← (r A)
EA← b + EXTS(d)
MEM(EA, 8) ← (fr S)

EA is the sum (rA|0) + d.

The contents of registerfr S are stored into the double word in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 30 31

54 S A d

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-211

stfdu stfdu
Store Floating-Point Double with Update (x’DC00 0000’)

stfdu frS,d(rA)

EA← (r A) + EXTS(d)
MEM(EA, 8) ← (fr S)
r A ← EA

EA is the sum (rA) + d.

The contents of registerfr S are stored into the double word in memory addressed by EA.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

55 S A d

IBM Confidential

Page 12-212 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

stfdux stfdux
Store Floating-Point Double with Update Indexed (x’7C00 05EE’)

stfdux fr S,rA,rB

EA← (r A) + (r B)
MEM(EA, 8) ← (fr S)
r A ← EA

EA is the sum (rA) + (rB).

The contents of registerfr S are stored into the double word in memory addressed by EA.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 759 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-213

stfdx stfdx
Store Floating-Point Double Indexed (x’7C00 05AE’)

stfdx frS,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA← b + (r B)
MEM(EA, 8) ← (fr S)

EA is the sum (rA|0) + rB.

The contents of register fr S are stored into the double word in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 727 0

IBM Confidential

Page 12-214 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

stfiwx stfiwx
Store Floating-Point as Integer Word Indexed (x’7C00 07AE’)

stfiwx fr S,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA← b + (r B)
MEM(EA, 4) ← fr S[32–63]

EA is the sum (rA|0) + (rB).

The contents of the low-order 32 bits of registerfr S are stored, without conversion, into the
word in memory addressed by EA.

This instruction when preceded by the floating-point convert to integer word (fctiwx) or
floating-point convert to integer word with round toward zero (fctiwzx) will store the 32-bit
integer value of a double-precision floating-point number. (seefctiwx and fctiwzx
instructions)

Do NOT attempt to use this instruction to store the ps1 value for paired-single floating-point
operands, the stored value is undefined.

If the content of registerfr S is a double-precision floating point number, the low-order 32 bits
of the 52 bit mantissa are stored. (without the exponent, this could be a meaningless value)

If the contents of registerfr S were produced, either directly or indirectly, by anlfs instruction,
a single-precision arithmetic instruction, orfrsp, then the value stored is the low-order 32 bits
of the 52 bit mantissa of the double-precision number. (all single-precision floating-point
numbers are maintained in double precision format in the floating-point register file)

When HID2[PSE] = 1, the input operand infr S must be the result of anfctiw or fctiwz
instruction. Otherweise, the result is undefined.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA YES X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A B 983 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-215

stfs stfs
Store Floating-Point Single (x’D000 0000’)

stfs frS,d(rA)

if r A = 0
then b ← 0
else b ← (r A)
EA← b + EXTS(d)
MEM(EA, 4) ← SINGLE(fr S)

EA is the sum (rA|0) + d.

The contents of registerfr S are converted to single-precision and stored into the word in
memory addressed by EA. For a discussion on floating-point store conversions, see
Section D.7, “Floating-Point Store Instructions.”

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

52 S A d

IBM Confidential

Page 12-216 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

stfsu stfsu
Store Floating-Point Single with Update (x’D400 0000’)

stfsu frS,d(rA)

EA← (r A) + EXTS(d)
MEM(EA, 4) ← SINGLE(fr S)
r A ← EA

EA is the sum (rA) + d.

The contents offr S are converted to single-precision and stored into the word in memory
addressed by EA. For a discussion on floating-point store conversions, see Section D.7,
“Floating-Point Store Instructions,” inThe Programming Environments Manual.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

53 S A d

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-217

stfsux stfsux
Store Floating-Point Single with Update Indexed (x’7C00 056E’)

stfsux frS,rA,rB

EA← (r A) + (r B)
MEM(EA, 4) ← SINGLE(fr S)
r A ← EA

EA is the sum (rA) + (rB).

The contents offr S are converted to single-precision and stored into the word in memory
addressed by EA. For a discussion on floating-point store conversions, see Section D.7,
“Floating-Point Store Instructions,” inThe Programming Environments Manual.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 695 0

IBM Confidential

Page 12-218 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

stfsx stfsx
Store Floating-Point Single Indexed (x’7C00 052E’)

stfsx frS,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA← b + (r B)
MEM(EA, 4) ← SINGLE(fr S)

EA is the sum (rA|0) + (rB).

The contents of registerfr S are converted to single-precision and stored into the word in
memory addressed by EA. For a discussion on floating-point store conversions, see
Section D.7, “Floating-Point Store Instructions,” inThe Programming Environments Manual.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 663 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-219

sth sth
Store Half Word (x’B000 0000’)

sth rS,d(rA)

if r A = 0
then b ← 0
else b ← (r A)
EA← b + EXTS(d)
MEM(EA, 2) ← r S[16-31]

EA is the sum (rA|0) + d. The contents of the low-order 16 bits ofrS are stored into the half
word in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

44 S A d

IBM Confidential

Page 12-220 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

sthbrx sthbrx
Store Half Word Byte-Reverse Indexed (x’7C00 072C’)

sthbrx r S,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA← b + (r B)
MEM(EA, 2) ← r S[24-31] || r S[16-23]

EA is the sum (rA|0) + (rB). The contents of the low-order eight bits (24-31) ofrS are stored
into bits 0–7 of the half word in memory addressed by EA. The contents of the subsequent
low-order eight bits (16-23) ofrS are stored into bits 8–15 of the half word in memory
addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 918 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-221

sthu sthu
Store Half Word with Update (x’B400 0000’)

sthu rS,d(rA)

EA← (r A) + EXTS(d)
MEM(EA, 2) ← r S[16-31]
r A ← EA

EA is the sum (rA) + d. The contents of the low-order 16 bits ofrS are stored into the half
word in memory addressed by EA.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

45 S A d

IBM Confidential

Page 12-222 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

sthux sthux
Store Half Word with Update Indexed (x’7C00 036E’)

sthux rS,rA,rB

EA← (r A) + (r B)
MEM(EA, 2) ← r S[16-31]
r A ← EA

EA is the sum (rA) + (rB). The contents of the low-order 16 bits ofrS are stored into the half
word in memory addressed by EA.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 439 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-223

sthx sthx
Store Half Word Indexed (x’7C00 032E’)

sthx rS,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA← b + (r B)
MEM(EA, 2) ← r S[16-31]

EA is the sum (rA|0) + (rB). The contents of the low-order 16 bits ofrS are stored into the
half word in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 407 0

IBM Confidential

Page 12-224 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

stmw stmw
Store Multiple Word (x’BC00 0000’)

stmw rS,d(rA)

if r A = 0
then b ← 0
else b ← (r A)
EA← b + EXTS(d)
r ← r S
§do while r ≤ 31

MEM(EA, 4) ← GPR(r)
r ← r + 1
EA← EA + 4

EA is the sum (rA|0) + d.

n = (32 –rS).

n consecutive words starting at EA are stored from the GPRsrS throughr31. For example, if
rS = 30, 2 words are stored.

EA must be a multiple of four. If it is not, either the system alignment exception handler is
invoked or the results are boundedly undefined. For additional information about alignment
and DSI exceptions, see Section 6.4.3, “DSI Exception (0x00300),” in thePowerPC
Microprocessor Family: The Programming Environments manual..

NOTE: In some implementations, this instruction is likely to have a greater latency and take
longer to execute, perhaps much longer, than a sequence of individual store instructions
that produce the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

47 S A d

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-225

stswi stswi
Store String Word Immediate (x’7C00 05AA’)

stswi rS,rA,NB

if r A = 0
then EA ← 0
else EA ← (r A)
if NB = 0
then n ← 32
else n ← NB
r ← r S – 1
i ← 0
do while n > 0

if i = 0
then r ← r + 1 (mod 32)

MEM(EA, 1) ← GPR(r)[i,i + 7]
i ← i + 8
if i = 32

then i ← 0
EA← EA + 1
n ← n – 1

EA is (rA|0). Letn = NB if NB not_equal0,n = 32 if NB = 0; n is the number of bytes to
store. Letnr = CEIL(n / 4);nr is the number of registers to supply data.

n consecutive bytes starting at EA are stored from GPRsrS throughrS +nr – 1 Bytes are
stored left to right from each register. The sequence of registers wraps around throughr0 if
required.

Under certain conditions (for example, segment boundary crossing) the data alignment
exception handler may be invoked. For additional information about data alignment
exceptions, see Section 6.4.3, “DSI Exception (0x00300),” in thePowerPC Microprocessor
Family: The Programming Environments manual.

NOTE: In some implementations, this instruction is likely to have a greater latency and take
longer to execute, perhaps much longer, than a sequence of individual store instructions
that produce the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A NB 725 0

IBM Confidential

Page 12-226 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

stswx stswx
Store String Word Indexed (x’7C00 052A’)

stswx rS,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA← b + (r B)
n ← XER[25–31]
r ← r S – 1
i ← 0
do while n > 0

if i = 0
then r ← r + 1 (mod 32)

MEM(EA, 1) ← GPR(r)[i,i + 7]
i ← i + 8
if i = 32

then i ← 0
EA← EA + 1
n ← n – 1

EA is the sum (rA|0) + (rB). Letn = XER[25–31];n is the number of bytes to store. Let
nr = CEIL(n / 4);nr is the number of registers to supply data.

n consecutive bytes starting at EA are stored from GPRsrS throughrS + nr – 1. Bytes are
stored left to right from each register. The sequence of registers wraps around throughr0 if
required. Ifn = 0, no bytes are stored.

Under certain conditions (for example, segment boundary crossing) the data alignment
exception handler may be invoked. For additional information about data alignment
exceptions, see Section 6.4.3, “DSI Exception (0x00300),” in thePowerPC Microprocessor
Family: The Programming Environments manual.

NOTE: In some implementations, this instruction is likely to have a greater latency and take
longer to execute, perhaps much longer, than a sequence of individual store instructions
that produce the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 661 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-227

stw stw
Store Word (x’9000 0000’)

stw rS,d(rA)

if r A = 0
then b ← 0
else b ← (r A)
EA← b + EXTS(d)
MEM(EA, 4) ← r S

EA is the sum (rA|0) + d. The contents ofrS are stored into the word in memory addressed
by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

36 S A d

IBM Confidential

Page 12-228 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

stwbrx stwbrx
Store Word Byte-Reverse Indexed (x’7C00 052C’)

stwbrx r S,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA← b + (r B)
MEM(EA, 4) ← r S[24-31] || r S[16-23] || r S[8-15] || r S[0-7]

EA is the sum (rA|0) + (rB). The contents of the low-order eight bits (24-31) ofrS are stored
into bits 0–7 of the word in memory addressed by EA. The contents of the subsequent eight
low-order bits (16-23) ofrS are stored into bits 8–15 of the word in memory addressed by
EA. The contents of the subsequent eight low-order bits (8-15) ofrS are stored into bits 16–23
of the word in memory addressed by EA. The contents of the subsequent eight low-order bits
(0-7) of rS are stored into bits 24–31 of the word in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 662 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-229

stwcx. stwcx.
Store Word Conditional Indexed (x’7C00 012D’)
stwcx. rS,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA← b + (r B)
if RESERVE

then
MEM(EA, 4) ← r S
CR0← 0b00 || 0b1 || XER[SO]
RESERVE← 0

else
CR0← 0b00 || 0b0 || XER[SO]

EA is the sum (rA|0) + (rB). If the reserved bit is set, thestwcx. instruction storesrS to
effective address (rA + rB), clears the reserved bit, and sets CR0[EQ]. If the reserved bit
is not set, thestwcx. instruction does not do a store; it leaves the reserved bit cleared and
clears CR0[EQ]. Software must look at CR0[EQ] to see if thestwcx. was successful.
The reserved bit is set by thelwarx instruction. The reserved bit is cleared by anystwcx.
instruction to any address, and also by snooping logic if it detects that another processor
does any kind of write or invalidate to the block indicated in the reservation buffer when
reserved is set.
EA must be a multiple of four. If it is not, either the system alignment exception handler is
invoked or the results are boundedly undefined. For additional information about alignment
and DSI exceptions, see Section 6.4.3, “DSI Exception (0x00300),” in thePowerPC
Microprocessor Family: The Programming Environments manual.
The granularity with which reservations are managed is implementation-dependent.
Therefore, the memory to be accessed by the load and reserve and store conditional
instructions should be controlled by a system library program.
Because the hardware doesn’t compare reservation address when executing the stwcx.
instruction, operating systems software MUST reset the reservation if an exception or other
type of interrupt occurs to insure atomic memory references oflwarx andstwcx.pairs.
Other registers altered:

• CR0 field is set to reflect whether the store operation was performed as follows:
CR0[LT GT EQ S0]= 0b00 || store_performed || XER[SO]

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 150 1

IBM Confidential

Page 12-230 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

stwu stwu
Store Word with Update (x’9400 0000’)

stwu rS,d(rA)

EA← (r A) + EXTS(d)
MEM(EA, 4) ← r S
r A ← EA

EA is the sum (rA) + d. The contents ofrS are stored into the word in memory addressed by
EA.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

37 S A d

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-231

stwux stwux
Store Word with Update Indexed (x’7C00 016E’)

stwux rS,rA,rB

EA← (r A) + (r B)
MEM(EA, 4) ← r S
r A ← EA

EA is the sum (rA) + (rB). The contents ofrS are stored into the word in memory addressed
by EA.

EA is placed intorA.

If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 183 0

IBM Confidential

Page 12-232 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

stwx stwx
Store Word Indexed (x’7C00 012E’)

stwx rS,rA,rB

if r A = 0
then b ← 0
else b ← (r A)
EA← b + (r B)
MEM(EA, 4) ← r S

EA is the sum (rA|0) + (rB). The contents ofrS are stored into the word in memory addressed
by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 151 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-233

subf x subf x
Subtract From (x’7C00 0050’)

subf rD,rA,rB (OE = 0 Rc = 0)
subf. rD,rA,rB (OE = 0 Rc = 1)
subfo rD,rA,rB (OE = 1 Rc = 0)
subfo. rD,rA,rB (OE = 1 Rc = 1)

r D← ¬ (r A) + (r B) + 1

The sum ¬ (rA) + (rB) + 1 is placed intorD. (equivlent to (rB)--(rA))

Thesubf instruction is preferred for subtraction because it sets few status bits.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

• XER:

Affected: SO, OV (if OE = 1)

Simplified mnemonics:

sub rD,rA,rB equivalent to subf rD,rB,rA

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 40 Rc

IBM Confidential

Page 12-234 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

subfc x subfc x
Subtract from Carrying (x’7C00 0010’)

subfc rD,rA,rB (OE = 0 Rc = 0)
subfc. rD,rA,rB (OE = 0 Rc = 1)
subfco rD,rA,rB (OE = 1 Rc = 0)
subfco. rD,rA,rB (OE = 1 Rc = 1)

r D← ¬ (r A) + (r B) + 1

The sum ¬ (rA) + (rB) + 1 is placed intorD. (equivlent to (rB)--(rA))

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see
next).

• XER:

Affected: CA

Affected: SO, OV (if OE = 1)

NOTE: The setting of the affected bits in the XER reflects overflow of the 32-bit results. For
further information see Chapter 3, “Operand Conventions” in thePowerPC
Microprocessor Family: The Programming Environments manual.

Simplified mnemonics:

subc rD,rA,rB equivalent to subfc rD,rB,rA

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 8 Rc

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-235

subfe x subfe x
Subtract from Extended (x’7C00 0110’)

subfe rD,rA,rB (OE = 0 Rc = 0)
subfe. rD,rA,rB (OE = 0 Rc = 1)
subfeo rD,rA,rB (OE = 1 Rc = 0)
subfeo. rD,rA,rB (OE = 1 Rc = 1)

r D← ¬ (r A) + (r B) + XER[CA]

The sum ¬ (rA) + (rB) + XER[CA] is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs
(See Chapter 3, “Operand Conventions” in thePowerPC Microprocessor
Family: The Programming Environments manual for setting of affected
bits.)

