April 17, 2001 1

Game Engine Programming
SDK Version 1.0

Contents
I O T oo 0010 TN [ o= =TSSP 5
0 o = g == 0o o = £ D= USSP 5
S o U £ oo o TSSO 5
0 T 1= o= OSSPSR 5
O =0 1 1 Y2 6
141 Loading, displaying, and freeing a.gpl fil€.......uoeieieiicece e 6
1.4.2 Controlling adisplay 0bject With @MELIiX .......ccceieiiiiiiciercr e e 7
143 INStancing @ diSPlay ODJECL ...t st e et e e enas 7
T = (LU TP U OSSPSR 8
151 Loading, accessing, and freeing @ .tpl fil.......o oo e 8
G o [T = SRS 10
16.1 Loading, displaying, and freeing @.aCt fil@.........oo i 10
16.2 Controlling an actor using itS global CONEIOL ...........oiiiiiieee e 11
1.6.3 TS = 1 o 1o = = () PSSO 12
O A AN ¢ 111 7= o] o TR RR 12
171 Loading, accessing, and freeing @.anm fil€........coeoe i 13
1.7.2 Animating an actor With @.anmM fil€........eeeeiece e 13
0L o] o o 14
181 [T ) 8 1= 14
182 100110 I TTo] 2TV 2RSSO 17
183 S aE=Te [ T o Y USSP 18
2 RUNLME [IDrariES iN et ..........ooeeieeieeee et et e e b e bbb e ene e e e beseesbeneas 24
PN R €< o 1 4= | TP UPTURTUROPRORN 24
211 GEOMELTY PAIEHIE ...ttt s b e bt aeehe et e e e s e e ebesbesbeebeeaeanee s e beseesbennas 24
212 [T oL Yo = 24
213 [ TES o = VA o= - (Yo 1 | 27
214 Creating an instance of a display ObJECE........covvv i ens 27
215 Display ODJECE MELMCES.......iieieeeieece st e e saestesreereesa e e eneeseesrenns 28
2.16 Display object ViSIDIIITY fIag ......ccoireiie s 28
217 Processing the display object for display .......cveovevereriiirecec e 28
218 Display ODJECE HONTING -...veiveieeieeeeee et b e bbbt se et e b e et neas 29
219 Stitching & diSPlay ODJECL ........oiiiieeeee e et b e sb e s bt se b see b e 30
2110  GEOMELIY PAlELEE SITUCTUIES. ... .cviveeeieteeeete ettt sttt et se ettt besaeebe s e e e e se e besbesbesbeeneese e e eneeseesbesbeee 31
2111 GEOMELIY PAIELEE AP ... .o ittt e e b bt ea e b e et et e e e b bt s he b e aeene et et e neesee b 35
2112  Digplay ODJECE SITUCTUIES.......oiui ittt sttt ettt st b e sae b s e et e se e besbesbesbeeneese e e eneeseesbesee e 35
P2 I G T B TE o = Y Ao o = o N TSR 36
P2 = LU T TSP TSRS P PP 36
221 TEXTUre PAEIE IN MEMOIY ....ceeieiiecieieee et e e et e se e st e re s resr e s e ese et e eeseeseesaesseeneeneeneeseenreneens 36
222 Instancing CLUTS Within atexture PAlELE..........cccvvriierericcece e nnens 37
2.2.3 Retrieving texture information via atexture deSCriptor .........ccucverereriseseeeereese e 38
224 Retrieving texture information viaa GXTexObj and a GXTIUtOD]........cccveeeverierese e 38
2.25 TEXIUrE PAIEHIE SLIUCIUIES ......oueeeie ettt se et s r e b e e e e e e e s eestesreeneene e e eneeneenreneeens 38
R T o [1= £ (ol 0|V USSP 40
231 ACLOr [@YOUL TN MEBIMOIY ..ttt sttt sttt a e e e ee e e s besbeshesh e e e eneeseeebesbesbesbe et ansessenbesbesaens 40
232 BONE [AYOUL 1N IMEIMIONY ...ttt bbb bbb e ae et e b e sbesbesbeeaeese e e e beseesbeneas 41

© Nintendo Technology Development, Inc. CONFIDENTIAL



2 Game Engine Programming April 17, 2001

2.3.3 ACLOr iINSLANCING MECNANISM....c.eiiveiieeeeeeee e e et e e s et st st e s e e se e e e e s aestesaesneeseeneeneeneeneeseesrenees 41
234 F (o g A 1011 =TSRSS 42
2.35 Processing an aCtor fOr QiSPIay .......ooveeueeeeeee e e e 43
2.3.6 ALCEOF SETUCLUIES........eeteete ettt ettt ettt ettt e ae e bt et e e s bt eas e eaeesheesheesee e beemeesaeeeaeeeaeesbeenbeenbenanesnnaneeans 43
2.3.7 o (0 g A = SRS SR 46
2.38 F ok 0] 7N g 11 41 SRS 47
P2 AN 1 0 (oo USSP 47
241 ANiMation BaNK IN MEIMIOTY .......iieiieiee ettt ettt st be e b e e e e e seesbeseesreenas 47
24.2 =YL= 1101 = - TS 49
24.3 (@070 1114 1 (o o FEU OSSOSO 49
24.4 ANIMBENK SITUCLUIES .......cuiiiieiieterieeeie sttt sttt s e b e et be b et st et et s bebenesbentene 50
245 ANIMBENK AP ..ot ettt et b e e st s b et e st be b e st s be b et e be st nenbeneene 52
P28 T 1 o oo 52
251 F N 1T 7= (o o o= S 52
252 L0 11 o RSSO 54
25.3 0T | SRS 57
254 S 0o L= USROS 59
R 0] 01 1S TSP 65
0t R B T o] = (YA o] o <o USSR 65
I 1= (LD =P SURRTRUROI 71
R T N (o T TS U TSROSO ORUPPR 75
1 N 0122 1o TSRS 76
G 1 T 2111 oo USSR 80
Appendix A. BUIIAING SOUICE COUR ......euieeieiiie ettt sttt re e e et e st e besresnees e e e enseneentesrenreas 83
y N A = TU 1 o [T g To [0 Ta 10 =Y o] = =S TS 83
y N2 = U ] o [ g To e = 1100 =SSP 84
Code Examples
Code 1 Loading, displaying, and freeing @ .gpl file.... ... oo 6
Code 2 Controlling adisplay 0bJeCt With @ MatriX .......ccccvviiiieeeee e e sreens 7
(0alo SRR 1ot = aTor [ aTo Ir= o [ o] K= YA 0] o S 8
Code 4 Loading true color textures With GXTEXOD] ......civiiieeierise e e st e et esa e e snesnenns 8
Code 5 Loading color-indexed textures With GXTEXOD] .......cccueierireresisiseeeesees e e et sa e e e srenns 9
Code 6 Loading atexture With @teXture ESCIIPION........cvcueiire e e s e e e srenresre e 10
Code 7 Loading, displaying, and freeing @ .8Ct fil@........cco e e 11
10aTo (R @o a1 o1 1T 0T JF=Ta 1= ox (o] SRR 11
(0aTo R BT g = g ot oo =g I o (o ST 12
Code 10 Loading, accessing, and freeing @.anm fil@ ... ..o 13
Code 11 Animating an actor With @.anm fillE... ..o e e 14
Code 12 Initializing lights and using them on an actor/display ODJECt ..o 15
(0o lo L3RR \Y =T T o101 K= Ko N o 015U 16
Code 14 Animating lightSUSING @.aNM fIl@ .....cciii i e resre s 16
L0010 (I LSRN 1 = 11T 1o £ 17
Code 16 USiNg CONrolStO YIEld MELMCES. .....ccuiieie ettt e e st s e e e e st e te s aesresseeseesae e eneeseeseenreans 18
Code 17 Creating tEXIUrE SNAEIS.........eceeeee ettt e et e s be s besaeese e e eseese e teseesressesneesaensenseneeneenrens 19
Code 18 Creating rasterized COIOr SNAOEI'S .......ccviiiieieeeee ettt st e e e st e te s resresreeseesae e enseseenrenreens 20
Code 19 Creating CONStaNt COIOr SNAOEIS.......c.iiuiieieeet ettt sttt ae e e e e e se e besbesaeseeeneenee e eneeseeseeseene 20
Code 20 Creating cOmMPIEX INPUE SNBOEI'S ..ot e et s besae e e se e e e e e seeseesnene 21
Code 21 Creating COMPIEX SNAOEIS .....ccueiiiieieerte ettt e ettt sttt et et e e e tesee st e s besaeeaeeaeeneeasebesaesaeeseeneenee s anseseeseeseens 22
Code 22 Creating a shader for use with a display ObJECE.........c.ooe i e 23
COUE 23 GEOPAIELLE ........cueitiieeeetisiesietesteestesteseesestesessesteseesessessese st essesessessese st asseseesassesesbenseseasenseseabeseneeseseneasesenensensens 31
COUE 24 GEOD ESCI PO ... cuvevestestesteeseeseeeestessestestesseeseeeessessessessessesseaseassesessessessessesseasesssessessensessessessessensenssnsessessessenns 32
COUE 25 DOLAYOUL........eeueeeeiesiesteeseeseeseeseestessestessesseeseaeessessesessessessesseassessensessessessesseasesssessessensessessessessensenssnssessessessenns 32