• XER:

Affected: CA

Affected: SO, OV (if OE = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 136 Rc

IBM Confidential

Page 12-236 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

subfic subfic
Subtract from Immediate Carrying (x’2000 0000’)

subfic rD,rA,SIMM

r D← ¬ (r A) + EXTS(SIMM) + 1

The sum ¬ (rA) + EXTS(SIMM) + 1 is placed intorD (Equivalent to EXTS(SIMM)-(rA)).

Other registers altered:

• XER:

Affected: CA

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

08 D A SIMM

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-237

subfme x subfme x
Subtract from Minus One Extended (x’7C00 01D0’)

subfme rD,rA (OE = 0 Rc = 0)
subfme. rD,rA (OE = 0 Rc = 1)
subfmeo rD,rA (OE = 1 Rc = 0)
subfmeo. rD,rA (OE = 1 Rc = 1)

r D← ¬ (r A) + XER[CA] – 1

The sum ¬ (rA) + XER[CA] + (32)1 is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs
(See Chapter 3, “Operand Conventions,” in thePowerPC Microprocessor
Family: The Programming Environments manual.)

• XER:

Affected: CA

Affected: SO, OV (if OE = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A

Reserved

0 0 0 0 0 OE 232 Rc

IBM Confidential

Page 12-238 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

subfze x subfze x
Subtract from Zero Extended (x’7C00 0190’)

subfze rD,rA (OE = 0 Rc = 0)
subfze. rD,rA (OE = 0 Rc = 1)
subfzeo rD,rA (OE = 1 Rc = 0)
subfzeo. rD,rA (OE = 1 Rc = 1)

r D← ¬ (r A) + XER[CA]

The sum ¬ (rA) + XER[CA] is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see
next).

• XER:

Affected: CA

Affected: SO, OV (if OE = 1)

NOTE: See Chapter 3, “Operand Conventions,” in thePowerPC Microprocessor
Family: The Programming Environments manual.

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A

Reserved

0 0 0 0 0 OE 200 Rc

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-239

sync sync
Synchronize (x’7C00 04AC’)

The sync instruction provides an ordering function for the effects of all instructions
executed by a given processor. Executing async instruction ensures that all instructions
preceding thesync instruction appear to have completed before thesync instruction
completes, and that no subsequent instructions are initiated by the processor until after the
sync instruction completes. When thesync instruction completes, all external accesses
caused by instructions preceding thesync instruction will have been performed with
respect to all other mechanisms that access memory. For more information on how thesync
instruction affects the VEA, refer to Chapter 5, “Cache Model and Memory Coherency” in
the PowerPC Microprocessor Family: The Programming Environmentsmanual.
Multiprocessor implementations also send asyncaddress-only broadcast that is useful in
some designs. For example, if a design has an external buffer that re-orders loads and stores
for better bus efficiency, thesyncbroadcast signals to that buffer that previous loads/stores
must be completed before any following loads/stores.

Thesyncinstruction can be used to ensure that the results of all stores into a data structure,
caused by store instructions executed in a “critical section” of a program, are seen by other
processors before the data structure is seen as unlocked.

The functions performed by thesyncinstruction will normally take a significant amount of
time to complete, so indiscriminate use of this instruction may adversely affect
performance. In addition, the time required to executesyncmay vary from one execution
to another.

Theeieio instruction may be more appropriate thansync for many cases.

This instruction is execution synchronizing. For more information on execution
synchronization, see Section 4.1.5, “Synchronizing Instructions,” inThe Programming
Environments Manual.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 0 0 0 0 598 0

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 00

IBM Confidential

Page 12-240 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

tlbie tlbie
Translation Lookaside Buffer Invalidate Entry (x’7C00 0264’)

tlbie r B

VPS ← r B[4-19]
Identify TLB entries corresponding to VPS
Each such TLB entry ← invalid

EA is the contents ofrB. If the translation lookaside buffer (TLB) contains an entry
corresponding to EA, that entry is made invalid (that is, removed from the TLB).

Multiprocessing implementations (for example, the 601, and 604) send atlbie address-only
broadcast over the address bus to tell other processors to invalidate the same TLB entry in
their TLBs.

The TLB search is done regardless of the settings of MSR[IR] and MSR[DR]. The search is
done based on a portion of the logical page number within a segment, without reference to the
SLB, segment table, or segment registers. All entries matching the search criteria are
invalidated.

Block address translation for EA, if any, is ignored. Refer to Section 7.5.3.4,
“Synchronization of Memory Accesses and Referenced and Changed Bit Updates” and
Section 7.6.3, “Page Table Updates” in thePowerPC Microprocessor Family: The
Programming Environmentsmanual for other requirements associated with the use of this
instruction.

This is a supervisor-level instruction and optional in the PowerPC architecture.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

OEA YES YES X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 B 306 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-241

tlbsync tlbsync
TLB Synchronize (x’7C00 046C’)

If an implementation sends a broadcast fortlbie then it will also send a broadcast for
tlbsync. Executing atlbsync instruction ensures that alltlbie instructions previously
executed by the processor executing thetlbsync instruction have completed on all other
processors.

The operation performed by this instruction is treated as a caching-inhibited and guarded
data access with respect to the ordering done byeieio.

NOTE: The 601 expands the use of thesync instruction to covertlbsync functionality.

Refer to Section 7.5.3.4, “Synchronization of Memory Accesses and Referenced and
Changed Bit Updates” and Section 7.6.3, “Page Table Updates” in thePowerPC
Microprocessor Family: The Programming Environmentsmanual for other requirements
associated with the use of this instruction.

This instruction is supervisor-level and optional in the PowerPC architecture.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

OEA YES YES X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

IBM Confidential

Page 12-242 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

tw tw
Trap Word (x’7C00 0008’)

tw TO,rA,rB

a ← EXTS(r A)
b ← EXTS(r B)
if (a < b) & TO[0] then TRAP
if (a > b) & TO[1] then TRAP
if (a = b) & TO[2] then TRAP
if (a <U b) & TO[3] then TRAP
if (a >U b) & TO[4] then TRAP

The contents ofrA are compared arithmetically with the contentsrB for TO[0, 1, 2]. The
contents ofrA are compared logically with the contentsrB for TO[3, 4]. If any bit in the TO
field is set and its corresponding condition is met by the result of the comparison, then the
system trap handler is invoked.

Other registers altered:

• None

Simplified mnemonics:

tweq rA,rB equivalent to tw 4,rA,rB
twlgerA,rB equivalent to tw 5,rA,rB
trap equivalent to tw 31,0,0

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 TO A B 4 0

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-243

twi twi
Trap Word Immediate (x’0C00 0000’)

twi TO,rA,SIMM

a ← EXTS(r A)
if (a < EXTS(SIMM)) & TO[0] then TRAP
if (a > EXTS(SIMM)) & TO[1] then TRAP
if (a = EXTS(SIMM)) & TO[2] then TRAP
if (a <U EXTS(SIMM)) & TO[3] then TRAP
if (a >U EXTS(SIMM)) & TO[4] then TRAP

The contents ofrA are compared arithmetically with the sign-extended value of the SIMM
field for TO[0, 1, 2]. The contents ofrA are compared logically with the sign-extended
value of the SIMM field for TO[3, 4]. If any bit in the TO field is set and its corresponding
condition is met by the result of the comparison, then the system trap handler is invoked.

Other registers altered:

• None

Simplified mnemonics:

twgtir A,value equivalent to twi 8,rA,value
twlleir A,value equivalent to twi 6,rA,value

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

03 TO A SIMM

IBM Confidential

Page 12-244 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

xor x xor x
XOR (x’7C00 0278’)

xor r A,rS,rB (Rc = 0)
xor. rA,rS,rB (Rc = 1)

r A ← (r S) ⊕ (r B)

The contents ofrS are XORed with the contents ofrB and the result is placed intorA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 316 Rc

IBM Confidential

Chapter 12. Instruction Set IBM Confidential 5/25/00 Page 12-245

xori xori
XOR Immediate (x’6800 0000’)

xori r A,rS,UIMM

r A ← (r S) ⊕ ((16)0 || UIMM)

The contents ofrS are XORed with 0x0000 || UIMM and the result is placed intorA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

26 S A UIMM

IBM Confidential

Page 12-246 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

xoris xoris
XOR Immediate Shifted (x’6C00 0000’)

xoris rA,rS,UIMM

r A ← (r S) ⊕ (UIMM || (16)0)

The contents ofrS are XORed with UIMM || 0x0000 and the result is placed intorA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Gekko Specific PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

27 S A UIMM

IBM Confidential

Appendix A. Gekko Instruction Set IBM Confidential 5/25/00 Page A-1

Appendix A– Gekko Instruction Set

A.1 Instructions Sorted by Opcode
Table A-1 lists the instructions defined in the PowerPC architecture in numeric order by opcode.

Table A-1 Complete Instruction List Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

twi 0 0 0 0 1 1 TO A SIMM

ps_cmpu0 0 0 0 1 0 0 crfD 0 0 A B 0 0 0 0 0 0 0 0 0 0 0

psq_lx 0 0 0 1 0 0 D A B w i 0 0 0 1 1 0 0

psq_stx 0 0 0 1 0 0 S A B w i 0 0 0 1 1 1 0

ps_sum0 0 0 0 1 0 0 D A B C 0 1 0 1 0 Rc

ps_sum1 0 0 0 1 0 0 D A B C 0 1 0 1 1 Rc

ps_muls0 0 0 0 1 0 0 D A 0 0 0 0 0 C 0 1 1 0 0 Rc

ps_muls1 0 0 0 1 0 0 D A 0 0 0 0 0 C 0 1 1 0 1 Rc

ps_madds0 0 0 0 1 0 0 D A B C 0 1 1 1 0 Rc

ps_madds1 0 0 0 1 0 0 D A B C 0 1 1 1 1 Rc

ps_div 0 0 0 1 0 0 D A B 0 0 0 0 0 1 0 0 1 0 Rc

ps_sub 0 0 0 1 0 0 D A B 0 0 0 0 0 1 0 1 0 0 Rc

ps_add 0 0 0 1 0 0 D A B 0 0 0 0 0 1 0 1 0 1 Rc

ps_sel 0 0 0 1 0 0 D A B C 1 0 1 1 1 Rc

ps_res 0 0 0 1 0 0 D 00000 B 00000 1 1 0 0 0 Rc

ps_mul 0 0 0 1 0 0 D A 00000 C 1 1 0 0 1 Rc

ps_rsqrte 0 0 0 1 0 0 D 00000 B 00000 1 1 0 1 0 Rc

ps_msub 0 0 0 1 0 0 D A B C 1 1 1 0 0 Rc

ps_madd 0 0 0 1 0 0 D A B C 1 1 1 0 1 Rc

ps_nmsub 0 0 0 1 0 0 D A B C 1 1 1 1 0 Rc

Reserved bits

Key:

IBM Confidential

Page A-2 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

ps_nmadd 0 0 0 1 0 0 D A B C 1 1 1 1 1 Rc

ps_cmpo0 0 0 0 1 0 0 crfD 0 0 A B 0 0 0 0 1 0 0 0 0 0 0

psq_lux 0 0 0 1 0 0 D A B w i 1 0 0 1 1 0 0

psq_stux 0 0 0 1 0 0 S A B w i 1 0 0 1 1 1 0

ps_neg 0 0 0 1 0 0 D 00000 B 0 0 0 0 1 0 1 0 0 0 Rc

ps_cmpu1 0 0 0 1 0 0 crfD 00 A B 0 0 0 1 0 0 0 0 0 0 0

ps_mr 0 0 0 1 0 0 D 00000 B 0 0 0 1 0 0 1 0 0 0 Rc

ps_cmpo1 0 0 0 1 0 0 crfD 00 A B 0 0 0 1 1 0 0 0 0 0 0

ps_nabs 0 0 0 1 0 0 D 00000 B 0 0 1 0 0 0 1 0 0 0 Rc

ps_abs 0 0 0 1 0 0 D 00000 B 0 1 0 0 0 0 1 0 0 0 Rc

ps_merge00 0 0 0 1 0 0 D A B 1 0 0 0 0 1 0 0 0 0 Rc

ps_merge01 0 0 0 1 0 0 D A B 1 0 0 0 1 1 0 0 0 0 Rc

ps_merge10 0 0 0 1 0 0 D A B 1 0 0 1 0 1 0 1 0 1 Rc

ps_merge11 0 0 0 1 0 0 D A B 1 0 0 1 1 1 0 0 0 0 Rc

dcbz_l 0 0 0 1 0 0 00000 A B 1 1 1 1 1 1 0 1 1 0 0

mulli 0 0 0 1 1 1 D A SIMM

subfic 0 0 1 0 0 0 D A SIMM

cmpli 0 0 1 0 1 0 crfD 0 L A UIMM

cmpi 0 0 1 0 1 1 crfD 0 L A SIMM

addic 0 0 1 1 0 0 D A SIMM

addic. 0 0 1 1 0 1 D A SIMM

addi 0 0 1 1 1 0 D A SIMM

addis 0 0 1 1 1 1 D A SIMM

bcx 0 1 0 0 0 0 BO BI BD AA LK

sc 0 1 0 0 0 1 0 1 0

bx 0 1 0 0 1 0 LI AA LK

mcrf 0 1 0 0 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bclr x 0 1 0 0 1 1 BO BI 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 LK

crnor 0 1 0 0 1 1 crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 0

rfi 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

crandc 0 1 0 0 1 1 crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 0

isync 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

crxor 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IBM Confidential

Appendix A. Gekko Instruction Set IBM Confidential 5/25/00 Page A-3

crnand 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 0

crand 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 0

creqv 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 0

crorc 0 1 0 0 1 1 crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 0

cror 0 1 0 0 1 1 crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 0

bcctr x 0 1 0 0 1 1 BO BI 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 LK

rlwimi x 0 1 0 1 0 0 S A SH MB ME Rc

rlwinm x 0 1 0 1 0 1 S A SH MB ME Rc

rlwnm x 0 1 0 1 1 1 S A B MB ME Rc

ori 0 1 1 0 0 0 S A UIMM

oris 0 1 1 0 0 1 S A UIMM

xori 0 1 1 0 1 0 S A UIMM

xoris 0 1 1 0 1 1 S A UIMM

andi. 0 1 1 1 0 0 S A UIMM

andis. 0 1 1 1 0 1 S A UIMM

cmp 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

tw 0 1 1 1 1 1 TO A B 0 0 0 0 0 0 0 1 0 0 0

subfc x 0 1 1 1 1 1 D A B OE 0 0 0 0 0 0 1 0 0 0 Rc

addc x 0 1 1 1 1 1 D A B OE 0 0 0 0 0 0 1 0 1 0 Rc

mulhwu x 0 1 1 1 1 1 D A B 0 0 0 0 0 0 0 1 0 1 1 Rc

mfcr 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0

lwarx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 0

lwzx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 1 1 0

slw x 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 0 0 Rc

cntlzw x 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 Rc

andx 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 1 0 0 Rc

cmpl 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 1 0 0 0 0 0 0

subf x 0 1 1 1 1 1 D A B OE 0 0 0 0 1 0 1 0 0 0 Rc

dcbst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 0 1 1 0 1 1 0 0

lwzux 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 1 1 0

andc x 0 1 1 1 1 1 S A B 0 0 0 0 1 1 1 1 0 0 Rc

mulhw x 0 1 1 1 1 1 D A B 0 0 0 0 1 0 0 1 0 1 1 Rc

mfmsr 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IBM Confidential

Page A-4 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

dcbf 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 1 0 1 0 1 1 0 0

lbzx 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 1 1 0

negx 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 0 1 1 0 1 0 0 0 Rc

lbzux 0 1 1 1 1 1 D A B 0 0 0 1 1 1 0 1 1 1 0

nor x 0 1 1 1 1 1 S A B 0 0 0 1 1 1 1 1 0 0 Rc

subfe x 0 1 1 1 1 1 D A B OE 0 0 1 0 0 0 1 0 0 0 Rc

addex 0 1 1 1 1 1 D A B OE 0 0 1 0 0 0 1 0 1 0 Rc

mtcrf 0 1 1 1 1 1 S 0 CRM 0 0 0 1 0 0 1 0 0 0 0 0

mtmsr 0 1 1 1 1 1 S 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

stwcx. 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 0 1

stwx 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 1 0

stwux 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 1 1 0

subfze x 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 0 1 0 0 0 Rc

addzex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 0 1 0 1 0 Rc

mtsr 0 1 1 1 1 1 S 0 SR 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0

stbx 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 1 0

subfme x 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 1 0 1 0 0 0 Rc

addme x 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 1 0 1 0 1 0 Rc

mullw x 0 1 1 1 1 1 D A B OE 0 0 1 1 1 0 1 0 1 1 Rc

mtsrin 0 1 1 1 1 1 S 0 0 0 0 0 B 0 0 1 1 1 1 0 0 1 0 0

dcbtst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 1 1 1 1 0 1 1 0 0

stbux 0 1 1 1 1 1 S A B 0 0 1 1 1 1 0 1 1 1 0

addx 0 1 1 1 1 1 D A B OE 0 1 0 0 0 0 1 0 1 0 Rc

dcbt 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 0 0 0 1 0 1 1 0 0

lhzx 0 1 1 1 1 1 D A B 0 1 0 0 0 1 0 1 1 1 0

eqvx 0 1 1 1 1 1 S A B 0 1 0 0 0 1 1 1 0 0 Rc

tlbie 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 0 1 0 0 1 1 0 0 1 0 0

eciwx 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 0 0

lhzux 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 1 0

xor x 0 1 1 1 1 1 S A B 0 1 0 0 1 1 1 1 0 0 Rc

mfspr 0 1 1 1 1 1 D spr 0 1 0 1 0 1 0 0 1 1 0

lhax 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 1 1 0

mftb 0 1 1 1 1 1 D tbr 0 1 0 1 1 1 0 0 1 1 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IBM Confidential