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 3

CO0E 26 DOPOSITIONHEBOET .......c.ccveitieeierieere ettt sttt b e b e e bt b e se b e sbe s e ebesbeseebesbeneebenbeneebenbeneas 32
COUE 27 DOCOIOMHEAUES ...ttt st b et st b e b e st e b e s b se bt s be st e b e sbe st eb e st e neebesbeseebenbeneebenbeeas 33
Code 28 DOTEXIUrED@IAHEATES ........ccveieeieeeieeeee ettt ettt b e eh et e e e be s besbe s bt e st e ae e e e besbesbesbeeneenee e ebeseesbennas 33
(00To il D10 I T a1 gTe o [=="o L= TSP 34
CO0E 30 DODISPIAYHEBHES ...ttt st b e bt bt et e e e be s bt sbeebeeaeeme e s e besbesbesbeeneenee e enbeseesaenaas 34
(00 To RS A D IO DL o = S - (= TSP 34
Code 32 GEOMELNY PAIELEE AP ...ttt sttt a e b et et e se e beebeseeeheeaeeme e e e eesaesaeebeeneenee s enseseesaennas 35
(00T LR Rl D10 DL o = Y@ o) TSP 35
(0010 LT/ A D TES o = VAo o] = A TS 36
COUE 35 TEXPAIBIE ...ttt sttt st b st st b e st e b e s b e s e eb e s b e se e bt s beseebeebeneebeebeneebesbeneebenbeneebeneeneas 38
(0010 LT SR I ) QI === o (o TS 38
@00 (R A I o) o 1= o L= OSSPSR 39
LOeTo (R S O U I == L= OSSPSR PSRN 39
(000 L1 B W c a0 L= 7= = 1 (= AN TS 40
(0010 ([0 I O I I Yo 1 | SRS 44
(000 L N Y O L] 1 = Y T | TSP 44
(0010 L e O Y o (o Lo TSP 45
(0010 L I Y O I =T TSP 46
(@00 LoV ok (o] g o ST 47
(0010 LS LR ok (o] 7N g 11 41 TSP 47
COUE 46 ANIMBENK ...ttt sttt sttt s ettt st sttt sbe st et e sbe st ebe st e seebesbeseebesbeseebeabeseebesbeseebesbeneesenbeneesenbeneas 50
COUE 47 ANIIMSEOUENCE ... ecueeueeeeriestestesteeseeeetestestestesseeseesessessessessesseasesseessessessessesseasesseessnssessessesaessessesssnssensessessensen 50
COUE 48 ANIIMTIECK ...ttt sttt ettt st b et st bt st e se e b e s b e st e b e s b e seebeeEeseebeebeseebeebeneebeebeneebeebeneebenbeneebeneeneas 51
(0010 LR L BN N LY =Y o o= TS 51
Code 50 ANIMELION DENK AP ........oiiieee ettt st bese bt s b e se et e s be st e b e be e e b e nbeneerenre e 52
(0010 LY I L1V T o= TSP 54
(000 Ry N g1 = (o gl o oL N OSSP 54
(0010 Lo O I I O] 11 o) TSP 55
(0010 LoV O I IV I 15 o o TSP 56
COUE 55 CTRLSRTCONIION .. .coeiieieiiteeteite ettt ettt e se et e besbeebe et eaeese e beaaeseeeseeaeanee s eneesbesaeeseeneeneesanseseeseennas 56
(0010 Lo S @0l g1 1 o] AN = ST 57
(000 L= 0 I I T [ o) TS 58
(0010 Lot @ o= 1 3/ o= 59
(0010 LTt T I T | AN TS 59
@000 (N GO = o = g AN o OSSPSR 64
Figures

[T [0 L R I 0T ] I 1 SR RSPRR 24
Figure 2 Components Of a diSPlay ODJECL..........ooi ittt st b e bt s aesae e e e nee e e saesaesneas 25
Figure 3 Display state and Primitive [ISES. ... ..ottt st e e bt ae e e e e e e e sbesaesneas 27
Figure 4 Display object inStanCing MECHANISM.......c.uviiiireeerese st se e e s e et sre e ese e e e e seeseesresresseeseenseseensesansnens 28
Figure 5 The hardware MatriX CACNE...........ccueieiere ettt e ettt reese e e e e stesbestesaeeneeneeneeseeneenannnens 31
Figure 6 The texture Palette iN MEMOTY ......cc.cceiire ettt s e s e e e tesaesbesaesseeseeneenaeseentesannnens 37
Figure 7 CLUT instancing Within atexture PAlELe...........ccueuereiieie s et e e e sn e eesnenneas 37
[ 101 L= AN (o gl - Y01 | SRS 41
Figure 9 INSLANCING 8N GCLOT........eiveiieiieieeeteeieeseeste e s e s te e e e e seestestesaessesseeseesestessestessesseaseessensessessessesseasennsensesennsesannrens 42
Figure 10 Layout of animation Dank iN MEMOIY ...........coeiie ettt ae e e e e saesaesnens 48
Figure 11 Animation pipe bound to control and animation traCK ............ccooereieieiiie e 53
Figure 12 Shader combination MELNOM ..........oouiii ettt st aeeae e e e e e e e saesaeenea 60
FIQUIE 13 GPL OVEIVIBIW ...ttt sttt ettt et es e se e besbeeaeeeeeaeea e e e e eeeeeaEesbeeaeeRe e e ameeseeaeeaaeeaeeneeneanseasenbesaesneas 65
Figure 14 Display ODJECE DANK .........oiuiieiieeee ettt ettt ae e e b e st e b e bt e aeeae e e enee e e naesaeenea 66
Figure 15 Display ODJECE OVENVIEW ......ccueciieieiesiese sttt ettt e e e e te s aesresseese e e enteseestesaesaeeneeneenseneensenannrens 67
Figure 16 Setting for DISPLAY _STATE_TEXTURE .......ccci ittt st st st 70