Appendix A. Gekko Instruction Set IBM Confidential 5/25/00 Page A-5

lhaux 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 1 1 0

sthx 0 1 1 1 1 1 S A B 0 1 1 0 0 1 0 1 1 1 0

orc x 0 1 1 1 1 1 S A B 0 1 1 0 0 1 1 1 0 0 Rc

ecowx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 0 0

sthux 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 1 0

orx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 1 1 0 0 Rc

divwu x 0 1 1 1 1 1 D A B OE 0 1 1 1 0 0 1 0 1 1 Rc

mtspr 0 1 1 1 1 1 S spr 0 1 1 1 0 1 0 0 1 1 0

dcbi 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 1 1 0 1 0 1 1 0 0

nand x 0 1 1 1 1 1 S A B 0 1 1 1 0 1 1 1 0 0 Rc

divw x 0 1 1 1 1 1 D A B OE 0 1 1 1 1 0 1 0 1 1 Rc

 mcrxr 0 1 1 1 1 1 crfD 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

lswx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 0 1 0

lwbrx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 0 0

lfsx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 1 0

srw x 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 0 0 Rc

tlbsync 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0

lfsux 0 1 1 1 1 1 D A B 1 0 0 0 1 1 0 1 1 1 0

mfsr 0 1 1 1 1 1 D 0 SR 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0

lswi 0 1 1 1 1 1 D A NB 1 0 0 1 0 1 0 1 0 1 0

sync 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0

lfdx 0 1 1 1 1 1 D A B 1 0 0 1 0 1 0 1 1 1 0

lfdux 0 1 1 1 1 1 D A B 1 0 0 1 1 1 0 1 1 1 0

mfsrin 0 1 1 1 1 1 D 0 0 0 0 0 B 1 0 1 0 0 1 0 0 1 1 0

stswx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 0 1 0

stwbrx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 0 0

stfsx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 1 0

stfsux 0 1 1 1 1 1 S A B 1 0 1 0 1 1 0 1 1 1 0

stswi 0 1 1 1 1 1 S A NB 1 0 1 1 0 1 0 1 0 1 0

stfdx 0 1 1 1 1 1 S A B 1 0 1 1 0 1 0 1 1 1 0

stfdux 0 1 1 1 1 1 S A B 1 0 1 1 1 1 0 1 1 1 0

lhbrx 0 1 1 1 1 1 D A B 1 1 0 0 0 1 0 1 1 0 0

sraw x 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 0 0 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IBM Confidential

Page A-6 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

srawi x 0 1 1 1 1 1 S A SH 1 1 0 0 1 1 1 0 0 0 Rc

eieio 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0

sthbrx 0 1 1 1 1 1 S A B 1 1 1 0 0 1 0 1 1 0 0

extsh x 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 Rc

extsb x 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 Rc

icbi 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 0 1 0 1 1 0 0

stfiwx 0 1 1 1 1 1 S A B 1 1 1 1 0 1 0 1 1 1 0

dcbz 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 1 1 0 1 1 0 0

lwz 1 0 0 0 0 0 D A d

lwzu 1 0 0 0 0 1 D A d

lbz 1 0 0 0 1 0 D A d

lbzu 1 0 0 0 1 1 D A d

stw 1 0 0 1 0 0 S A d

stwu 1 0 0 1 0 1 S A d

stb 1 0 0 1 1 0 S A d

stbu 1 0 0 1 1 1 S A d

lhz 1 0 1 0 0 0 D A d

lhzu 1 0 1 0 0 1 D A d

lha 1 0 1 0 1 0 D A d

lhau 1 0 1 0 1 1 D A d

sth 1 0 1 1 0 0 S A d

sthu 1 0 1 1 0 1 S A d

lmw 1 0 1 1 1 0 D A d

stmw 1 0 1 1 1 1 S A d

lfs 1 1 0 0 0 0 D A d

lfsu 1 1 0 0 0 1 D A d

lfd 1 1 0 0 1 0 D A d

lfdu 1 1 0 0 1 1 D A d

 stfs 1 1 0 1 0 0 S A d

stfsu 1 1 0 1 0 1 S A d

stfd 1 1 0 1 1 0 S A d

stfdu 1 1 0 1 1 1 S A d

psq_l 1 1 1 0 0 0 D A w i d

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IBM Confidential

Appendix A. Gekko Instruction Set IBM Confidential 5/25/00 Page A-7

psq_lu 1 1 1 0 0 1 D A w i d

fdivs x 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsubs x 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

fadds x 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fres x 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 0 0 Rc

fmuls x 1 1 1 0 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

fmsubs x 1 1 1 0 1 1 D A B C 1 1 1 0 0 Rc

fmadds x 1 1 1 0 1 1 D A B C 1 1 1 0 1 Rc

fnmsubs x 1 1 1 0 1 1 D A B C 1 1 1 1 0 Rc

fnmadds x 1 1 1 0 1 1 D A B C 1 1 1 1 1 Rc

psq_st 1 1 1 1 0 0 S A w i d

psq_stu 1 1 1 1 0 1 S A w i d

fcmpu 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 0 0 0 0 0 0 0

frsp x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 0 0 Rc

fctiw x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 0

fctiwz x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 1 Rc

fdiv x 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsub x 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

fadd x 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fsel x 1 1 1 1 1 1 D A B C 1 0 1 1 1 Rc

fmul x 1 1 1 1 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

frsqrte x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 1 0 Rc

fmsub x 1 1 1 1 1 1 D A B C 1 1 1 0 0 Rc

fmadd x 1 1 1 1 1 1 D A B C 1 1 1 0 1 Rc

fnmsub x 1 1 1 1 1 1 D A B C 1 1 1 1 0 Rc

fnmadd x 1 1 1 1 1 1 D A B C 1 1 1 1 1 Rc

fcmpo 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 1 0 0 0 0 0 0

mtfsb1 x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 Rc

fneg x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 1 0 1 0 0 0 Rc

mcrfs 1 1 1 1 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

mtfsb0 x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 Rc

fmr x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 1 0 0 1 0 0 0 Rc

mtfsfi x 1 1 1 1 1 1 crfD 0 0 0 0 0 0 0 IMM 0 0 0 1 0 0 0 0 1 1 0 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IBM Confidential

Page A-8 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

fnabs x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 1 0 0 0 1 0 0 0 Rc

fabs x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 1 0 0 0 0 1 0 0 0 Rc

mffs x 1 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 Rc

mtfsf x 1 1 1 1 1 1 0 FM 0 B 1 0 1 1 0 0 0 1 1 1 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IBM Confidential

Appendix A. Gekko Instruction Set IBM Confidential 5/25/00 Page A-9

A.2 Instructions Grouped by Functional Categories
Table A-2 through Table A-32 list the Gekko instructions grouped by function.

Table A-2 Integer Arithmetic Instructions

Table A-3 Integer Compare Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addc x 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addme x 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divw x 31 D A B OE 491 Rc

divwu x 31 D A B OE 459 Rc

mulhw x 31 D A B 0 75 Rc

mulhwu x 31 D A B 0 11 Rc

mulli 07 D A SIMM

mullw x 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subf x 31 D A B OE 40 Rc

subfc x 31 D A B OE 8 Rc

subfe x 31 D A B OE 136 Rc

subfic x 08 D A SIMM

subfme x 31 D A 0 0 0 0 0 OE 232 Rc

subfze x 31 D A 0 0 0 0 0 OE 200 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

cmp 31 crfD 0 L A B 0 0

cmpi 11 crfD 0 L A SIMM

Reserved bitsKey:

IBM Confidential

Page A-10 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Table A-4 Integer Logical Instructions

Table A-5 Integer Rotate Instructions

Table A-6 Integer Shift Instructions

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 Rc

andc x 31 S A B 60 Rc

andi. 28 S A UIMM

andis. 29 S A UIMM

cntlzw x 31 S A 0 0 0 0 0 26 Rc

eqvx 31 S A B 284 Rc

extsb x 31 S A 0 0 0 0 0 954 Rc

extsh x 31 S A 0 0 0 0 0 922 Rc

nand x 31 S A B 476 Rc

nor x 31 S A B 124 Rc

orx 31 S A B 444 Rc

orc x 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

xor x 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rlwimi x 20 S A SH MB ME Rc

rlwinm x 21 S A SH MB ME Rc

rlwnm x 23 S A SH MB ME Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

slw x 31 S A B 24 Rc

sraw x 31 S A B 792 Rc

IBM Confidential

Appendix A. Gekko Instruction Set IBM Confidential 5/25/00 Page A-11

Table A-7 Floating-Point Arithmetic Instructions

srawi x 31 S A SH 824 Rc

srw x 31 S A B 536 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fadd x 63 D A B 0 0 0 0 0 21 Rc

fadds x 59 D A B 0 0 0 0 0 21 Rc

fdiv x 63 D A B 0 0 0 0 0 18 Rc

fdivs x 59 D A B 0 0 0 0 0 18 Rc

fmul x 63 D A 0 0 0 0 0 C 25 Rc

fmuls x 59 D A 0 0 0 0 0 C 25 Rc

fres x 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrte x 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fsub x 63 D A B 0 0 0 0 0 20 Rc

fsubs x 59 D A B 0 0 0 0 0 20 Rc

fsel x 63 D A B C 23 Rc

IBM Confidential

Page A-12 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Table A-8 Floating-Point Multiply-Add Instructions

Table A-9 Floating-Point Rounding and Conversion Instructions

Table A-10 Floating-Point Compare Instructions

Table A-11 Floating-Point Status and Control Register Instructions

Table A-12 Integer Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fmadd x 63 D A B C 29 Rc

fmadds x 59 D A B C 29 Rc

fmsub x 63 D A B C 28 Rc

fmsubs x 59 D A B C 28 Rc

fnmadd x 63 D A B C 31 Rc

fnmadds x 59 D A B C 31 Rc

fnmsub x 63 D A B C 30 Rc

fnmsubs x 59 D A B C 30 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fctiw x 63 D 0 0 0 0 0 B 14 Rc

fctiwz x 63 D 0 0 0 0 0 B 15 Rc

frsp x 63 D 0 0 0 0 0 B 12 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

mffs x 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mtfsb0 x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1 x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsf x 63 0 FM 0 B 711 Rc

mtfsfi x 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lbz 34 D A d

lbzu 35 D A d

IBM Confidential

Appendix A. Gekko Instruction Set IBM Confidential 5/25/00 Page A-13

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

IBM Confidential

Page A-14 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Table A-13 Integer Store Instructions

Table A-14 Integer Load and Store with Byte Reverse Instructions

Table A-15 Integer Load and Store Multiple Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

sth 44 S A d

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stw 36 S A d

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lhbrx 31 D A B 790 0

lwbrx 31 D A B 534 0

sthbrx 31 S A B 918 0

stwbrx 31 S A B 662 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lmw 46 D A d

stmw 47 S A d

IBM Confidential

Appendix A. Gekko Instruction Set IBM Confidential 5/25/00 Page A-15

Table A-16 Integer Load and Store String Instructions

Table A-17 Memory Synchronization Instructions

Table A-18 Floating-Point Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lswi 31 D A NB 597 0

lswx 31 D A B 533 0

stswi 31 S A NB 725 0

stswx 31 S A B 661 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

lwarx 31 D A B 20 0

stwcx. 31 S A B 150 1

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

IBM Confidential

Page A-16 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Table A-19 Floating-Point Store Instructions

Table A-20 Floating-Point Move Instructions

Table A-21 Branch Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fabs x 63 D 0 0 0 0 0 B 264 Rc

fmr x 63 D 0 0 0 0 0 B 72 Rc

fnabs x 63 D 0 0 0 0 0 B 136 Rc

fneg x 63 D 0 0 0 0 0 B 40 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctr x 19 BO BI 0 0 0 0 0 528 LK

bclr x 19 BO BI 0 0 0 0 0 16 LK

IBM Confidential

Appendix A. Gekko Instruction Set IBM Confidential 5/25/00 Page A-17

Table A-22 Condition Register Logical Instructions

Table A-23 System Linkage Instructions

Table A-24 Trap Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rfi a

a. Supervisor-level instruction

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

sc 17 0 1 0

Notes :

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tw 31 TO A B 4 0

twi 03 TO A SIMM

IBM Confidential

Page A-18 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Table A-25 Processor Control Instructions

Table A-26 Cache Management Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 mcrxr 31 crfS 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mfmsr a

a. Supervisor-level instruction

31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr b

b. Supervisor- and user-level instruction

31 D spr 339 0

mftb 31 D tpr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtmsr 1 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtspr 2 31 D spr 467 0

Notes :

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dcbf 31 0 0 0 0 0 A B 86 0

dcbi a

a. Supervisor-level instruction

31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

icbi 31 0 0 0 0 0 A B 982 0

Notes :

IBM Confidential

Appendix A. Gekko Instruction Set IBM Confidential 5/25/00 Page A-19

Table A-27 Segment Register Manipulation Instructions.