© Nintendo Technology Development, Inc. CONFIDENTIAL



4 Game Engine Programming April 17, 2001

Figure 17 Setting for DISPLAY _STATE _VECD ..ot st s e eseeste et eenaesaeste s snaeseeeensessessessenns 70
Figure 18 Setting for DISPLAY _STATE_MTXLOAD ..ot 71
Figure 19 QUAanti Zation aEA TAYOUL............coeieiieeiie ettt et b e s aeehe e e e e e s eesbesbesaeebe e e aneeseesbeseeene 71
FIQUIE 20 TPL OVEIVIEW ... ettt sttt st be bt ae e e e e e s e e ebe s he e aeehe e e e a e e eEeebe e bt eaeehe e e e nbeseeebesbeeaeebeeneaneeseenbenbens 72
Figure 21 CLUT NEAAEN DANK ........c.eiiiiieeeeeee ettt bbbt et h e e e e b e s ee b e s be e bt ebe e e e e e seesbesbene 73
o [0 (o o IO I I o= 0 S (o] 1o = SRS 73
Figure 23 1mage NEAOEN DANK ..ottt ettt e ae s e e e e e e s eeebesbeeaeeae e e eneeseeseesnene 74
FIQUIrE 24 TME0E DBNK ...ttt ettt ae e et e e e s aeebeeaeeae e e e neeseeebesbeeaeeae e e eneeseeneeseens 75
FIQUIE 25 ACT OVEIVIEW ... et e sttt see et e e e e stestesteeseese e e e tesaestesseeaeeseeseansessesbeabeaaeeseeneanseseeseeseenseeseensenseneeneensenns 75
FIQUIE 26 ANM OVENVIEW....c.eeieieeeeeeie st sttt st etee e e s testestesseesee s e teseestessesaeeseeseensessessesseaaeeseensanseseesteseenseeseensensenenneensenns 77
o [0 N 41T 7= o 1 Y 0= S 78
T [0 =2 SR T 1= oo = o) g N1/ =TS 78
FIQUIE 29 SN OVEIVIEW ... e ettt sttt e ettt ae s e e e e aestesteeaeese e e enseseesbeabeaaeeseeneenseseeseeseesneesenneensenenneesrenns 80
Tables

I o L R Y o =TV o = =S TSR 5
Table 2 GPL header (GEOPEIELE) ..........cociueuiirieieririeteeste ettt sttt ettt e b b e bt st b b et se st ebesbsbe s seebas 65
Table 3 Geometry desCriptor (GEODESCIIPLOI) ... ...ciuiiieeeeeieresestestesseseessessessessessessesseessessessessessessessessesssessessessessensens 65
Table 4 Display object header (DODisplayObjectLayout or DOLEYOUL) ........ccceverrererieieriesieseseesieseeesesseeaeseesseseesnens 68
Table 5 Position data header (DOPOSItIONHEAE) ........ccvieeiererecie e ee st e et seeste e st stesreese e esaeseessesrennens 68
Table 6 Color data header (DOCOIOTHEAAEN)........cviviiiieieeee ettt sttt sbesreese e e enaesaesresrennens 68
Table 7 Texture data header (DOTEXtUrEDAIAHEAAEY)........ccveiereieeieceeeeese et e e sae e srenne s 68
Table 8 Display data header (DODISPIAYHEAAEL) ......ccueeueeeeecese ettt sttt saesresrennens 69
Table 9 Lighting data header (DOLIghtiNGHEAEY) .......c.eoieieieiee et nne 69
Table 10 Display state entry (DODISPIAYSIALE) .......c.eeueeeeieeieiiee ettt st sbe e ae e enseseeseesaesaeas 69
Tabhle 11 DiSplay SEALE SEELINGS ... . veeueeeeeeeueeieee ettt e e et te st saeete et e aeese e besaesbesaeaaeeae e e eneeseesbesbesaeeaeeneanseseeabeseesnens 69
Table 12 TPL header (TEXPEIELLE) .........cciueueerieieririeieesie ettt sttt et s b b et se b bt st e e se st ebesesbeneseenas 72
Table 13 Texture descriptor (TEXDESCITPLON) .....ciiieieeeeieeiereesie ettt ee sttt sbe st eae e e eeeseesbesbesaesseeneanseseessesaesnens 72
Table 14 CLUT header (CLUTHEAOEN) ....c..ouiiieieierieieiriee ettt sttt s eb sttt be bt e e se et 73
Table 15 Image header (TEXHEAEN) ......cviiee ettt e et e s ae st e sbesneese e e enaeneenrenrennens 74
Table 16 ACtOr NEAJEr (ACTLAYOUL) ..ecuveeeeeiereestisesiesteerees e seestestessessesseeseessessesaesaessessesseessessessessessessessennsensessessessessens 76
Table 17 BONE (ACTBONELAYOUL) .......ecueeeeeeeieriestisestesteeeeseseessessessessesseeseessesessestessessesssssssssessessessessessenssensessessessensens 76
Table 18 ANM header (ANIMBENK) ......cccovciiiirirciere e s en e enas 77
Table 19 SequenCe (ANIMSEQUENCE) ......cuerverierieriesiereereeseeseseestessessesseseessessessessestessesseesssssessessessessessessenssensessessessensens 77
Table 20 TraCk (ANIIMTIACK) .....eiueiuirieieiieieee ettt sttt et b et e e e e besbe s bt sbesaeeae e e e nbeseeabesbesaeebeeaeanseseanbesbesaeas 78
Table 21 Keyframe (ANIMKEYFTAME) .......cco ittt sttt st be b b ae st e e e eeseesbesbesaeebe s e anseseenbesbesaens 79
Table 22 Bezier interpolation (Euler, scale, and translation)............coeeeeieeierieriene et ae e sne 79
Table 23 Hermite interpolation (Euler, scale, and translation) ...........coeeeeerienene et 79
Table 24 SQUAD interpolation (QUALErNION ONIY) .....co.eiiiieieiisiesie sttt st sttt se e st sbe e sae e e s e seesbeseesneas 79
Table 25 SQUADEE interpolation (QUALErNION ONIY) ......coceeiiiireie ettt se et sbe e s e nseseeseesbesnens 79
LI LR TS S == o = ST PSPPSR 81
TaDIE 27 SKILISE HEBOEY ...t b et r e r et rene e n e neenas 81
TaIE 28 SK2LISE HEBOEY .......oveeeceeee ettt b et er e n et ren e n e enas 82
Tale 29 SKACCLISE HEAEN ..ot en e r et nen e n e nas 82
Talle 30 RUNIIME TTOMAIMTES ... vt s et er e r et nenren e e n e enas 83

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 5

1 Using runtime libraries

In this document, we focus on game engine programming for the Character Pipeline. Thisfirst chapter provides
simple examples to foster a basic understanding of the Character Pipeline as quickly as possible. The examples are
split up on a per-library basis, and they attempt to illustrate the basic functionality of each library as ssimply as
possible. These examples should be studied by anyone wishing to use the Character Pipeline runtime libraries.