Table A-28 Lookaside Buffer Management Instructions

Table A-29 External Control Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfsr a

a. Supervisor-level instruction

31 D 0 SR 0 0 0 0 0 595 0

mfsrin 1 31 D 0 0 0 0 0 B 659 0

mtsr 1 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 1 31 S 0 0 0 0 0 B 242 0

Notes :

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tlbie 1 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync 1 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

Notes:

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

IBM Confidential

Page A-20 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

Table A-30 Paired-Single Load and Store Instructions

Table A-31 Paired-Single Floating Point Arithmetic Instructions

Name 05 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

psq_lx 4 D A B w i 6 0

psq_stx 4 S A B w i 7 0

psq_lux 4 D A B w i 38 0

psq_stux 4 S A B w i 39 0

psq_l 56 D A w i d

psq_lu 57 D A w i d

psq_st 60 S A w i d

psq_stu 61 S A w i d

Name 05 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ps_div 4 D A B 0 0 0 0 0 18 Rc

ps_sub 4 D A B 0 0 0 0 0 20 Rc

ps_add 4 D A B 0 0 0 0 0 21 Rc

ps_sel 4 D A B C 23 Rc

ps_res 4 D 00000 B 00000 24 Rc

ps_mul 4 D A 00000 C 25 Rc

ps_rsqrte 4 D 00000 B 00000 26 Rc

ps_msub 4 D A B C 28 Rc

ps_madd 4 D A B C 29 Rc

ps_nmsub 4 D A B C 30 Rc

ps_nmadd 4 D A B C 31 Rc

ps_neg 4 D 00000 B 40 Rc

ps_mr 4 D 00000 B 72 Rc

ps_nabs 4 D 00000 B 136 Rc

ps_abs 4 D 00000 B 264 Rc

IBM Confidential

Appendix A. Gekko Instruction Set IBM Confidential 5/25/00 Page A-21

Table A-32 Miscellaneous Paired-Single Instructions

Name 05 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ps_sum0 4 D A B C 10 Rc

ps_sum1 4 D A B C 11 Rc

ps_muls0 4 D A 0 0 0 0 0 C 12 Rc

ps_muls1 4 D A 0 0 0 0 0 C 13 Rc

ps_madds0 4 D A B C 14 Rc

ps_madds1 4 D A B C 15 Rc

ps_cmpu0 4 crfD 00 A B 0 0

ps_cmpo0 4 crfD 00 A B 32 0

ps_cmpu1 4 crfD 00 A B 64 0

ps_cmpo1 4 crfD 00 A B 96 0

ps_merge00 4 D A B 528 Rc

ps_merge01 4 D A B 560 Rc

ps_merge10 4 D A B 592 Rc

ps_merge11 4 D A B 624 Rc

dcbz_l 4 00000 A B 1014 0

IBM Confidential

Page A-22 Version 1.2 IBM Confidential IBM Gekko RISC Microprocessor User’s Manual

 IBM Gekko RISC Microprocessor User’s Manual IBM Confidential Version 1.2 Index-1

Index

A
AACK (address acknowledge) signal 7-11
Absolute value instructions

floating-point
fabs, floating absolute value 12-58

ps_abs, absolute value, paired single 12-165
ps_nabs, negative absolute value, paired single

12-184
Absolute value instructions, negative (fnabs) 12-74
Add instructions

floating-point
fadd (double precision) 12-59
fadds (single-precision) 12-60

integer
add 12-9
addc, add carrying 12-10
adde, add extended 12-11
addi, add immediate 12-12
addic, add immediate carrying 12-13
addic., add immediate carrying and record 12-14
addis, add immediate shifted 12-15
addme, add to minus one extended 12-16
addze, add to zero extended 12-17

ps_add, paired single add 12-166
Address bus

address tenure 8-7
address transfer

An 7-5
APE 8-12

address transfer attribute
CI 7-10
GBL 7-10
TBST 7-9, 8-13
TSIZn 7-8, 8-13
TTn 7-6, 8-13
WT 7-10

address transfer start
TS 7-4, 8-11

address transfer termination
AACK 7-11
ARTRY 7-11
terminating address transfer 8-16

arbitration signals 7-3, 8-8
bus parking 8-11

Address translation,see Memory management unit
Addressing modes 2-35
Algebraic instructions

lhax, load half word indexed 12-105
algebraic instructions

load half word (lha) 12-102

load half word with update (lhau) 12-103
load half word with update indexed (lhaux) 12-104

Aligned data transfer 8-15, 8-16
Alignment

data transfers 8-15
exception 4-19
misaligned accesses 2-27
rules 2-27

An (address bus) signals 7-5
and, logic instruction 12-18
andc, logical and with complement instruction 12-19
andi., logical and immediate instruction 12-20
andis., logical and immediate shifted instruction 12-21
APE (address parity error) signal 8-12
Arbitration, system bus 8-9, 8-18
Arithmetic instructions

floating-point 12-65–12-68, 12-72, 12-80, 12-86,
12-87, A-11

integer A-9
paired single 12-171, 12-172, 12-173, 12-174,

12-180, 12-181, 12-182, 12-183, 12-186,
12-188

ARTRY (address retry) signal 7-11

B
b, branch instruction 12-22
bc, branch conditional instruction 12-23
bcctr, branch conditional to count register 12-25
bcctr, branch conditional to link register 12-27
BG (bus grant) signal 7-3, 8-8
Block address translation

block address translation flow 5-11
definition 1-10
registers

description 2-5
initialization 5-18

selection of block address translation 5-8
Boundedly undefined, definition 2-33
BR (bus request) signal 7-3, 8-8
Branch fall-through 6-17
Branch folding 6-17
Branch instructions

address calculation 2-58
b, branch 12-22
bc, branch conditional 12-23
bcctr, branch conditional to count register 12-25
bcctr, branch conditional to link register 12-27
condition register logical 2-59, A-17
description A-16
list of instructions 2-59, A-16
system linkage 2-60, 2-70, A-17
trap 2-60, A-17

Branch prediction 6-1, 6-20
Branch processing unit

INDEX (Continued)

Index-2 IBM Confidential Version 1.2 IBM Gekko RISC Microprocessor User’s Manual

branch instruction timing 6-22
execution timing 6-17
latency, branch instructions 6-29
overview 1-7

Branch resolution
definition 6-1
resource requirements 6-27

BTIC (branch target instruction cache) 6-7
Burst data transfers

32-bit data bus 8-34
64-bit data bus 8-14
transfers with data delays, timing 8-30

Bus arbitration,see Data bus
Bus interface unit (BIU) 3-2, 8-1
Bus transactions and L1 cache 3-18
Byte ordering 2-35
Byte reversed, load half word, indexed (lhbrx)

instruction 12-106

C
Cache

arbitration 6-8
block instructions

dcbf, data cache block flush 12-42
dcbi, data cache block invalidate 2-72, 12-43
dcbst, data cache block store 12-44
dcbt, data cache block touch 2-68, 12-45
dcbtst, data cache block touch for store 12-46
dcbz, data cache block clear to zero 12-47
dcbz_l, data cache block set to zero 12-48

block instructions, table A-18
block, definition 3-3
bus interface unit 3-2, 8-1
cache operations

load/store operations, processor initiated 3-10
operations 3-15
overview 8-3

cache unit overview 3-3
cache-inhibited accesses (I bit) 3-6
characteristics 3-1
coherency

description 3-5
overview 3-21
reaction to bus operations 3-22

control instructions 3-11
bus operations 3-19

data cache configuration 3-3
dcbf/dcbst execution 9-2
hit 6-8
icbi 9-2
instruction cache configuration 3-4
instruction cache throttling 10-10
integration 3-2
L1 cache and bus transactions 3-18

L2 interface
cache global invalidation 9-4
cache initialization 9-3
cache testing 9-5
dcbi 9-2
eieio 9-3
operation 9-1
stwcx. execution 9-2
sync 9-3

load/store operations, processor initiated 3-10
miss 6-13
operations

cache block push operations 9-2
data cache transactions 3-18
instruction cache block fill 3-18
snoop response to bus transactions 3-22

PLRU replacement 3-16
stwcx. execution 9-2

Cache management instructions
icbi 12-88
isync 12-89

Changed (C) bit maintenance recording 5-11, 5-20
Checkstop

signal 7-16, 8-36
state 4-17

CI (cache inhibit) signal 7-10
CKSTP_IN/CKSTP_OUT(checkstop input/output)

signals 7-16
Classes of instructions 2-33
Clean block operation 3-22
Clock signals

PLL_CFGn 7-19
SYSCLK 7-19

cmp, compare instruction 12-29
cmpi, compare immediate instruction 12-30
cmpl, compare logical instruction 12-31
cmpli, compare logical immediate instruction 12-32
cntlzw, count leading zeros word instruction 12-33
Compare instructions

cmp, compare 12-29
cmpi, compare immediate 12-30
cmpl, compare logical 12-31
cmpli, compare logical immediate 12-32
floating-point A-12

fcmpo, ordered compare 12-61
fcmpu, unordered compare 12-62

integer A-9
ordered, high (ps_cmpo0) 12-167
ordered, low (ps_cmpo1) 12-168
unordered, high (ps_cmpu0) 12-169
unordered, low (ps_cmpu1) 12-170

complement instruction (nand) 12-150
complementary "or" instruction 12-154
complementary or instruction (nor) 12-152

INDEX (Continued)

 IBM Gekko RISC Microprocessor User’s Manual IBM Confidential Version 1.2 Index-3

Completion
completion unit resource requirements 6-28
considerations 6-15
definition 6-1

Condition register
instructions

or 12-39
condition register

move field instruction (mcrf) 12-120
move from instruction (mfcr) 12-123
move to CR from FPSCR (mcrfs) instruction 12-121
move to CR from XER instruction (mcrxr) 12-122
move to fields instruction (mtcrf) 12-134

Condition register instructions
and 12-34
and with complement 12-35
complement and 12-37
complement or 12-38
equivalent 12-36
or with complement 12-40
XOR instruction 12-41

Context synchronization 2-36
Conventions 6-1
Conversion instructions

fctiw, floating point to integer word 12-63
fctiwz, floating point to integer word with round to

zero 12-64
COP/scan interface 8-38
Copy-back mode 6-25
count leading zeros word (cntlzw) instruction 12-33
CR (condition register)

CR logical instructions 2-59, A-17
CR, description 2-3

crand, condition register and instruction 12-34
crandc, condition register and with complement

instruction 12-35
creqv, condition register equivalent instruction 12-36
crnand, condition register complement and instruction

12-37
crnor, condition register complement or instruction

12-38
cror, condition register or instruction 12-39
crorc, condition register or with complement

instruction 12-40
crxor, condition register XOR instruction 12-41
CTR register 2-4

D
DABR (data address breakpoint register) 2-6
DAR (data address register) 2-5
Data bus

arbitration signals 7-12, 8-8
bus arbitration 8-18
data tenure 8-7

data transfer 7-13, 8-19
data transfer termination 7-14, 8-20

Data cache
configuration 3-3
DCFI, DCE, DLOCK bits 3-12
organization 3-3

Data organization in memory 2-27
Data transfers

alignment 8-15
burst ordering 8-14
eciwx and ecowx instructions, alignment 8-16
operand conventions 2-27
signals 8-19

DBG (data bus grant) signal 7-12, 8-8
dcbf, data cache block flush instruction 12-42
dcbi, data cache block invalidate instruction 12-43
dcbst, data cache block store instruction 12-44
dcbt, data cache block touch instruction 12-45
dcbtst, data cache block touch for store instruction

12-46
dcbz, data cache block clear to zero instruction 12-47
dcbz_l, data cache block set to zero locked instruction

12-48
DEC (decrementer register) 2-6
Decrementer exception 4-20
Defined instruction class 2-33
DHn/DLn (data bus) signals 7-13
Dispatch

considerations 6-15
dispatch unit resource requirements 6-28

Divide instructions
fdivs, divide (single-precision) 12-66
ps_div, divide, paired single 12-171
word unsigned, divide 12-50
word, divide 12-49

divw, divide word instruction 12-49
divwu, divide word unsigned instruction 12-50
DRTRY (data retry) signal 7-15, 8-20, 8-23
DSI exception 4-17
DSISR register 2-5
DTLB organization 5-22
Dynamic branch prediction 6-8

E
EAR (external access register) 2-7
eciwx, external control in word indexed instruction

12-51
ecowx, external control out word indexed instruction

12-52
Effective address calculation

address translation 5-3
branches 2-35
loads and stores 2-35, 2-47, 2-52

eieio, enforce in-order execution of I/O 2-67, 12-53

INDEX (Continued)

Index-4 IBM Confidential Version 1.2 IBM Gekko RISC Microprocessor User’s Manual

EMI protocol, enforcing memory coherency 8-24
eqv, equivalent instruction 12-55
Error termination 8-24
Event counting 11-10
Event selection 11-11
Exceptions

alignment exception 4-19
decrementer exception 4-20
definitions 4-12
DSI exception 4-17
enabling and disabling exceptions 4-10
exception classes 4-2
exception prefix (IP) bit 4-12
exception priorities 4-4
exception processing 4-7, 4-10
external interrupt 4-18
FP assist exception 4-20
FP unavailable exception 4-19
instruction-related exceptions 2-36
ISI exception 4-18
machine check exception 4-16
performance monitor interrupt 4-20
program exception 4-19
register settings

MSR 4-8, 4-12
SRR0/SRR1 4-7

reset exception 4-12
returning from an exception handler 4-11
summary table 4-2
system call exception 4-20
terminology 4-1
thermal management interrupt exception 4-22

Execution synchronization 2-36
Execution unit timing examples 6-17
Execution units 1-9
External control instructions 2-70, 8-16, A-19

eciwx, external control in word indexed 12-51
ecowx, external control out word indexed 12-52

extsb, extend sign byte instruction 12-56
extsh, extend sign half word instruction 12-57

F
fabs, floating-point absolute value instruction 12-58
fadd, floating-point add (double precision) instruction

12-59
fadds, floating-point add (single-precision) instruction

12-60
fcmpo, floating compare ordered 12-61
fcmpu, floating compare unordered 12-62
fctiw, floating convert to integer word instruction

12-63
fctiwz, floating convert to integer word with round to

zero instruction 12-64
Features, list 1-4

Finish cycle, definition 6-1
floating point status and control register

move from instruction (mffs) 12-124
move to bit 1 instruction (mtfsb1) 12-136
move to field immediate instruction (mtfsfi) 12-138
move to field instruction (mtfsf) 12-137

Floating-Point Execution Models—UISA 2-28
Floating-point instructions

fcmpo, compare ordered 12-61
fcmpu, compare unordered 12-62
fdiv, divide (double-precision) 12-65
fdivs, divide (single-precision) 12-66
fmadd, multiply-add (double-precision) 12-67
fmadds, multiply-add (single-precision) 12-68
fmr, move register (double-precision) 12-69
fmsub, multiply-subtract (double-precision) 12-70
fmsubs, multiply-subtract (single-precision) 12-71
fmul, multiply (double-precision) 12-72
fmuls, multiply (single-precision) 12-73
fnabs, negative absolute value 12-74
fneg, negate 12-75
fnmadd, negative multiply-add 12-76–??
fnmadds, negative multiply-add (single-precision)

12-77
fnmsub, negative multiply-subtract (double-preci-

sion) 12-78
fnmsubs, negative multiply-subtract (single-preci-

sion) 12-79
fres, floating reciprocal estimate (single-precision)

12-80
frsp, round to single 12-82
frsqrte, reciprocal square root estimate 12-83
fsub, subtract (double-precision) 12-86
fsubs, subtract (single-precision) 12-87
lfd, load floating point (double-precision) 12-94
lfdu, load floating point double word with update

12-95
lfdux, load floating- point double word with update

indexed 12-96
lfdx, load floating-point double word indexed 12-97
lfs, load floating-point single word 12-98
lfsu, load floating point single word with update

12-99
select (fsel), 12-85

Floating-point model
FE0/FE1 bits 4-9
FP arithmetic instructions 2-42, 12-72, 12-86,

12-87, A-11
FP assist exceptions 4-20
FP compare instructions 2-44, A-12
FP divide instructions 12-65

fdivs, divide (single-precision) 12-66

INDEX (Continued)

 IBM Gekko RISC Microprocessor User’s Manual IBM Confidential Version 1.2 Index-5

FP load instructions A-15
lfsux, load floating point single with update

indexed 12-100
lfsx, load floating point single indexed 12-101

FP move instructions A-16
FP multiply instructions 12-72
FP multiply-add instructions 2-43, 12-68, A-12
FP negate instructions 12-75
FP operand 2-30
FP rounding/conversion instructions 2-44, A-12
FP store instructions 2-54, A-16
FP unavailable exception 4-19
FPSCR instructions 2-45, A-12
IEEE-754 compatibility 2-28
NI bit in FPSCR 2-30

Floating-point unit
execution timing 6-23
latency, FP instructions 6-32
overview 1-9

Flush block operation 3-22
fmadd, floating-point multiply-add instruction 12-67
fmr, move register (double-precision) 12-69
fmsub, multiply-subtract (double-precision) 12-70
fmsubs, multiply-subtract (single-precision) 12-71
fmul, multiply (double-precision) 12-72
fmuls, multiply (single-precision) 12-73
fnabs, negative absolute value instruction 12-74
fnmadd, negative multiply-add 12-76–??
fnmsub, negative multiply-subtract (double-precision)

12-78
FPRn (floating-point registers) 2-3
FPSCR (floating-point status and control register)

FPSCR instructions 2-45, A-12
mcrfs, move to condition register from FPSCR

12-121
FPSCR register description 2-3
NI bit 2-28

fsub, subtract (double-precision) 12-86
fsubs, subtract (single-precision) 12-87

G
GBL (global) signal 7-10
GPRn (general-purpose registers) 2-3
Graphics instructions

frsqrte, square root estimate, reciprocal 12-83
fsel, select 12-85
stfiwx 12-214

Guarded memory bit (G bit) 3-6

H
Half word instructions

lhbrx,byte reversed, load half word instruction
12-106

lhz, load half word and zero 12-107
lhzu, load half word and zero with update 12-108
lhzux, load half word and zero with update indexed

12-109
lhzx, load half word and zero indexed 12-110

HIDn (hardware implementation-dependent) registers
HID0

description 2-8
doze bit 10-2
DPM enable bit 10-2
nap bit 10-3

HID1
description 2-12
PLL configuration 2-13, 7-19

HRESET (hard reset) signal 7-17, 8-37

I
I/O execution, enforce in-order 12-53
IABR (instruction address breakpoint register) 2-8
icbi 12-88
ICTC (instruction cache throttling control) register

2-19, 10-10
IEEE 1149.1-compliant interface 8-38
Illegal instruction class 2-33
immediate "or" instruction 12-155
Indexed instructions

algebraic instructions
lhax, load half word 12-105

lbzux, load byte and zero with update 12-92
lbzx, load byte and zero 12-93
lfdux, load floating-point double word with update

12-96
lhbrx, byte reversed, load half word 12-106
lhzux, load half word and zero with update indexed

12-109
lhzx, load half word and zero 12-110
load word and zero with update (lwzux) 12-118
lswx, load string word 12-113
lwarx, load word and reserve 12-114
lwbrx, load word byte reversed 12-115
lwzx, load word and zero 12-119
psq_stux, quantized store with update 12-163
psq_stx, quantized store 12-164
quantized load (psq_lx) 12-160
quantized load with update (psq_lux) 12-159

indexed instructions
algebraic, load half word with update (lhaux)

12-104
load floating point single (lfsx) 12-101
load floating point single with update (lfsux) 12-100

Instruction cache
configuration 3-4
instruction cache block fill operations 3-18
organization 3-5

INDEX (Continued)

Index-6 IBM Confidential Version 1.2 IBM Gekko RISC Microprocessor User’s Manual

Instruction cache throttling 10-10
Instruction timing

examples
cache hit 6-11
cache miss 6-14

execution unit 6-17
instruction flow 6-7
memory performance considerations 6-25
terminology 6-1

Instructions
arithmetic instructions 12-65–12-68, 12-70–12-73,

12-73–??, 12-76–12-79, 12-146–12-149
branch address calculation 2-58
branch instructions 6-7, 6-17, 6-18, A-16
cache control instructions 9-2
cache management instructions A-18

icbi 12-88
isync 12-89

classes 2-33
condition register logical 2-59, A-17
defined instructions 2-33
external control instructions 2-70, A-19
floating-point

arithmetic 2-42, 12-65–12-68, 12-86, 12-87, A-11
arithmetic instructions 12-80
compare 2-44, A-12
FP load instructions A-15
FP move instructions A-16
FP rounding and conversion 2-44, A-12
FP status and control register 2-45
FP store instructions A-16
FPSCR instructions A-12
multiply 12-72
multiply-add 2-43, 12-68, A-12
negate 12-75

fmr, move register (double-precision) 12-69
fmul, multiply (double-precision) 12-72
fneg, negate 12-75
fsub, subtract (double-precision) 12-86
fsubs, subtract (single-precision) 12-87
graphics instructions 12-83, 12-85

stfiwx 12-214
illegal instructions 2-33
instruction cache throttling 10-10
instruction flow diagram 6-9
instruction serialization 6-16
instruction serialization types 6-16
instruction set summary 2-32
integer

arithmetic 2-37, A-9
compare 2-39, A-9
load A-12
load/store multiple A-14
load/store string A-15

load/store with byte reverse A-14
logical 2-39, A-10
rotate and shift 2-41, A-10
store A-14

integer instructions 6-30
isync, instruction synchronization 4-11
latency summary 6-29
lfsux, load floating point single with update indexed

12-100
lfsx, load floating point single indexed 12-101
lha, load half word algebraic 12-102
lhau, load half word algebraic with update 12-103
lhaux, load half word algebraic with update indexed

12-104
lnegation 12-151
load 12-90–12-119
load and store

address generation
floating-point 2-52
integer 2-47

byte reverse instructions 2-50, A-14
floating-point load A-15
floating-point move 2-46, A-16
floating-point store 2-53, 2-55
handling misalignment 2-46
integer load 2-48, A-12
integer multiple 2-50
integer store 2-49, A-14
memory synchronization 2-65, 2-66, A-15
multiple instructions A-14
string instructions 2-51, A-15

logic 12-150, 12-152, 12-153, 12-154, 12-155
lookaside buffer management instructions A-19
memory control instructions 2-67, 2-71
memory synchronization instructions 2-65, 2-66,

A-15
isync 12-89
stwcx. 12-229
sync 12-239

move 12-120–??, 12-125, 12-126, 12-130, 12-131,
12-132, 12-134, 12-136, 12-137, 12-138,
12-139, 12-140, 12-144, 12-145, ??–12-145

paired single instructions 12-157–12-195
ps_sel 12-192
ps_sub 12-193
ps_sum0 12-194
ps_sum1 12-195

PowerPC instructions, list A-1
processor control instructions 2-61, 2-65, 2-71,

A-18
reserved instructions 2-34
rfi 4-11
segment register manipulation instructions A-19
stwcx. 4-11

INDEX (Continued)

 IBM Gekko RISC Microprocessor User’s Manual IBM Confidential Version 1.2 Index-7

support for lwarx/stwcx. 8-38
sync 4-11
system linkage instructions 2-60, A-17
TLB management instructions A-19
tlbie 2-73
tlbsync 2-73
trap instructions 2-60, A-17

INT (interrupt) signal 8-36
Integer arithmetic instructions 2-37, A-9
Integer compare instructions 2-39, A-9
Integer load instructions 2-48, A-12
Integer logical instructions 2-39, A-10
Integer rotate/shift instructions 2-41, A-10
Integer store gathering 6-25
Integer store instructions 2-49, A-14
Integer unit execution timing 6-23
Interrupt, external 4-18
ISI exception 4-18
isync 12-89
isync, instruction synchronization 2-67, 4-11
ITLB organization 5-22

K
Kill block operation 3-22

L
L2CR (L2 cache control register) 2-25, 9-3
Latency

load/store instructions 6-34
Latency, definition 6-1
lbz, load byte and zero 12-90
lbzu, load byte and zero with update instruction 12-91
lbzux, load byte and zero with update indexed

instruction 12-92
lbzx, load byte and zero instruction 12-93
lfd, load floating point (double-precision) 12-94
lfdux, load floating- point double word with update

indexed instruction 12-96
lfdx, load floating-point double word instruction 12-97
lfs, load floating-point single word 12-98
lfsu, load floating-point single word with update 12-99
lfsx, load floating point single indexed 12-101
lha, load half word algebraic 12-102
lhau, load half word algebraic with update 12-103
lhaux, load half word algebraic with update indexed

12-104
lhax, load half word algebraic indexed 12-105
lhbrx, load half word byte reversed indexed 12-106
lhz, load half word and zero instruction 12-107
lhzu, load half word and zero with update 12-108
link register, branching to 12-27
lmw, load multiple word instruction 12-111
load byte and zero (lbz) instruction 12-90

load byte and zero indexed (lbzx) instruction 12-93
load byte and zero with update (lbzu) instruction 12-91
load byte and zero with update indexed (lbzux)

instruction 12-92
Load instructions 12-90–12-119

lfdux, load floating-point double with update 12-96
quantized (psq_l) 12-157
quantized with update (psq_lu) 12-158
quantized with update indexed(psq_lu) 12-159

load multiple word (lmw) instruction 12-111
load string word immediate (lswi) instruction 12-112
load word and reserve (lwarx) instruction 12-114
load word and zero (lwz) instruction 12-116
load word and zero indexed (lwzx) instruction 12-119
load word and zero with update (lwzu) instruction

12-117
load word byte reversed (lwbrx) instruction 12-115
Load/store

address generation 2-47
byte reverse instructions 2-50, A-14
execution timing 6-23
floating-point load instructions 2-53, A-15
floating-point move instructions 2-46, A-16
floating-point store instructions 2-54, A-16
handling misalignment 2-46
integer load instructions 2-48, A-12
integer store instructions 2-49, A-14
latency, load/store instructions 6-34
load/store multiple instructions 2-50, A-14
memory synchronization instructions A-15
string instructions 2-51, A-15

Logic instructions
condition register complemented XOR 12-36
crand, condition register and 12-34
crandc, condition register and with complement

12-35
crnand, condition register complement and 12-37
crnor, condition register or complement 12-38
cror, condition register or 12-39
crorc, condition register or with complement 12-40
crxor, condition register XOR 12-41
integer

and 12-18
andc, and with complement 12-19
andi., and immediate 12-20

interger
andis., and immediate shifted 12-21

Logical address translation 5-1
Logical instructions, integer A-10
Lookaside buffer management instructions A-19
LR (link register) 2-3
lswi, load string word immediate instruction 12-112
lswx, load string word indexed instruction 12-113
lwarx, load word and reserve instruction 12-114

INDEX (Continued)

Index-8 IBM Confidential Version 1.2 IBM Gekko RISC Microprocessor User’s Manual

lwarx/stwcx.
stwcx. 12-229

lwarx/stwcx. support 8-38
lwbrx, load word byte reversed instruction 12-115
lwz, load word and zero instruction 12-116
lwzu, load word and zero with update instruction

12-117

M
Machine check exception 4-16
machine state register

move from instruction (mfmsr) 12-125
move to instruction (mtmsr) 12-139

MCP (machine check interrupt) signal 7-16
MEI protocol

hardware considerations 3-8
read operations 3-19
state transitions 3-26

Memory accesses 8-5
Memory coherency bit (M bit)

cache interactions 3-6
timing considerations 6-25

Memory control instructions
description 2-67, 2-71
segment register manipulation A-19

Memory management unit
address translation flow 5-11
address translation mechanisms 5-7, 5-11
block address translation 5-8, 5-11, 5-18
block diagrams

32-bit implementations 5-5
DMMU 5-7
IMMU 5-6

exceptions summary 5-14
features summary 5-2
implementation-specific features 5-2
instructions and registers 5-16
memory protection 5-10
overview 5-1
page address translation 5-8, 5-11, 5-24
page history status 5-11, 5-18–5-21
real addressing mode 5-11, 5-17
segment model 5-18

Memory synchronization
isync 12-89
stwcx. 12-229
sync 12-239

Memory synchronization instructions 2-65, 2-66,
A-15

Merge instructions
ps_merge00, merge high, paired single 12-175
ps_merge01, merge direct, paired single 12-176
ps_merge10, merge swapped, paired single 12-177
ps_merge11, merge low, paired single 12-178

mfcr, move from condition register instruction 12-123
mffs, move from floating point status and control

register instruction 12-124
mfmsr, move from machine state register instruction

12-125
mfspr, move from special purpose register instruction

12-126
mfsr, move from segmenl register instruction 12-130
mfsrin, move from segment register indirect

instruction 12-131
mftb, move from time base register instruction 12-132
Misaligned data transfer 8-36
Misalignment

misaligned accesses 2-27
misaligned data transfer 8-16

MMCRn (monitor mode control registers) 2-14, 4-20,
11-3

Move from instructions
condition register (mfcr) 12-123
floating point and control register (mffs) 12-124
machine state register (mfmsr) 12-125
segment register (mfsr) 12-130
segment register indirect (mfsrin) 12-131
special purpose register (mfspr) 12-126
time base register (mftb) 12-132

Move instructions
mcrf, move condition register field 12-120
mcrfs, move to CR from FPSCR 12-121
mcrxr, move to condition register from XER 12-122
ps_mr, move register, paired single 12-179

Move to instructions
condition register fields (mtcrf) 12-134
FPSCR bit 0 (mtfsb0) 12-135

move to instructions
FPSCR bit 1 (mtfsb1) 12-136
FPSCR field immediate (mtfsfi) 12-138
FPSCR fields (mtfsf) 12-137
machine state register (mtmsr) 12-139
segment register (mtsr) 12-144
segment register, indirect (mtsrin) 12-145
special purpose register (mtspr) 12-140

MSR (machine state register)
bit settings 4-8
FE0/FE1 bits 4-9
IP bit 4-12
PM bit 2-4
RI bit 4-11
settings due to exception 4-12

mtcrf, move to condition register fields instruction
12-134

mtfsb0, move to FPSCR bit 0 instruction 12-135
mtfsb1, move to FPSCR bit 1 instruction 12-136
mtfsf, move to FPSCR field instruction 12-137

INDEX (Continued)

 IBM Gekko RISC Microprocessor User’s Manual IBM Confidential Version 1.2 Index-9

mtfsfi, move to FPSCR field immediate instruction
12-138

mtmsr, move to machine state register instruction
12-139

mtspr, move to special purpose register instruction
12-140

mtsr, move to segmenl register instruction 12-144
mtsrin, move to segmenl register indirect instruction

12-145
Multiple-precision shifts 2-41
Multiply instructions

high word (mulhw) 12-146
high word unsigned (mulhwu) 12-147
low word (mullw) 12-149
ps_mul, multiply, paired single 12-181
ps_muls0, multiply scalar high, paired single 12-182
ps_muls1, multiply scalar low, paired single 12-183

Multiply instructions, low immediate (mulli) 12-148
Multiply-add instructions A-12

ps_madd, multiply-add, paired single 12-172
ps_madds, multiply-add (single precision), paired

single 12-173
ps_madds1, multiply-add scalar low, paired single

12-174
ps_nmadd, negative multiply-add, paired single

12-186
Multiply-subtract instructions

ps_msub, multiply-subtract, paired single 12-180
ps_nmsub, negative multiply-subtract, paired single

12-188

N
nand, logic instruction 12-150
neg, logic instruction 12-151
negative instructions

fnmadds, negative multiply-add (single-precision)
12-77

fnmsubs, multiply-subtract (single-precision) 12-79
nor, logic instruction 12-152

O
OEA

exception mechanism 4-1
memory management specifications 5-1
registers 2-4

Operand conventions 2-27
Operand placement and performance 6-24
Operating environment architecture (OEA) 1-17
Operations

bus operations caused by cache control instructions
3-19

instruction cache block fill 3-18
read operation 3-19

response to snooped bus transactions 3-22
single-beat write operations 8-27

or, logic instruction 12-153
orc, logic instruction 12-154
ori, logic instruction 12-155
oris 12-123, 12-124, 12-125, 12-126, 12-130, 12-131,

12-132, 12-134, 12-135, 12-136, 12-137, 12-138,
12-139, 12-140, 12-144, 12-145

Overview 1-1

P
Page address translation

definition 1-10
page address translation flow 5-24
page size 5-18
selection of page address translation 5-8, 5-14
TLB organization 5-22

Page history status
cases of dcbt and dcbtst misses 5-19
R and C bit recording 5-11, 5-18–5-21

Page table updates 5-29
Paired single instructions 12-157–12-195
paired single instructions

ps_sel 12-192
ps_sub 12-193
ps_sum0 12-194
ps_sum1 12-195

Performance monitor
event counting 11-10
event selecting 11-11
performance monitor interrupt 4-20, 11-1
performance monitor SPRs 11-2
purposes 11-1
registers 11-3
warnings 11-12

Phase-locked loop 10-3
Physical address generation 5-1
Pipeline

instruction timing, definition 6-1
pipeline stages 6-6
pipelined execution unit 6-3
superscalar/pipeline diagram 6-4

PMC1 and PMC2 registers 1-22
PMCn (performance monitor counter) registers 2-17,

4-20, 11-5
Power and ground signals 7-20

INDEX (Continued)

Index-10 IBM Confidential Version 1.2 IBM Gekko RISC Microprocessor User’s Manual

Power management
doze mode 10-2
doze, nap, sleep, DPM bits 2-13
dynamic power management 10-1
full-power mode 10-2
nap mode 10-3
programmable power modes 10-2
sleep mode 10-4
software considerations 10-5

PowerPC architecture
instruction list A-1
operating environment architecture (OEA) 1-17
user instruction set architecture (UISA) 1-17
virtual environment architecture (VEA) 1-17