1.1 Libraries and prefixes

Each library in the Character Pipeline has a function and data structure prefix associated with it.

Library Prefix

geoPalette GEO, DO
texPalette TEX
actor ACT
animBank ANIM
control CTRL
Light LIT
shader SHDR

Table 1 Library prefixes

1.2 Source code

Source code for each of the runtime libraries can be found in each library’ s respective subdirectories under
/cp/build/libraries.

The header file for the runtime librariesis
/ cp/ i ncl ude/ char Pi pel i ne. h,

which includes individual library header files from

[ cp/incl ude/ char Pi peline/*.

1.3 File cache

The Character Pipeline contains a very simple file cache that, when initialized, will prevent multiple copies of files
from existing simultaneously in memory. Thisfile cache simply checksto seeif arequested file already existsin
memory, and if so, returns a pointer to the file in memory rather than loading it off of the disk. Thisfile cacheis
initialized by calling CSHI ni t Di spl ayCache. Once the cacheisinitialized, all Character Pipeline file-loading
callswill behave in a cached manner. We strongly recommend that this cache be initialized for optima Character
Pipeline use.

© Nintendo Technology Development, Inc. CONFIDENTIAL




6 Game Engine Programming April 17, 2001

1.4 Geometry

The Character Pipeline Geometry Palette format (GPL) is designed to encapsulate basic geometry creation and display
functionality. A geometry palette is defined as a collection of one or more display objects. A display object is
comprised of the following components which tell the NINTENDO GAMECUBE (GCN) hardware how to display the
geometry:

Geometry data (positions, normals, colors, etc.).
Connectivity data (i.e., information on how the geometry datais related to form some geometric object).
State.

A display object does not support any notion of animation or hierarchy. These features are covered later in sections
2.4 and 2.3, respectively.

The following section presents simple examples of how to load, display, manipulate, and free display objects and
geometry palettes.

1.4.1 Loading, displaying, and freeing a .gpl file

void Main ( void )

{
DODi spl ayQbj Ptr dispCbj = 0; // Declare a Display Object pointer
GECPal ettePtr pal = 0; /1 Declare a Geonetry Pal ette pointer
/1 Initialize GCN here
/! Load the Geonetry Palette off of disk
GECCet Pal ette(&pal, “test.gpl”);
/'l Create an instance of the Display bject “test object”
DOCet ( &di spObj, pal, 0, “test object”);
/1 Do gane | oop here
{
)/ Render the Display Object — don't use any lights
DORender (di spQbj, caneraMatrix, 0);
}
/1 Rel ease the instance of the Display bject
DORel ease( &di spObj ) ;
/! Rel ease the Geonetry Palette
GECRel easePal ette(&pal ) ;
}

Code 1 L oading, displaying, and freeing a .gpl file

Code 1 loads the geometry palette file“t est . gpl ” from the disk, then unpacks it into the geometry pal ette pointer
pal with acall to the DOGet function. An instance of the display object, called “t est obj ect ”, isthen created
with a call to the DOGet function.

The display object is rendered by calling DORender and passing it a pointer to the display object and a camera
matrix. The last parameter specifies the number of per-vertex lights affecting the given display object. Since we are
not using any per-vertex lights, in this example the parameter is set to 0. Per-vertex lights are discussed in section
18.1.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 7

Finally, once the game loop has exited, the display object is released with acall to DORel ease, and the geometry
paletteisreleased by GEORel easePal et t e.

1.4.2 Controlling a display object with a matrix

MXx m
u32 angle = 0;

/Il gane | oop

/1 Build a natrix to rotate the Display Object around the Y axis
MIXRot Deg(m ‘y’, (f32)angle);

/1l Set the Display Object’s world matrix
DCset Wor | dvat ri x(di spObj, ny;

/1l Render the Display Object
DORender (di spCbj, canerawatrix, 0);

angl e++;

}

Code 2 Controlling a display object with a matrix

Code 2 uses the GCN Matrix-Vector library (MTX) to create arotation matrix that rotates a display object
incrementally around its y-axis. Once the matrix for a given frameis created, DOSet Wor | dMat ri x setsit asthe
display object’s world matrix and passes the display object pointer and the matrix as arguments.

1.4.3 Instancing a display object

void Main ( void )

{
Mx m
u32 angle = 0;
DODi spl ayObj Ptr di spObj 1
DODi spl ayObj Ptr di spObj 2
GECPal ettePtr pal = 0;

/1 Initialize GCN here

/1 Load Ceonetry Palette “test.gpl”
GECCet Pal ette(&pal, “test.gpl”);

/Il Create an instance of “test object”
DOGet ( &di spbj 1, pal, 0, “test object”);

/]l Create a second instance of “test object”
DOCet ( &di spCbj 2, pal, 0, “test object”);

/1 Do gane | oop here

{
/!l Rotate dispObjl and dispObj2 differently to show they are i ndependent

/1 instances of the same Display Object
MIXRot Deg(m ‘y’, (f32)angle);

DOSet Wor | dvat ri x(di spObj 1, m;
DORender (di spObj 1, canerawatrix, 0);

MIXRot Deg(m ‘ x', (f32)angle);

© Nintendo Technology Development, Inc. CONFIDENTIAL



8 Game Engine Programming April 17, 2001

BRehU8r L AMebED 2! 2BRB vl i x, 0);

angl e++;

}

/1 Rel ease both instances of the Display Object
DORel ease( &di spQbj 1) ;
DORel ease( &di spQbj 2);

/! Rel ease the Geonetry Palette
GECRel easePal ette(&pal );

}

Code 3 Instancing a display obj ect

Code 3 creates two instances of the same display object using the DOGet function. These two display objects are then
animated differently to show that they are two independent instances of the same display object. When objects are
instanced, their display datais shared; however, their runtime information, such as position and orientation, are not.

1.5 Texture

The Character Pipeline Texture Palette format (TPL) is designed to encapsulate multiple texture imagesin asingle
file. Thetextureimagesin the file can be of any format supported by The GCN, and textures within the same file can
have different formats. The GPL format references texture palettes for display objects to which textures have been
applied. In the case of the geometry palette files, the loading of texture palettes is automated. The examplesin this
section are for developers who wish to use the texture palette format to build their own geometry formats.

1.5.1 Loading, accessing, and freeing a .tpl file

15.1.1 Loadingtruecolor texturesusing a GXTexObj

void Main ( void )

{
TEXPal ettePtr texPal = 0; // Declare a Texture Pal ette pointer
CXTexObj texOhj; /'l Declare a GXTex(hbj

/1 Load the Texture Palette file “test.tpl” off of disk
TEXGet Pal ette(& exPal, "test.tpl");

/1 Initialize the GXTexCbj to be texture O of the texture palette
TEXGet GXTexOhj FronPal ette(texPal , & exChj, 0);

/1l Use the texture

)/ Rel ease the Texture Pal ette
TEXRel easePal ett e( & exPal ) ;

}

Code 4 L oading true color textureswith GXTexObj

Code 4 loads the texture palette file“t est . t pl ” from the disk and into the texture pal ette pointer texPal using
TEXCGet Pal ett e. Thefunction TEXGet GXTexCbj Fr onPal et t e theninitializesthe GXTex(hj texObj from
the texture palette to texture ID 0. At this point, texObj can be used to draw geometry. Once the program is done, the

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 9

texture paletteis released with acall to TEXRel easePal et t e. Please note that the function
TEXGet GXTexObj Fr onPal et t e only works for true-color textures.

1.5.1.2 Loading color-indexed texturesusing a GXTexObj

void Main ( void )

{
TEXPal ettePtr texPal = 0;
GXTexOhj texhj;
GXTl ut Gbj Tl ut oj ; /1 Declare a TLUT object
TEXGet Pal ette( & exPal , "test.tpl");
/Il Initialize the GXTex(hj to be texture 0 of the texture palette
/1l Also initialize the GXTlutQj to be the TLUT of texture O
TEXGet GXTexOhj FronPal ett eCl (texPal , texCbj, TlutCObj, GX_TLUTO, 0);
TEXRel easePal ette (& exPal);

}

Code 5 L oading color-indexed textur eswith GXTexObj

This example performs the same function as Code 4, except that it uses TEXGet GXTexObj FronmPal ett eCl to
initialize a color-indexed texture rather than a true-color texture.

1.5.1.3 Loading atextureusing thetexture descriptor

void Main ( void )

{
TEXPal ettePtr texPal = O;
CXTexObj texOhj;
GXTl ut Gbj Tl ut oj ;
TEXDescriptorPtr tdp;
GXBool m pMap;

TEXGet Pal ette(& exPal, "test.tpl");
tdp = TEXGet (texPal, 0);

i f (tdp->textureHeader->m nLOD == t dp- >t ext ur eHeader - >maxLOD)
m pMap = GX_FALSE;

el se
m pMap = GX_TRUE;

i f (tdp->CLUTHeader)

GXInitTlut oj ( Tl ut Obj,
t dp- >CLUTHeader - >dat a,
( GXTI ut Ft ) t dp- >CLUTHeader - >f or mat ,
t dp- >CLUTHeader - >nuntntries );

GXl nit TexQhj C ( texOhj,
t dp- >t ext ur eHeader - >dat a,
t dp- >t ext ur eHeader - >wi dt h,
t dp- >t ext ur eHeader - >hei ght ,
(GXCl TexFnt )t dp- >t ext ur eHeader - >f or nat ,
t dp- >t ext ur eHeader - >wr apS,
t dp- >t ext ur eHeader - >wr apT,

© Nintendo Technology Development, Inc. CONFIDENTIAL



10 Game Engine Programming April 17, 2001

&EWPJTO) ;
}

el se

GXl nit Texhj ( texObj,

t dp- >t ext ur eHeader - >dat a,
t dp- >t ext ur eHeader - >wi dt h,
t dp- >t ext ur eHeader - >hei ght ,
( GXTexFnt) t dp- >t ext ur eHeader - >f or mat ,
t dp- >t ext ur eHeader - >wr apS,
t dp- >t ext ur eHeader - >wr apT,

} m pMap) ;

GXl ni t TexObj LOD( texOhj, tdp->textureHeader->mnFilter,
t dp- >t ext ur eHeader - >nagFi | ter,
t dp- >t ext ur eHeader - >m nLCOD,
t dp- >t ext ur eHeader - >nmaxLOD,
t dp- >t ext ur eHeader - >LODBi as,
GX_DI SABLE,
t dp- >t ext ur eHeader - >edgeLODEnabl e,
GX_ANI SO 1);

TEXRel easePal ett e( & exPal ) ;
}

Code 6 L oading a texture with atexture descriptor

This example uses a texture descriptor pointer to first determine the type of texture requested (i.e., true-color or color-
indexed) and the initializes a GXTexObj and GXTI ut Obj accordingly. The texture descriptor is retrieved by
TEXGet . For detailed information on the TEXDescr i pt or structure, see section 2.2.5.2.

1.6 Hierarchy

The Character Pipeline Actor file format (ACT) enables afew key features. First, the ACT format creates a topology
in which display objects from a geometry palette can be organized hierarchically. Second, it allows a single display
object to be used as a deformable “skin” for acharacter. Third, it acts as a binding mechanism to link animation and
display objects. The following examples show how to use the basic features of this format.

1.6.1 Loading, displaying, and freeing a .act file

void Main ( void )

{
ACTActorPtr actor = 0; /] Declare an Actor pointer

/1 Load the Actor file “test.act” off of disk and into actor
ACTGet (&actor, “test.act”);

/1 Do game | oop here
{

)/ Traverse the hierarchy and build all of its transformation natrices
ACTBuUI | dvatri ces(actor);

/1 Render the actor using no lights
ACTRender (actor, caneraMatrix, 0);

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 11

}

/!l Rel ease the actor
ACTRel ease( &actor);
}

Code 7 Loading, displaying, and freeing a .act file

Code 7 loads an ACT file from the disk and unpacks it into the actor pointer, actor, by calling ACTGet . In the game
loop, acall to ACTBui | dMat ri ces traversesthe hierarchy and builds the necessary matrices to properly display the
actor. If the hierarchy is not animated, you can save computation cycles by calling ACTBui | dvat ri ces once from
outside of the game loop. The application then renders the actor by calling the function ACTRender and passing it
the actor and the camera matrix as arguments. The final parameter to this function is the number of per-vertex lights
affecting the actor. Usage of per-vertex lightsis discussed in detail is section 1.8.1, but they are not used here.

Finally, after the game loop is through, the actor is released with acall to ACTRel ease.

1.6.2 Controlling an actor using its global control

void Main ( void )

{
ACTActorPtr actor = 0;

CTRLControl Ptr control;
u32 angle = 0;

ACTGet (&actor, “test.act”);

/] Ootain the pointer to the Actor’s gl obal control
control = ACTGet Control (actor);

/1 Set the control’s type
CTRLInit(control);

/1 Do gane | oop here
{

/Il Set the control’s paraneters to rotate the Actor around the X axis
CTRLSet Rot ation(control, (f32)angle, 0.0F, 0.0F);

ACTBUI | dvatri ces(actor);
ACTRender (actor, caneraMatrix, 0);

angl e++;

}

ACTRel ease( &actor);
}

Code 8 Controlling an actor

This example starts by obtaining a pointer to the actor’s global control with acall to ACTGet Cont r ol (control
structure and usage are discussed more thoroughly in section 1.8.2). In the game loop, the control’ s x rotation
parameter is animated, causing the actor to spin around itslocal x-axis.