Priorities, exception 4-4
Process switching 4-11
Processor control instructions 2-61, 2-65, 2-71, A-18
Program exception 4-19
Program order, definition 6-2
Programmable power states

doze mode 10-2
nap mode 10-3
sleep mode 10-4

Protection of memory areas
no-execute protection 5-12
options available 5-10
protection violations 5-14

ps_abs, absolute value 12-165
ps_cmpo0, compare ordered high instruction 12-167
ps_cmpo1, compare ordered low instruction 12-168
ps_cmpu0, compare unordered high instruction

12-169
ps_cmpu1, compare unordered low instruction 12-170
ps_div, divide, paired single instruction 12-171
ps_madd, multiply-add, paired single instruction

12-172
ps_madds, multiply-add (single precision), paired

single instruction 12-173
ps_madds1, multiply-add scalar low, paired single

instruction 12-174
ps_merge00, merge high, paired single instruction

12-175
ps_merge01, merge direct, paired single instruction

12-176
ps_merge10, merge swapped, paired single instruction

12-177
ps_merge11, merge low, paired single instruction

12-178
ps_mr, move register, paired single instruction 12-179
ps_msub, multiply-subtract, paired single instruction

12-180
ps_mul, multiply, paired single instruction 12-181
ps_muls0, multiply scalar high, paired single

instruction 12-182

ps_muls1, multiply scalar low, paired single
instruction 12-183

ps_nabs, negative absolute value 12-184
ps_neg, negate, paired single instruction 12-185
ps_nmadd, negative multiply-add, paired single

instruction 12-186
ps_nmsub, negative multiply-subtract, paired single

instruction 12-188
ps_res, reciprocal estimate, paired single instruction

12-189
ps_rsqrte, square root estimate, reciprocal 12-190
ps_sel 12-192
ps_sub 12-193
ps_sum0 12-194
ps_sum1 12-195
psq_l, quantized load 12-157
psq_lu, quantized load with update 12-158
psq_lux, quantized load with update indexed 12-159
psq_lx, quantized load indexed 12-160
psq_st, quantized store instruction 12-161
psq_stu, store quantized with update instruction

12-162
psq_stux, quantized store with update indexed

instruction 12-163
psq_stx, quantized store indexed instruction 12-164
PVR (processor version register) 2-4

Q
QACK (quiescent acknowledge) signal 7-18
QREQ (quiescent request) signal 7-18, 8-37
Qualified bus grant 8-8
Qualified data bus grant 8-19
quantized load (psq_l), paired single instruction

12-157

INDEX (Continued)

 IBM Gekko RISC Microprocessor User’s Manual IBM Confidential Version 1.2 Index-11

R
Read operation 3-22
Read-atomic operation 3-22
Read-with-intent-to-modify operation 3-22
Real address (RA),see Physical address generation
Real addressing mode (translation disabled)

data accesses 5-11, 5-17
instruction accesses 5-11, 5-17
support for real addressing mode 5-2

reciprocal estimate
floating-point (fres) 12-80
paired single (ps_res) 12-189

reciprocal square root estimate
floating point (frsqrte) 12-83
paired single (ps_rsqrte) 12-190

Record bit (Rc)
description 12-3

Referenced (R) bit maintenance recording 5-11, 5-19,
5-26

Registers
implementation-specific

ICTC 2-19, 10-10
L2CR 2-25, 9-3
MMCR0 2-14, 4-20, 11-3
MMCR1 2-16, 4-20, 11-4
SIA 2-18, 4-21
THRMn 2-19, 10-7
UMMCR0 2-16
UMMCR1 2-17
UPMCn 2-18
USIA 2-18

performance monitor registers 2-14
SPR encodings 2-63
supervisor-level

BAT registers 2-5
DABR 2-6
DAR 2-5
DEC 2-6
DSISR 2-5
EAR 2-7
HID0 2-8, 10-2
HID1 2-12
IABR 2-8
ICTC 2-19, 10-10
L2CR 2-25, 9-3
MMCR0 2-14, 4-20, 11-3
MMCR1 2-16, 4-20, 11-4
MSR 2-4
PMC1 and PMC2 1-22
PMCn 2-17, 4-20
PVR 2-4
SDR1 2-5
SIA 2-18, 4-21, 11-9
SPRGn 2-5

SPRs for performance monitor 11-1
SRn 2-5
SRR0/SRR1 2-6
THRMn 2-19, 10-7
time base (TB) 2-6

user-level
CR 2-3
CTR 2-4
FPRn 2-3
FPSCR 2-3
GPRn 2-3
LR 2-3
time base (TB) 2-4, 2-6
UMMCR0 2-16
UMMCR1 2-17
UPMCn 2-18
USIA 2-18, 11-10
XER 2-3

Rename buffer, definition 6-2
Rename register operation 6-16
Reservation station, definition 6-2
Reserved instruction class 2-34
Reset

HRESET signal 7-17, 8-37
reset exception 4-12
SRESET signal 7-17, 8-37

Retirement, definition 6-2
rfi 4-11
rfi (64-bit bridge) 12-196
rlwimi 12-197
rlwinm 12-198
rlwnm 12-200
Rotate/shift instructions 2-41, A-10

INDEX (Continued)

Index-12 IBM Confidential Version 1.2 IBM Gekko RISC Microprocessor User’s Manual

S
sc

user-level function 12-201
SDR1 register 2-5
segment register

move from indirect instruction (mfsrin) 12-131
move from instruction (mfsr) 12-130
move to instruction (mtsr) 12-144
move to instruction (mtsrin) 12-145

Segment registers
SR description 2-5
SR manipulation instructions 2-72, A-19

Segmented memory model,seeMemory management
unit

select (ps_sel), paired single instruction 12-192
Serializing instructions 6-16
Shift/rotate instructions 2-41, A-10
SIA (sampled instruction address) register 2-18, 4-21,

11-9
Signals

AACK 7-11
address arbitration 7-3, 8-8
address transfer 8-11
address transfer attribute 8-12
An 7-5
ARTRY 7-11, 8-20
BG 7-3, 8-8
BR 7-3, 8-8
checkstop 8-36
CI 7-10
CKSTP_IN/CKSTP_OUT 7-16
configuration 7-2
COP/scan interface 8-38
data arbitration 8-8, 8-18
data transfer termination 8-20
DBG 7-12, 8-8
DHn/DLn 7-13
DRTRY 7-15, 8-20, 8-23
GBL 7-10
HRESET 7-17
INT 8-36
MCP 7-16
PLL_CFGn 7-19
power and ground signals 7-20
QACK 7-18
QREQ 7-18, 8-37
reset 8-37
SRESET 7-17, 8-37
system quiesce control 8-37
TA 7-14
TBST 7-9, 8-13, 8-20
TEA 7-15, 8-20, 8-24
transfer encoding 7-6
TS 7-4

TSIZn 7-8, 8-13
TTn 7-6, 8-13
WT 7-10

Single-beat transfer
reads with data delays, timing 8-28
reads, timing 8-26
termination 8-21
writes, timing 8-27

slw 12-202
Snooping 3-21
special purpose register

move from instruction (mfspr) 12-126
move to instruction (mtspr) 12-140

Split-bus transaction 8-8
SPRGn registers 2-5
sraw 12-203
srawi 12-204
SRESET (soft reset) signal 7-17, 8-37
SRR0/SRR1 (status save/restore registers)

description 2-6
exception processing 4-7

srw 12-205
Stage, definition 6-2
Stall, definition 6-2
Static branch prediction 6-8, 6-20
stb 12-206
stbu 12-207
stbux 12-208
stbx 12-209
stfd 12-210
stfdu 12-211
stfdux 12-212
stfdx 12-213
stfiwx 12-214
stfs 12-215
stfsu 12-216
stfsux 12-217
stfsx 12-218
sth 12-219
sthbrx 12-220
sthu 12-221
sthux 12-222
sthx 12-223
stmw 12-224
Store instructions

dcbst, data cache block store 12-44
quantized (psq_st) 12-161
quantized indexed(psq_stx) 12-164
quantized with update (psq_stu) 12-162
quantized with update indexed(psq_stux) 12-163

string word, load immediate (lswi) instruction 12-112
string word, load indexed (lswx) instruction 12-113
stswi 12-225
stswx 12-226

INDEX (Continued)

 IBM Gekko RISC Microprocessor User’s Manual IBM Confidential Version 1.2 Index-13

stw 12-227
stwbrx 12-228
stwcx. 4-11, 12-229
stwcx./lwarx

stwcx. 12-229
stwu 12-230
stwux 12-231
stwx 12-232
subf 12-233
subfc 12-234
subfe 12-235
subfic 12-236
subfme 12-237
subfze 12-238
subtract(ps_sub), paired single instruction 12-193
sum, paired single instruction

vector sum
high (ps_sum0) 12-194
low (ps_sum1) 12-195

Superscalar, definition 6-2
sync 4-11, 12-239
SYNC operation 3-22
Synchronization

context/execution synchronization 2-36
execution of rfi 4-11
memory synchronization instructions 2-65, 2-66,

A-15
SYSCLK (system clock) signal 7-19
System call exception 4-20
System linkage instructions 2-60, 2-70

list of instructions A-17
rfi 12-196
sc 12-201

System quiesce control signals (QACK/ QREQ) 8-37
System register unit

execution timing 6-25
latency, CR logical instructions 6-30
latency, system register instructions 6-29

T
TA (transfer acknowledge) signal 7-14
Table search flow (primary and secondary) 5-26
TBL/TBU (time base lower and upper) registers 2-4,

2-6
TBST (transfer burst) signal 7-9, 8-13, 8-20
TEA (transfer error acknowledge) signal 7-15, 8-24
Termination 8-16, 8-20
Thermal assist unit (TAU) 10-5
Thermal management interrupt exception 4-22
THRMn (thermal management) registers 2-19, 10-7
Throughput, definition 6-2
time base register

move from instructions (mftb) 12-132
Timing diagrams, interface

address transfer signals 8-12
burst transfers with data delays 8-30
single-beat reads 8-26
single-beat reads with data delays 8-28
single-beat writes 8-27
single-beat writes with data delays 8-29
use ofTEA 8-30

Timing, instruction
BPU execution timing 6-17
branch timing example 6-22
cache hit 6-11
cache miss 6-14
execution unit 6-17
FPU execution timing 6-23
instruction dispatch 6-15
instruction flow 6-7
instruction scheduling guidelines 6-27
IU execution timing 6-23
latency summary 6-29
load/store unit execution timing 6-23
SRU execution timing 6-25
stage, definition 6-2

TLB
description 5-21
invalidate (tlbie instruction) 5-24, 5-29
LRU replacement 5-23
organization for ITLB and DTLB 5-22
TLB miss and table search operation 5-23, 5-26

TLB invalidate
description 5-24
TLB management instructions 2-73, A-19

TLB miss, effect 6-26
tlbie 2-73, 12-240
tlbsync 2-73, 12-241
Touch instructions

dcbt, data cache block touch 12-45
dcbtst, data cache block touch for store 12-46

Transactions, data cache 3-18
Transfer 8-11, 8-19
Trap instructions 2-60
TS (transfer start) signal 7-4, 8-11
TSIZn (transfer size) signals 7-8, 8-13
TTn (transfer type) signals 7-6, 8-13
tw 12-242
twi 12-243
two’s complement instruction (neg) 12-151

U
UMMCR0 (user monitor mode control register 0)

2-16, 11-4
UMMCR1 (user monitor mode control register 1)

2-17, 11-5
UPMCn (user performance monitor counter) registers

2-18, 11-9

INDEX (Continued)

Index-14 IBM Confidential Version 1.2 IBM Gekko RISC Microprocessor User’s Manual

Use ofTEA, timing 8-30
User instruction set architecture (UISA)

description 1-17
registers 2-3

USIA (user sampled instruction address) register 2-18,
11-10

V
vector sum, paired single instruction

high (ps_sum0) 12-194
low (ps_sum1) 12-195

Virtual environment architecture (VEA) 1-17

W
WIMG bits 8-24
word unsigned, divide (divwu) instruction 12-50
word, divide (divw) instruction 12-49
Write-back, definition 6-2
Write-through mode (W bit)

cache interactions 3-6
Write-with-Atomic operation 3-22
Write-with-Flush operation 3-22
Write-with-Kill operation 3-22
WT (write-through) signal 7-10

X
XER register 2-3
xor 12-244
xori 12-245
xoris 12-246

	CONTENTS
	Chapter�1 Gekko Overview
	Chapter�2 Programming Model
	Chapter�3 Gekko Instruction and Data Cache Operation
	Chapter�4 Exceptions
	Chapter�5 Memory Management
	Chapter�6 Instruction Timing
	Chapter�7 Signal Descriptions
	Chapter�8 Bus Interface Operation
	Chapter�9 L2 Cache, Locked D-Cache, DMA and Write Gather Pipe
	Chapter�10 Power and Thermal Management
	Chapter�11 Performance Monitor
	Chapter�12 Instruction Set
	Appendix A – Gekko Instruction Set
	Index

	ILLUSTRATIONS
	Chapter�1—Gekko Overview
	Chapter�2—Programming Model
	Chapter�3—Gekko Instruction and Data Cache Operation
	Chapter�4—Exceptions
	Chapter�5—Memory Management
	Chapter�6—Instruction Timing
	Chapter�7—Signal Descriptions
	Chapter�8—Bus Interface Operation
	Chapter�10—Power and Thermal Management
	Chapter�11— Performance Monitor
	Chapter�12—Instruction Set

	TABLES
	Chapter�1—Gekko Overview
	Chapter�2—Programming Model
	Chapter�3—Gekko Instruction and Data Cache Operation
	Chapter�4—Exceptions
	Chapter�5—Memory Management
	Chapter�6—Instruction Timing
	Chapter�7—Signal Descriptions
	Chapter�8—Bus Interface Operation
	Chapter�9—L2 Cache, Locked D-Cache, DMA and Write Gather Pipe
	Chapter�10—Power and Thermal Management
	Chapter�11— Performance Monitor
	Chapter�12—Instruction Set
	Appendix�A—– Gekko Instruction Set

	Chapter�1 Gekko Overview
	1.1 Gekko Microprocessor Overview
	Figure�1�1 . Gekko Microprocessor Block Diagram

	1.2 Gekko Microprocessor Features
	1.2.1 Overview of Gekko Microprocessor Features
	1.2.2 Instruction Flow
	1.2.2.1 Instruction Queue and Dispatch Unit
	1.2.2.2 Branch Processing Unit (BPU)
	1.2.2.3 Completion Unit
	1.2.2.4 Independent Execution Units

	1.2.3 Memory Management Units (MMUs)
	1.2.4 On-Chip Level 1 Instruction and Data Caches
	Figure�1�2 . Cache Organization

	1.2.5 On-Chip Level 2 Cache Implementation
	1.2.6 System Interface/Bus Interface Unit (BIU)
	Figure�1�3 . System Interface

	1.2.7 Signals
	1.2.8 Signal Configuration
	Figure�1�4 . Gekko Microprocessor Signal Groups

	1.2.9 Clocking

	1.3 Gekko Microprocessor: Implementation
	1.4 PowerPC Registers and Programming Model
	Figure�1�5 . Gekko Microprocessor Programming Model—Registers
	Table�1�1 . Architecture-Defined Registers (Excluding SPRs)
	Table�1�2 . Architecture-Defined SPRs Implemented
	Table�1�3 . Implementation-Specific Registers

	1.5 Instruction Set
	1.5.1 PowerPC Instruction Set
	1.5.2 Gekko Microprocessor Instruction Set

	1.6 On-Chip Cache Implementation
	1.6.1 PowerPC Cache Model
	1.6.2 Gekko Microprocessor Cache Implementation

	1.7 Exception Model
	1.7.1 PowerPC Exception Model
	1.7.2 Gekko Microprocessor Exception Implementation
	Table�1�4 . Gekko Microprocessor Exception Classifications�
	Table�1�5 . Exceptions and Conditions (Continued)

	1.8 Memory Management
	1.8.1 PowerPC Memory Management Model
	1.8.2 Gekko Microprocessor Memory Management Implementation

	1.9 Instruction Timing
	Figure�1�6 . Pipeline Diagram

	1.10 Power Management
	1.11 Thermal Management
	1.12 Performance Monitor

	Chapter�2 Programming Model
	2.1 Gekko Processor Register Set
	2.1.1 Register Set
	Figure�2�1 . Programming Model—Gekko Microprocessor Registers
	Table�2�1 . Additional MSR Bits
	Table�2�2 . Additional SRR1 Bits