1.6.3 Instancing an actor

void Main ( void )

© Nintendo Technology Development, Inc. CONFIDENTIAL



12 Game Engine Programming April 17, 2001

{ ACTActorPtr actor_1 = O;
CTRLControl Ptr control _1;
ACTActorPtr actor_2 = 0;
CTRLControl Ptr control _2;
u32 angle = 0;

/1l Create an instance of “test.act”
ACTGet (&actor _1, “test.act”);

/!l Create a second instance of “test.act”
ACTGet (&actor_2, “test.act”);

control _1 = ACTGet Control (actor_1);
CTRLInit(control _1);

control _2 = ACTGet Control (actor_2);
CTRLInit(control _2);

/1 Do game | oop here

{
/1 Aninmate the two Actors differently to show they are independent instances
/1 of the sane Actor.
CTRLSet Rotation(control _1, (f32)angle, 0.0F, 0.0F);
ACTBuUi | dvatrices(actor_1);
ACTRender (actor _1, canerahMatrix, 0);
CTRLSet Rotation(control _2, 0.0F, 0.0F, (f32)angle);
ACTBuUi | dvatri ces(actor_2);
ACTRender (actor _2, canerahMatrix, 0);
angl e++;

}

/'l Rel ease both Actors
ACTRel ease( &actor_1);
ACTRel ease( &actor_2);

}

Code 9 Instancing an actor

Code 9 creates two instances of “t est . act ” using the ACTGet function. These actors are then animated
independently using their global controls, just asin the previous example. As shown in this example, all of the display
datais shared when an actor isinstanced, but all of the runtime data (such as animation information) is not.

1.7 Animation

The Character Pipeline ANM file format enables the creation and playback of keyframed animation. An animation
bank consists of multiple “sequences’” which are defined as a complete set of animation data for an actor. An example
of a sequence might be a complete run cycle for a character. Sequences are comprised of tracks that contain all the
information a single bone within the actor needs to run through the animation sequence. A track is made up of
keyframes. A keyframe is defined as a single instance of orientation data for a given bonein time.

1.7.1 Loading, accessing, and freeing a .anm file

void Main ( void )

ANl MBankPt r ani nBank = 0;

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 13

AN MPPaURBEPPt T BPQURNCe:

ANl MKeyFr amePtr keyFranel;
ANl MKeyFr amePtr keyFr ane2;

/1 Load an Anination Bank off of disk and unpack it into ani nBank
ANl MGet ( &ani nBank, “test.anni);

/'l Retrieve the sequence “testAninf fromthe Ani mati on Bank
sequence = ANl MGet Sequence(ani nBank, “testAnin’, 0);

/!l Retrieve the Animation Track O fromthe Sequence
track = AN Mzet Tr ackFr onSeq( sequence, 0);

/! Retrieve the two closest keyfranes to tinme 0.0F fromthe Animation Track
ANl MGet KeyFr aneFr omir ack(track, 0.O0F, keyFranel, keyFrane2);

/! Rel ease the Animation Bank
ANl MRel ease( &ni nBank) ;

}

Code 10 L oading, accessing, and freeing a.anm file

Code 10 illustrates how to load and unpack an animation bank using the ANl MGet function. the
ANI Mzet Sequence function then retrieves the animation sequence “t est Ani ni' from the animation bank. The
function ANl MGet Tr ack Fr onmSeq then extracts animation track 0 from the animation sequence.

Next, the two closest keyframes to time 0.0 are retrieved from the animation track by calling

ANI MGet KeyFr aneFr omTr ack. (Thetwo closest keyframes are needed in case a keyframe does not occur
exactly at the time given. If this happens, the two closest keyframes can be interpolated to yield correct data for the
current time.)

Finally, ANl MRel easeBank releases the animation bank.

Please note that there is a specific API provided for binding actors to animation data. This data should only be
accessed below the animation bank level, if the ANM format is being used independently from the actor.

1.7.2 Animating an actor with a .anm file

void Main ( void )

{
ACTActorPtr actor = 0O;
ANl MBankPt r ani nBank = 0;

/1 Load an Actor file off of disk and unpack it
ACTGet (&actor, “test.act”);

/1 Load and unpack an ani nation bank
ANl MGet ( &ani nBank, “test.anni);

/1 Bind the Actor to the “testAninf Aninmation Sequence at tine 0.0
ACTSet Ani mati on(actor, ani nBank, “testAninf, 0, 0.0F);

/1 Do game | oop here
{

)/ nove the Actor’s animation through one tinme step
ACTTi ck(actor);

/1 Build the Actor’s matrices
ACTBuUI | dvatri ces(actor);

© Nintendo Technology Development, Inc. CONFIDENTIAL



14 Game Engine Programming April 17, 2001

/1 Render the Actor
ACTRender (actor, caneraMatrix, 0);

}

/1 Rel ease the data
ANl MRel ease( &ni nBank) ;
ACTRel ease( &actor);

}

Code 11 Animating an actor with a.anm file

This example bindsthe “t est Ani ni’ animation sequence to the actor with a call to ACTSet Ani mat i on. Oncethe
actor has been properly bound to a sequence, you can move it through the animation sequence with the ACTTi ck
function. Thisfunction performsall of the animation for the actor for the current frame, then it updates the actor’s
current time counter to be used in the next frame.

1.8 Support

The Character Pipeline support libraries are small, simple libraries that add specific functionality to the Character
Pipeline. Although all of these libraries can be used independently of the Character Pipeline with no additional
changes, we discuss them within the context of the Character Pipeline for the purposes of this document.

1.8.1 Light library

The Character Pipeline light library provides a method of creating, managing, and manipulating per-vertex lights.
Thislibrary is built directly on top of the GX library and mirrorsits functionality in a dightly less cumbersome and
more robust manner. Thislibrary also adds the ability to orient and animate lights easily.

1.8.1.1 Initializing lightsand using them on an actor/display object

void Main ( void )

{
LI TLi ghtPtr light = 0;
GXCol or color = {255, 255, 255, 255);

/1 Load some Ceonetry Pal ette
/'l Load and show sone Display Object

/1 Allocate a light
LI TA l oc(& ight);

// Initialize the light to be a point light at 0, 0, 100 in world space
LI TIni t Pos(light, 0.0F, 0.0F, 100.0F);

/1 Initialize the light's color
LI Tl nitCol or(light, color)

/1 Do game | oop here
{

/1 Transformthe light into canera space for processing
LI TXForn(light, caneraMatrix);

/1 Render the Display Object using one |ight

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 15

DORender (di spObj, canerawatrix, 1, light);
}
/'l Rel ease Display Object and Ceonetry Palette

Il Free |ight
LI TFree(& ight);

}

Code 12 Initializing lights and using them on an actor/display object

Code 12 illustrates the basic method in which lights are used. First, alight is allocated with acall to LI TAI | oc.
Next, LI Tl ni t Pos initializes the light’ s position to be (0, 0, 100) in world space. Please note that alight is
considered to be alocal point light if it only has position (i.e., no direction and angle attenuation). If it has position,
direction, and angle attenuation, it is considered to be alocal spotlight. Next, LI Tl ni t Col or iscaled toinitialize
the light’s color to white. The light is transformed into camera space with acall to LI TXFor m(lighting calculations
are performed in camera space, so it is necessary to transform the light). The light is then passed as a parameter to the
DORender function, causing the display object to be affected by the light. The method for using alight on an actor is
exactly the same. Up to eight lights can be passed to the DORender and ACTRender functions. Finally, thelight is
freed with acall to the LI TFr ee function.