	2.1.2 Gekko-Specific Registers
	2.1.2.1 Instruction Address Breakpoint Register (IABR)
	Figure�2�2 . Instruction Address Breakpoint Register
	Table�2�3 . Instruction Address Breakpoint Register Bit Settings

	2.1.2.2 Hardware Implementation-Dependent Register 0
	Figure�2�3 . Hardware Implementation-Dependent Register 0 (HID0)
	Table�2�4 . HID0 Bit Functions (Continued)

	2.1.2.3 Hardware Implementation-Dependent Register 1
	Figure�2�4 . Hardware Implementation-Dependent Register 1 (HID1)
	Table�2�5 . HID1 Bit Functions

	2.1.2.4 Hardware Implementation-Dependent Register 2
	Figure�2�5 . Hardware Implementation-Dependent Register 2 (HID2)
	Table�2�6 . HID2 Bit Settings

	2.1.2.5 Performance Monitor Registers
	Figure�2�6 . Monitor Mode Control Register 0 (MMCR0)
	Table�2�7 . MMCR0 Bit Settings (Continued)
	Figure�2�7 . Monitor Mode Control Register 1 (MMCR1)
	Table�2�8 . MMCR1 Bits
	Figure�2�8 . Performance Monitor Counter Registers (PMC1–PMC4)
	Table�2�9 . PMCn Bits
	Figure�2�9 . Sampled Instruction Address Registers (SIA)

	2.1.2.6 Instruction Cache Throttling Control Register (ICTC)
	Figure�2�10 . Instruction Cache Throttling Control Register (ICTC)
	Table�2�10 . ICTC Bit Settings

	2.1.2.7 Thermal Management Registers (THRM1–THRM3)
	Figure�2�11 . Thermal Management Registers 1–2 (THRM1–THRM2)
	Table�2�11 . THRM1–THRM2 Bit Settings
	Table�2�12 . Valid THRM1/THRM2 Bit Settings
	Figure�2�12 . Thermal Management Register 3 (THRM3)
	Table�2�13 . THRM3 Bit Settings

	2.1.2.8 Direct Memory Access (DMA) registers
	Figure�2�13 . Direct Memory Access Upper (DMAU) register
	Figure�2�14 . Direct Memory Access Lower (DMAL) register
	Table�2�14 . DMAU Bit Settings
	Table�2�15 . DMAL Bit Settings

	2.1.2.9 Graphics Quantization Registers (GQRs)
	Figure�2�15 . Graphics Quantization Register
	Table�2�16 . Graphics Quantization Register Bit Settings
	Table�2�17 . Quantized Data Types

	2.1.2.10 Write Pipe Address Register (WPAR)
	Figure�2�16 . Write Pipe Address Register (WPAR)
	Table�2�18 . Write Pipe Address Register Bit Settings

	2.1.2.11 L2 Cache Control Register (L2CR)
	Figure�2�17 . L2 Cache Control Register (L2CR)
	Table�2�19 . L2CR Bit Settings (Continued)

	2.2 Operand Conventions
	2.2.1 Data Organization in Memory and Data Transfers
	2.2.2 Alignment and Misaligned Accesses
	Table�2�20 . Memory Operands

	2.2.3 Floating-Point Operand and Execution Models—UISA
	Figure�2�18 . Floating-Point Register containing a paired single operand
	Table�2�21 . Floating-Point Operand Data Type Behavior (Continued)
	Table�2�22 . Floating-Point Result Data Type Behavior�

	2.3 Instruction Set Summary
	2.3.1 Classes of Instructions
	2.3.1.1 Definition of Boundedly Undefined
	2.3.1.2 Defined Instruction Class
	2.3.1.3 Illegal Instruction Class
	2.3.1.4 Reserved Instruction Class
	2.3.1.5 Gekko’s implementation-specific instructions

	2.3.2 Addressing Modes
	2.3.2.1 Memory Addressing
	2.3.2.2 Memory Operands
	2.3.2.3 Effective Address Calculation
	2.3.2.4 Synchronization

	2.3.3 Instruction Set Overview
	2.3.4 PowerPC UISA Instructions
	2.3.4.1 Integer Instructions
	Table�2�23 . Integer Arithmetic Instructions (Continued)
	Table�2�24 . Integer Compare Instructions
	Table�2�25 . Integer Logical Instructions (Continued)
	Table�2�26 . Integer Rotate Instructions�
	Table�2�27 . Integer Shift Instructions�

	2.3.4.2 Floating-Point Instructions
	Table�2�28 . Floating-Point Arithmetic Instructions�
	Table�2�29 . Floating-Point Multiply-Add Instructions�
	Table�2�30 . Floating-Point Rounding and Conversion Instructions�
	Table�2�31 . Floating-Point Compare Instructions
	Table�2�32 . Floating-Point Status and Control Register Instructions�
	Table�2�33 . Floating-Point Move Instructions�

	2.3.4.3 Load and Store Instructions
	Table�2�34 . Integer Load Instructions�
	Table�2�35 . Integer Store Instructions�
	Table�2�36 . Integer Load and Store with Byte-Reverse Instructions�
	Table�2�37 . Integer Load and Store Multiple Instructions�
	Table�2�38 . Integer Load and Store String Instructions�
	Table�2�39 . Floating-Point Load Instructions�
	Table�2�40 . Floating-Point Store Instructions�
	Table�2�41 . Store Floating-Point Single Behavior�
	Table�2�42 . Store Floating-Point Double Behavior�
	Table�2�43 . Paired Single Load and Store Instructions
	Table�2�44 . Conversion of integer value 1 to single-precision floating point
	Table�2�45 . Conversion of Floating-point Value 1.00 E+2 to Integer

	2.3.4.4 Branch and Flow Control Instructions
	Table�2�46 . Branch Instructions
	Table�2�47 . Condition Register Logical Instructions (Continued)
	Table�2�48 . Trap Instructions

	2.3.4.5 System Linkage Instruction—UISA
	Table�2�49 . System Linkage Instruction—UISA

	2.3.4.6 Processor Control Instructions—UISA
	Table�2�50 . Move to/from Condition Register Instructions
	Table�2�51 . Move to/from Special-Purpose Register Instructions (UISA)
	Table�2�52 . PowerPC Encodings (Continued)
	Table�2�53 . SPR Encodings for Gekko-Defined Registers (mfspr) (Continued)

	2.3.4.7 Memory Synchronization Instructions—UISA
	Table�2�54 . Memory Synchronization Instructions—UISA �

	2.3.5 PowerPC VEA Instructions
	2.3.5.1 Processor Control Instructions—VEA
	Table�2�55 . Move from Time Base Instruction

	2.3.5.2 Memory Synchronization Instructions—VEA
	Table�2�56 . Memory Synchronization Instructions—VEA

	2.3.5.3 Memory Control Instructions—VEA
	Table�2�57 . User-Level Cache Instructions (Continued)

	2.3.5.4 Optional External Control Instructions
	Table�2�58 . External Control Instructions

	2.3.6 PowerPC OEA Instructions
	2.3.6.1 System Linkage Instructions—OEA
	Table�2�59 . System Linkage Instructions—OEA

	2.3.6.2 Processor Control Instructions—OEA
	Table�2�60 . Move to/from Machine State Register Instructions
	Table�2�61 . Move to/from Special-Purpose Register Instructions (OEA)

	2.3.6.3 Memory Control Instructions—OEA
	Table�2�62 . Supervisor-Level Cache Management Instruction
	Table�2�63 . Segment Register Manipulation Instructions
	Table�2�64 . Translation Lookaside Buffer Management Instruction

	2.3.7 Recommended Simplified Mnemonics

	Chapter�3 Gekko Instruction and Data Cache Operation
	Figure�3�1 . Cache Integration
	3.1 Data Cache Organization
	Figure�3�2 . Data Cache Organization

	3.2 Instruction Cache Organization
	Figure�3�3 . Instruction Cache Organization

	3.3 Memory and Cache Coherency
	3.3.1 Memory/Cache Access Attributes (WIMG Bits)
	3.3.2 MEI Protocol
	Table�3�1 . MEI State Definitions
	Figure�3�4 . MEI Cache Coherency Protocol—State Diagram (WIM = 001)
	3.3.2.1 MEI Hardware Considerations

	3.3.3 Coherency Precautions in Single Processor Systems
	3.3.4 Coherency Precautions in Multiprocessor Systems
	3.3.5 Gekko-Initiated Load/Store Operations
	3.3.5.1 Performed Loads and Stores
	3.3.5.2 Sequential Consistency of Memory Accesses
	3.3.5.3 Atomic Memory References

	3.4 Cache Control
	3.4.1 Cache Control Parameters in HID0
	3.4.1.1 Data Cache Flash Invalidation
	3.4.1.2 Data Cache Enabling/Disabling
	3.4.1.3 Data Cache Locking
	3.4.1.4 Instruction Cache Flash Invalidation
	3.4.1.5 Instruction Cache Enabling/Disabling
	3.4.1.6 Instruction Cache Locking

	3.4.2 Cache Control Instructions
	3.4.2.1 Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst)
	3.4.2.2 Data Cache Block Zero (dcbz)
	3.4.2.3 Data Cache Block Store (dcbst)
	3.4.2.4 Data Cache Block Flush (dcbf)
	3.4.2.5 Data Cache Block Invalidate (dcbi)
	3.4.2.6 Instruction Cache Block Invalidate (icbi)

	3.5 Cache Operations
	3.5.1 Cache Block Replacement/Castout Operations
	Figure�3�5 . PLRU Replacement Algorithm
	Table�3�2 . PLRU Bit Update Rules
	Table�3�3 . PLRU Replacement Block Selection

	3.5.2 Cache Flush Operations
	3.5.3 Data Cache-Block-Fill Operations
	3.5.4 Instruction Cache-Block-Fill Operations
	3.5.5 Data Cache-Block-Push Operation

	3.6 L1 Caches and 60x Bus Transactions
	Figure�3�6 Gekko Cache Addresses
	3.6.1 Read Operations and the MEI Protocol
	3.6.2 Bus Operations Caused by Cache Control Instructions
	Table�3�4 . Bus Operations Caused by Cache Control Instructions (WIM = 001)

	3.6.3 Snooping
	3.6.4 Snoop Response to 60x Bus Transactions
	Table�3�5 . Response to Snooped Bus Transactions (Continued)

	3.6.5 Transfer Attributes
	Table�3�6 . Address/Transfer Attribute Summary �

	3.7 MEI State Transactions
	Table�3�7 . MEI State Transitions (Continued)

	Chapter�4 Exceptions
	4.1 PowerPC Gekko Microprocessor Exceptions
	Table�4�1 . PowerPC Gekko Microprocessor Exception Classifications�
	Table�4�2 . Exceptions and Conditions (Continued)

	4.2 Exception Recognition and Priorities
	Table�4�3 . PowerPC Gekko Exception Priorities (Continued)

	4.3 Exception Processing
	Figure�4�1 . Machine Status Save/Restore Register 0 (SRR0)
	Figure�4�2 . Machine Status Save/Restore Register 1 (SRR1)
	Figure�4�3 . Machine State Register (MSR)
	Table�4�4 . MSR Bit Settings (Continued)
	Table�4�5 . IEEE Floating-Point Exception Mode Bits (Continued)
	4.3.1 Enabling and Disabling Exceptions
	4.3.2 Steps for Exception Processing
	4.3.3 Setting MSR[RI]
	4.3.4 Returning from an Exception Handler

	4.4 Process Switching
	4.5 Exception Definitions
	Table�4�6 . MSR Setting Due to Exception�
	4.5.1 System Reset Exception (0x00100)
	Table�4�7 . System Reset Exception—Register Settings�
	4.5.1.1 Soft Reset
	Figure�4�4 . SRESET Asserted During HRESET

	4.5.1.2 Hard Reset
	Table�4�8 . Settings Caused by Hard Reset (Continued)

	4.5.2 Machine Check Exception (0x00200)
	Table�4�9 . HID0 Machine Check Enable Bits
	4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
	Table�4�10 . Machine Check Exception—Register Settings

	4.5.2.2 Checkstop State (MSR[ME] = 0)

	4.5.3 DSI Exception (0x00300)
	4.5.4 ISI Exception (0x00400)
	4.5.5 External Interrupt Exception (0x00500)
	4.5.6 Alignment Exception (0x00600)
	4.5.7 Program Exception (0x00700)
	4.5.8 Floating-Point Unavailable Exception (0x00800)
	4.5.9 Decrementer Exception (0x00900)
	4.5.10 System Call Exception (0x00C00)
	4.5.11 Trace Exception (0x00D00)
	4.5.12 Floating-Point Assist Exception (0x00E00)
	4.5.13 Performance Monitor Interrupt (0x00F00)
	Table�4�11 . Performance Monitor Interrupt Exception—Register Settings�

	4.5.14 Instruction Address Breakpoint Exception (0x01300)
	Table�4�12 . Instruction Address Breakpoint Exception—Register Settings (Continued)

	4.5.15 Thermal Management Interrupt Exception (0x01700)
	Table�4�13 . Thermal Management Interrupt Exception—Register Settings�

	Chapter�5 Memory Management
	5.1 MMU Overview
	Table�5�1 . MMU Feature Summary (Continued)
	5.1.1 Memory Addressing
	5.1.2 MMU Organization
	Figure�5�1 . MMU Conceptual Block Diagram
	Figure�5�2 . PowerPC Gekko Microprocessor IMMU Block Diagram
	Figure�5�3 . Gekko Microprocessor DMMU Block Diagram

	5.1.3 Address Translation Mechanisms
	Figure�5�4 . Address Translation Types

	5.1.4 Memory Protection Facilities
	Table�5�2 . Access Protection Options for Pages�

	5.1.5 Page History Information
	5.1.6 General Flow of MMU Address Translation
	5.1.6.1 Real Addressing Mode and Block Address Translation Selection
	Figure�5�5 . General Flow of Address Translation (Real Addressing Mode and Block)

	5.1.6.2 Page Address Translation Selection
	Figure�5�6 . General Flow of Page and Direct-Store Interface Address Translation

	5.1.7 MMU Exceptions Summary
	Table�5�3 . Translation Exception Conditions (Continued)
	Table�5�4 . Other MMU Exception Conditions for the Gekko Processor

	5.1.8 MMU Instructions and Register Summary
	Table�5�5 . Gekko Microprocessor Instruction Summary—Control MMUs
	Table�5�6 . Gekko Microprocessor MMU Registers�

	5.2 Real Addressing Mode
	5.3 Block Address Translation
	5.4 Memory Segment Model
	5.4.1 Page History Recording
	Table�5�7 . Table Search Operations to Update History Bits—TLB Hit Case
	5.4.1.1 Referenced Bit
	5.4.1.2 Changed Bit
	5.4.1.3 Scenarios for Referenced and Changed Bit Recording
	Table�5�8 . Model for Guaranteed R and C Bit Settings �

	5.4.2 Page Memory Protection
	5.4.3 TLB Description
	5.4.3.1 TLB Organization
	Figure�5�7 . Segment Register and DTLB Organization

	5.4.3.2 TLB Invalidation

	5.4.4 Page Address Translation Summary
	Figure�5�8 . Page Address Translation Flow—TLB Hit

	5.4.5 Page Table Search Operation
	Figure�5�9 . Primary Page Table Search
	Figure�5�10 . Secondary Page Table Search Flow

	5.4.6 Page Table Updates
	5.4.7 Segment Register Updates

	Chapter�6 Instruction Timing
	6.1 Terminology and Conventions
	6.2 Instruction Timing Overview
	Figure�6�1 . Pipelined Execution Unit
	Figure�6�2 . Superscalar/Pipeline Diagram

	6.3 Timing Considerations
	Figure�6�3 . PowerPC Gekko Microprocessor Pipeline Stages
	6.3.1 General Instruction Flow
	6.3.2 Instruction Fetch Timing
	6.3.2.1 Cache Arbitration
	6.3.2.2 Cache Hit
	Figure�6�4 . Instruction Flow Diagram
	Figure�6�5 . Instruction Timing—Cache Hit