1.8.1.2 Manipulating lights

void Main ( void )
{
LI TLightPtr light = O;
GXCol or color = {255, 255, 255, 255);
CTRLControl Ptr control;
u32 angle = 0;

/! Load sone Geonetry Palette
/'l Load and show sone Display Object

/1 Allocate and initialize a light

LI TA |l oc(& ight);

LI TIni t Pos(light, 0.0F, 0.0F, 100.0F);
LI TInitCol or(light, color)

/1 retrieve the pointer to the light's control and set the type to SRT
control = LI TGetControl (1ight);
CTRLInit(control);

/1 Do gane | oop here

{
)/ set the control to rotate the |ight around the X axis
CTRLSet Rot ation(control, (f32)angle, 0.0F, O0.0F);
LI TXForn{light, caneraMatrix);
DORender (di spObj, canerawatrix, 1, light);
angl e++;
}

/'l Rel ease Display Object and CGeonetry Palette

Il Free |ight
LI TFree(& ight);

© Nintendo Technology Development, Inc. CONFIDENTIAL



16 Game Engine Programming April 17, 2001

}

Code 13 Manipulating lights

The example above shows how to manipulate a light using its contral, just as Code 8 did with actors. First, the

LI TGet Cont r ol function retrieves a pointer to the light’s control. This control is then set to rotate the light around
the x-axiswith acall to CTRLSet Rot at i on. The LI TXFor mfunction transforms the light by the control-specified
matrix, and then transforms it into camera space.

1.8.1.3 Animating lightsusing a .anm file

void Main ( void )

{
LI TLightPtr light = O;
GXCol or color = {255, 255, 255, 255);
u32 angle = 0;
/1 Load sone Anination Bank
/1l Allocate a Light
LI TA l oc(& ight);
/1 Initialize the Light to be at 0, 0, O (default) and pointing down the -Z axiz
LITInitDir(light, 0.0F O0.0F -1.0F);
LI TInitColor(light, color);
/1 Set the light to aninate using the “spin” Anination Sequence
LI TSet Ani nSequence(light, aninBank, “spin”, 0.0F);
/1 Do gane | oop here
{
)/ Animate the light for this frame
LI TTi ck(light);
LI TXForn{light, caneraMatrix);
DORender (di spObj, caneramatrix, 1, light);
}
/'l Rel ease Ani mati on Bank
Il Free |ight
LI TFree(& ight);
}

Code 14 Animating lightsusing a .anm file

This example illustrates how to animate a light using the ANM format. First, LI TI ni t Di r initializes alight to be
located at the default (0, O, 0), and sets the light to point down the negative z-axis. The animation sequence “spi n” is
then bound to the light using LI TSet Ani mSequence. Thelight isanimated for aframe with a call to the

LI TTi ck function, followed by the LI TXFor mfunction.

1.8.1.4 Attachinglights

void Main ( void )
{

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 17

&5l Pt BT of 1 9N 255 255, 255, 255);

/1 Load some Ceonetry Pal ette
/'l Load and show sone Display Object

/1 Allocate and initialize a Light to be a point light a the origin

LI TA l oc(& ight);
LI TIni t Pos(light, 0.0F, 0.0F, 0.0F);
LI TInitCol or(light, color);

/1 Attach the Light to a Display Object
LI TAttach(light, (Ptr)dispCbj, PARENT_DI SP_OBJ);

/1 Do game | oop here
{

i_l TXForm(light, caneraMatrix);

DORender (di spObj, caneramatrix, 1, light);
} . .
/'l Rel ease Display Object and Geonetry Palette

Il Free |ight
LI TFree(& ight);
}

Code 15 Attaching lights

The example above shows alight’s ability to be attached to a display object and thus inherit its motion. Lights can
also be attached to actors and arbitrary matrices by using the LI TAt t ach function. Lights can be detached from
objectsby calling LI TDet ach.

1.8.2 Control library

The Character Pipeline control library provides alogica interface for manipulating the orientation, position, and scale
of an object. These three parameters make up a control and, ultimately, yield amatrix. The control library is
optimized to build matrices intelligently and arithmetically for efficiency, depending on whether position, rotation, or
scale is enabled for a given control.

1.8.2.1 Using controlsto yield matrices

void Main ( void )

{
CTRLControl control; // Declare a Control
Mx m

/1 Initialize the control
CTRLInit (&control);

/1l Set the control’s rotation around the Z axis
CTRLSet Rot ati on( &control, 0.0F, 0.0F, 90.0F);

/1 Set the control’s position at (0,0,10) up on the Z axis
CTRLSet Transl ati on(&control, 0.0F, 0.0F, 10.0F);

© Nintendo Technology Development, Inc. CONFIDENTIAL



18 Game Engine Programming April 17, 2001

I Y ebd Rof@kELie" ELPE! fabNRofPbE Ol PhPRTAIBEFERA) o
// 2. Rotate around the Z aX|s by 90 degrees
/1 3. Translate the object up on Z axis by 10
CTRLBui | dMvatri x(&control, m;

}

Code 16 Using controlsto yield matrices

Code 16 illustrates the basic way in which to use the Character Pipeline control library. The CTRLI ni t function
initializes the control, and the CTRLSet Rot at i on function setsthe Euler (, y, 2) rotation. Finaly, the
CTRLBui | dMat ri x function yields a matrix reflecting the current state of the control. Rotations can also be
specified with a quaternion using the CTRLSet Quat function.

1.8.3 Shader library

The Character Pipeline shader library sits directly on top of the GX library and abstracts the Texture Environment
(TEV). The function of the shader library isto allow the user to set up the TEV without worrying about resource
restrictions and management.

A “shader” is defined as an expression the resultsin acolor or alphavalue. Taken in the context of the GCN system,
there are afew defined shader types.

Constant color.
Rasterized color.
Texture.
Complex.

The process of using a shader is divided into three steps: compilation, data binding, and execution. This split
optimizes shader processing at runtime. Most of the work occurs in the compilation stage at |oadtime, rather than
occurring dynamically at runtime.

In addition to providing TEV functionality, the shader library provides texture coordinate expressions to set up
dynamic texture coordinate generation in a generic fashion. For instance, this allows you to write a sphere map shader
that needs only atexture and a texture coordinate generation matrix bound to it at runtime.

1.8.3.1 Using texture shaders

SHDRConpi | ed *Cr eat eText ur eShader ( void )
{ SHDRShader *t ext ur eRGB;

SHDRTexCoor d *t excoor dO;

SHDRConpi | ed *t enp;

//Create texture coordinate expression — use tex coord O
t excoord0 = SHDRCr eat eTCPassThr ough( SHADER TG _TEXO) ;

/lcreate RGB side
t ext ureRGB = SHDRCr eat eText ur e( SHADER_TEXO0, texcoord0, SHADER CHANNEL_RGB);

[/ conpile
tenp = SHDRConpi | e(t extureRGB, Shader One);

/1 free shaders

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 19

SHDRFr ee(t ext ur eRGB) ;

return tenp;

}

void Main ( void )
{
/1 Comi | e shader
SHDRConpi | ed *textureShader = CreateText ureShader();

//Bind a GXTex(bj to the shader
SHDRBi ndText ur e(t ext ur eShader, SHADER TEX0, MyTexOhj);

/| Execut e the shader
SHDRExecut e(t ext ur eShader) ;

}

Code 17 Creating textur e shaders

The preceding example illustrates how to create a shader that returns the RGB component of atexture. The

Cr eat eText ur eShader function declares a texture shader and compilesit using SHDRCr eat eText ur e and
SHDRCompi | e, respectively. SHDRCr eat eTCPassThr ough creates a texture coordinate expression that simply
returns the texture coordinate value passed in. Thisis equivalent to transforming the input coordinate by an identity
matrix. Finaly, the shade treeis freed with acall to SHDRFr ee.