	6.3.2.3 Cache Miss
	Figure�6�6 . Instruction Timing—Cache Miss

	6.3.2.4 L2 Cache Access Timing Considerations
	6.3.2.5 Instruction Dispatch and Completion Considerations
	6.3.2.6 Rename Register Operation
	6.3.2.7 Instruction Serialization

	6.4 Execution Unit Timings
	6.4.1 Branch Processing Unit Execution Timing
	6.4.1.1 Branch Folding and Removal of Fall-Through Branch Instructions
	Figure�6�7 . Branch Folding
	Figure�6�8 . Removal of Fall-Through Branch Instruction

	6.4.1.2 Branch Instructions and Completion
	Figure�6�9 . Branch Completion

	6.4.1.3 Branch Prediction and Resolution
	Figure�6�10 . Branch Instruction Timing

	6.4.2 Integer Unit Execution Timing
	6.4.3 Floating-Point Unit Execution Timing
	6.4.4 Effect of Floating-Point Exceptions on Performance
	6.4.5 Load/Store Unit Execution Timing
	6.4.6 Effect of Operand Placement on Performance
	Table�6�1 . Performance Effects of Memory Operand Placement

	6.4.7 Integer Store Gathering
	6.4.8 System Register Unit Execution Timing

	6.5 Memory Performance Considerations
	6.5.1 Caching and Memory Coherency
	6.5.2 Effect of TLB Miss
	Table�6�2 . TLB Miss Latencies�

	6.6 Instruction Scheduling Guidelines
	6.6.1 Branch, Dispatch, and Completion Unit Resource Requirements
	6.6.1.1 Branch Resolution Resource Requirements
	6.6.1.2 Dispatch Unit Resource Requirements
	6.6.1.3 Completion Unit Resource Requirements

	6.7 Instruction Latency Summary
	Table�6�3 . Branch Instructions
	Table�6�4 . System Register Instructions�
	Table�6�5 . Condition Register Logical Instructions�
	Table�6�6 . Integer Instructions (Continued)
	Table�6�7 . Floating-Point Instructions (Continued)
	Table�6�8 . Load and Store Instructions (Continued)

	Chapter�7 Signal Descriptions
	7.1 Signal Configuration
	Figure�7�1 . PowerPC Gekko Signal Groups

	7.2 Signal Descriptions
	7.2.1 Address Bus Arbitration Signals
	7.2.1.1 Bus Request (BR)—Output
	7.2.1.2 Bus Grant (BG)—Input

	7.2.2 Address Transfer Start Signals
	7.2.2.1 Transfer Start (TS)

	7.2.3 Address Transfer Signals
	7.2.3.1 Address Bus (A[0–31])
	7.2.3.2 Address Bus Parity (AP[0–3]) (N/A on Gekko)

	7.2.4 Address Transfer Attribute Signals
	7.2.4.1 Transfer Type (TT[0–4])
	Table�7�1 . Transfer Type Encodings for PowerPC Gekko Bus Master (Continued)
	Table�7�2 . PowerPC Gekko Snoop Hit Response�

	7.2.4.2 Transfer Size (TSIZ[0–2])—Output
	Table�7�3 . Data Transfer Size�

	7.2.4.3 Transfer Burst (TBST)
	7.2.4.4 Cache Inhibit (CI)—Output
	7.2.4.5 Write-Through (WT)—Output
	7.2.4.6 Global (GBL)

	7.2.5 Address Transfer Termination Signals
	7.2.5.1 Address �Acknowledge (AACK)—Input
	7.2.5.2 Address Retry (ARTRY)

	7.2.6 Data Bus Arbitration Signals
	7.2.6.1 Data Bus Grant (DBG)—Input

	7.2.7 Data Transfer Signals
	7.2.7.1 Data Bus (DH[0–31], DL[0–31])
	Table�7�4 . Data Bus Lane Assignments�

	7.2.7.2 Data Bus Parity (DP[0–8]) (N/A on Gekko)
	Table�7�5 . DP[0–7] Signal Assignments�

	7.2.8 Data Transfer Termination Signals
	7.2.8.1 Transfer �Acknowledge (TA)—Input
	7.2.8.2 Data Retry (DRTRY)—Input (N/A on Gekko)
	7.2.8.3 Transfer Error Acknowledge (TEA)—Input

	7.2.9 System Status Signals
	7.2.9.1 Interrupt (INT)— Input
	7.2.9.2 Machine Check Interrupt (MCP)—Input
	7.2.9.3 Checkstop Input (CKSTP_IN)—Input
	7.2.9.4 Checkstop Output (CKSTP_OUT)—Output
	7.2.9.5 Reset Signals
	7.2.9.6 Processor Status Signals

	7.2.10 IEEE 1149.1a-1993 Interface Description
	Table�7�6 . IEEE Interface Pin Descriptions

	7.2.11 Clock Signals
	7.2.11.1 System Clock (SYSCLK)—Input
	7.2.11.2 Clock Out (CLK_OUT)—Output (N/A on Gekko)
	7.2.11.3 PLL Configuration (PLL_CFG[0–3])—Input

	7.2.12 Power and Ground Signals

	Chapter�8 Bus Interface Operation
	Figure 8�1 . Bus Interface Address Buffers
	8.1 Bus Interface Overview
	8.1.1 Operation of the Instruction and Data L1 Caches
	Figure�8�2 . PowerPC Gekko Microprocessor Block Diagram

	8.1.2 Operation of the Bus Interface
	8.1.3 Direct-Store Accesses
	Figure�8�3 . Timing Diagram Legend

	8.2 Memory Access Protocol
	Figure�8�4 . Overlapping Tenures on Gekko Bus for a Single-Beat Transfer
	8.2.1 Arbitration Signals
	8.2.2 Address Pipelining and Split-Bus Transactions

	8.3 Address Bus Tenure
	8.3.1 Address Bus Arbitration
	Figure�8�5 . Address Bus Arbitration
	Figure�8�6 . Address Bus Arbitration Showing Bus Parking

	8.3.2 Address Transfer
	Figure�8�7 . Address Bus Transfer
	8.3.2.1 Address Bus Parity (N/A on Gekko)
	8.3.2.2 Address Transfer Attribute Signals
	Table�8�1 . Transfer Size Signal Encodings�

	8.3.2.3 Burst Ordering During Data Transfers
	Table�8�2 . Burst Ordering

	8.3.2.4 Effect of Alignment in Data Transfers
	Table�8�3 . Aligned Data Transfers�
	Table�8�4 . Misaligned Data Transfers (Four-Byte Examples)�

	8.3.2.5 Alignment of External Control Instructions

	8.3.3 Address Transfer Termination
	Figure�8�8 . Snooped Address Cycle with ARTRY

	8.4 Data Bus Tenure
	8.4.1 Data Bus Arbitration
	Figure�8�9 . Data Bus Arbitration

	8.4.2 Data Transfer
	8.4.3 Data Transfer Termination
	8.4.3.1 Normal Single-Beat Termination
	Figure�8�10 . Normal Single-Beat Read Termination
	Figure�8�11 . Normal Single-Beat Write Termination
	Figure�8�12 . Normal Burst Transaction
	Figure�8�13 . Termination with DRTRY
	Figure�8�14 . Read Burst with TA Wait States and DRTRY

	8.4.3.2 Data Transfer Termination Due to a Bus Error

	8.4.4 Memory Coherency—MEI Protocol
	Figure�8�15 . MEI Cache Coherency Protocol—State Diagram (WIM = 001)

	8.5 Timing Examples
	Figure�8�16 . Fastest Single-Beat Reads
	Figure�8�17 . Fastest Single-Beat Writes
	Figure�8�18 . Single-Beat Reads Showing Data-Delay Controls
	Figure�8�19 . Single-Beat Writes Showing Data Delay Controls
	Figure�8�20 . Burst Transfers with Data Delay Controls
	Figure�8�21 . Use of Transfer Error Acknowledge (TEA)

	8.6 No-DRTRY Bus Configuration
	8.7 32-bit Data Bus Mode
	Figure�8�22 . 32-Bit Data Bus Transfer (Eight-Beat Burst)
	Figure�8�23 . 32-Bit Data Bus Transfer (Two-Beat Burst with DRTRY)
	Table�8�5 . Burst Ordering—32-Bit Bus�
	Table�8�6 . Aligned Data Transfers (32-Bit Bus Mode)
	Table�8�7 . Misaligned 32-Bit Data Bus Transfer (Four-Byte Examples)�

	8.8 Interrupt, Checkstop, and Reset Signals
	8.8.1 External Interrupts
	8.8.2 Checkstops
	8.8.3 Reset Inputs
	8.8.4 System Quiesce Control Signals

	8.9 Processor State Signals
	8.9.1 Support for the lwarx/stwcx. Instruction Pair
	8.9.2 TLBISYNC Input

	8.10 IEEE 1149.1a-1993 Compliant Interface
	8.10.1 JTAG/COP Interface
	Figure�8�24 . IEEE 1149.1a-1993 Compliant Boundary Scan Interface

	Chapter�9 L2 Cache, Locked D-Cache, DMA and Write Gather Pipe
	9.1 L2 Cache
	9.1.1 L2 Cache Operation
	9.1.2 L2 Cache Control Register (L2CR)
	Table�9�1 . L2 Cache Control Register�

	9.1.3 L2 Cache Initialization
	9.1.4 L2 Cache Global Invalidation
	9.1.5 L2 Cache Test Features and Methods
	9.1.5.1 L2CR Support for L2 Cache Testing
	9.1.5.2 L2 Cache Testing

	9.1.6 L2 Cache Timing

	9.2 Locked L1 Data Cache
	9.2.1 Locked Cache Configuration
	9.2.2 Locked Cache Operation
	9.2.2.1 DCBZ
	9.2.2.2 DCBZ_L
	9.2.2.3 DCBI
	9.2.2.4 DCBF
	9.2.2.5 DCBST
	9.2.2.6 DCBT and DCBTST
	9.2.2.7 Load and Store

	9.3 Direct Memory Access (DMA)
	9.3.1 DMA Operation
	9.3.2 Exception Conditions
	9.3.2.1 DMA Queue Overflow
	9.3.2.2 DMA Look-up Hits Normal Cache
	9.3.2.3 DMA Look-up Miss

	9.3.3 DMA Timing

	9.4 Write Gather Pipe
	9.4.1 WPAR
	9.4.2 Write Gather Pipe Operation
	9.4.3 Write Gather Pipe Timing

	Chapter�10 Power and Thermal Management
	10.1 Dynamic Power Management
	10.2 Programmable Power Modes
	Table�10�1 . Gekko Microprocessor Programmable Power Modes
	10.2.1 Power Management Modes
	10.2.1.1 Full-Power Mode
	10.2.1.2 Doze Mode
	10.2.1.3 Nap Mode
	10.2.1.4 Sleep Mode

	10.2.2 Power Management Software Considerations

	10.3 Thermal Assist Unit
	10.3.1 Thermal Assist Unit Overview
	Figure�10�1 . Thermal Assist Unit Block Diagram
	Table�10�2 . THRM1 and THRM2 Bit Field Settings
	Table�10�3 . THRM3 Bit Field Settings

	10.3.2 Thermal Assist Unit Operation
	10.3.2.1 TAU Single Threshold Mode
	Table�10�4 . Valid THRM1 and THRM2 Bit Settings (Continued)

	10.3.2.2 TAU Dual-Threshold Mode
	10.3.2.3 Gekko Junction Temperature Determination
	10.3.2.4 Power Saving Modes and TAU Operation

	10.4 Instruction Cache Throttling
	Table�10�5 . ICTC Bit Field Settings

	Chapter�11 Performance Monitor
	11.1 Performance Monitor Interrupt
	11.2 Special-Purpose Registers Used by Performance Monitor
	Table�11�1 . Performance Monitor SPRs
	11.2.1 Performance Monitor Registers
	11.2.1.1 Monitor Mode Control Register 0 (MMCR0)
	Figure�11�1 . Monitor Mode Control Register 0 (MMCR0)
	Table�11�2 . MMCR0 Bit Settings (Continued)

	11.2.1.2 User Monitor Mode Control Register 0 (UMMCR0)
	11.2.1.3 Monitor Mode Control Register 1 (MMCR1)
	Figure�11�2 . Monitor Mode Control Register 1 (MMCR1)
	Table�11�3 . MMCR1 Bit Settings

	11.2.1.4 User Monitor Mode Control Register 1 (UMMCR1)
	11.2.1.5 Performance Monitor Counter Registers (PMC1–PMC4)
	Figure�11�3 . Performance Monitor Counter Registers (PMC1–PMC4)
	Table�11�4 . PMCn Bit Settings
	Table�11�5 . PMC1 Events—MMCR0[19–25] Select Encodings
	Table�11�6 . PMC2 Events—MMCR0[26–31] Select Encodings�
	Table�11�7 . PMC3 Events—MMCR1[0–4] Select Encodings�
	Table�11�8 . PMC4 Events—MMCR1[5–9] Select Encodings

	11.2.1.6 User Performance Monitor Counter Registers (UPMC1–UPMC4)
	11.2.1.7 Sampled Instruction Address Register (SIA)
	Figure�11�4 . Sampled instruction Address Registers (SIA)

	11.2.1.8 User Sampled Instruction Address Register (USIA)

	11.3 Event Counting
	11.4 Event Selection
	11.5 Notes

	Chapter�12 Instruction Set
	12.1 Instruction Formats
	12.1.1 Split-Field Notation
	Table�12�1 . Split-Field Notation and Conventions

	12.1.2 Instruction Fields
	Table�12�2 . Instruction Syntax Conventions (Continued)

	12.1.3 Notation and Conventions
	Table�12�3 . Notation and Conventions (Continued)
	Table�12�4 . Instruction Field Conventions (Continued)
	Table�12�5 . Precedence Rules

	12.1.4 Computation Modes

	12.2 PowerPC Instruction Set
	Figure�12�1 . Instruction Description
	Table�12�6 . BO Operand Encodings
	Table�12�7 . BO Operand Encodings
	Table�12�8 . BO Operand Encodings
	Table�12�9 . Gekko UISA SPR Encodings for mfspr�
	Table�12�10 . Gekko OEA SPR Encodings for mfspr (Continued)
	Table�12�11 . TBR Encodings for mftb
	Table�12�12 . Gekko UISA SPR Encodings for mtspr�
	Table�12�13 . Gekko OEA SPR Encodings for mtspr (Continued)

	Appendix�A – Gekko Instruction Set
	A.1 Instructions Sorted by Opcode
	Table�A-1 Complete Instruction List Sorted by Opcode

	A.2 Instructions Grouped by Functional Categories
	Table�A-2 Integer Arithmetic Instructions
	Table�A-3 Integer Compare Instructions
	Table�A-4 Integer Logical Instructions
	Table�A-5 Integer Rotate Instructions
	Table�A-6 Integer Shift Instructions
	Table�A-7 Floating-Point Arithmetic Instructions
	Table�A-8 Floating-Point Multiply-Add Instructions
	Table�A-9 Floating-Point Rounding and Conversion Instructions
	Table�A-10 Floating-Point Compare Instructions
	Table�A-11 Floating-Point Status and Control Register Instructions
	Table�A-12 Integer Load Instructions
	Table�A-13 Integer Store Instructions
	Table�A-14 Integer Load and Store with Byte Reverse Instructions
	Table�A-15 Integer Load and Store Multiple Instructions
	Table�A-16 Integer Load and Store String Instructions
	Table�A-17 Memory Synchronization Instructions
	Table�A-18 Floating-Point Load Instructions
	Table�A-19 Floating-Point Store Instructions
	Table�A-20 Floating-Point Move Instructions
	Table�A-21 Branch Instructions
	Table�A-22 Condition Register Logical Instructions
	Table�A-23 System Linkage Instructions
	Table�A-24 Trap Instructions
	Table�A-25 Processor Control Instructions
	Table�A-26 Cache Management Instructions
	Table�A-27 Segment Register Manipulation Instructions.
	Table�A-28 Lookaside Buffer Management Instructions
	Table�A-29 External Control Instructions
	Table�A-30 Paired-Single Load and Store Instructions
	Table�A-31 Paired-Single Floating Point Arithmetic Instructions
	Table�A-32 Miscellaneous Paired-Single Instructions

	Index