In the main function, the shader is created and compiled with acall to our Cr eat eText ur eShader function. A
texture is then bound to the shader with SHDRBI ndText ur e. Finally, the shader is executed with SHDRExecut e.

1.8.3.2 Usingrasterized color shaders

SHDRConpi | ed *Cr eat eRasShader ( void )
SHDRShader *r asRGB,;
SHDRConpi | ed *t enp;

//create RGB side
rasRGB = SHDRCr eat eRast eri zed( SHADER_RASO, SHADER CHANNEL_RGB) ;

[/ conpile
tenp = SHDRConpi | e(rasRGB, Shader One);

/1 free shaders
SHDRFr ee(r asRGB) ;

return tenp;

}

void Main ( void )
{
/] Coni | e shader
SHDRConpi | ed *rasShader = Creat eRasShader();

//Bind a rasterized col or channel to the shader
SHDRBi ndRast eri zed(rasShader, SHADER RASO, GX_COLOROAO);

/| Execut e the shader
SHDRExecut e( r asShader) ;

© Nintendo Technology Development, Inc. CONFIDENTIAL



20 Game Engine Programming April 17, 2001

}

Code 18 Creating rasterized color shaders

Code 18 illustrates how to create a shader that returns the RGB component of arasterized color. The
Cr eat eRasShader function declares arasterized color shader and compilesit using SHDRCr eat eRast eri zed
and SHDRConmpi | e, respectively. Finally, acall to SHDRFr ee frees the shade tree.

In the main function, the shader is created and compiled with acall to our Cr eat eRasShader function. A
rasterized color channel isthen bound to the shader with acall to SHDRBi ndRast eri zed. Finaly, the shader is
executed by SHDRExecut e.

1.8.3.3 Using constant color shaders

SHDRConpi | ed *Cr eat eConst ant Col or Shader ( void )

{
SHDRShader *rgb;

SHDRConpi | ed *t enp;

//create RGB side
rgb = SHDRCr eat eCol or (SHADER_COLORO, SHADER CHANNEL_RGB) ;

[/ conpile
tenp = SHDRConpi | e(rgb, Shader One);

/1 free shaders
SHDRFr ee(r gb) ;

return tenp;

}

void Main ( void )

{
/] Coni | e shader
SHDRConpi | ed *rgbShader = Creat eConst ant Col or Shader () ;
GXCol or red = {255, 0, 0, 0};

//Bind a constant color to the shader
SHDRBI ndCol or (r gbShader, SHADER COLORO, red);

/| Execut e the shader
SHDRExecut e( r asShader) ;
}

}

Code 19 Creating constant color shaders

The example above illustrates how to create a shader that returns the RGB component of a constant color. The

Cr eat eConst ant Col or Shader function declares a constant color shader and compilesit using the

SHDRCr eat eCol or and the SHDRConpi | e functions, respectively. Finally, acall to SHDRFr ee frees the shade
tree.

In the main function, the shader is created and compiled with acall to our Cr eat eConst ant Col or Shader
function. A constant color is then bound to the shader with a call to the SHDRBi ndCol or function. Finaly, the
shader is executed with a call to the SHDRExecut e function.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 21

1.8.3.4 Using complex input shaders

SHDRConpi | ed *Cr eat eConpl ex| nput Shader ( void )
{

SHDRShader *conpl exRGB;

SHDRConpi | ed *t enp;

//create RGB side
conpl exRG = SHDRCr eat eConpl ex| nput ( SHADER COWPLEX0, SHADER_CHANNEL_RGB);

[/ conpile
tenmp = SHDRConpi | e( conpl exRGB, Shader One);

/1 free shaders
SHDRFr ee( conpl exRGB) ;

return tenp;

}
void Main ( void )

// Com | e shader
SHDRConpi | ed *conpl exl nput Shader = Creat eConpl ex| nput Shader ();

//Bind a shader to the conpl ex input shader
SHDRBi ndConpl ex| nput ( conpl exl nput Shader, SHADER COVPLEX0, SoneQt her Shader);

/| Execut e the shader
SHDRExecut e( conpl exl nput Shader) ;

}

Code 20 Creating complex input shaders

The example above creates a complex input shader with a call to the SHDRCr eat eConpl ex| nput function. The
shader created simply takes the RGB output from another shader and returnsit. This may not seem too useful;
however, this mechanism can be used to combine the output of two shaders, which can be very useful. The next
example illustrates how to combine shader outputs.

1.8.3.5 Using complex shaders

SHDRConpi | ed *Cr eat eModul at eShader ( void )

{
SHDRShader *rasRGB;

SHDRShader *text ur eRGB;
SHDRShader *conpl exRGB;
SHDRTexCoord *t excoor dO;
SHDRConpi | ed *t enp;
SHDRConpi | ed *t enp;

//Create texture coordinate expression — use tex coord O
t excoord0 = SHDRCr eat eTCPassThr ough( SHADER TG _TEXO) ;

/] Create RGB side
//Create rasterized shader
rasR@B = SHDRCr eat eRast eri zed( SHADER_RASO, SHADER CHANNEL_RGB) ;

© Nintendo Technology Development, Inc. CONFIDENTIAL



22 Game Engine Programming April 17, 2001

{ BT GRLRGEEX! Y AREPEYBEText ur e( SHADER TEXO, texcoord0, SHADER CHANNEL RGB):

//Create nultiply shader

conpl exRGB = SHDRCr eat eConpl ex( Shader Zero, rasRGB, textureRGB, ShaderZero, SHADER OP_ADD,
SHADER CLAMP_LI NEAR 1023, SHADER Bl AS_ZERO, SHADER SCALE 1,
SHADER _CHANNEL_RGB) ;

[/ conpile
tenmp = SHDRConpi | e( conpl exRGB, Shader One);

/1 free shaders
SHDRFr ee( conpl exRGB) ;

return tenp;

}

void Main ( void )

{
/1 Comi | e shader
SHDRConpi | ed *nodul at eShader = Creat eModul at eShader () ;
//Bind a rasterized color channel to the shader
SHDRBi ndRast er i zed( nmodul at eShader, SHADER _RASO, GX_COLOR0AO);
SHDRBi ndText ur e( nodul at eShader, SHADER TEX0, MyTexOhj);
/| Execut e the shader
SHDRExecut e( modul at eShader) ;

}

Code 21 Creating complex shaders

The only new function in this example is the SHDRCr eat eConpl ex function. Thisfunction takes four shaders as
inputs, then performs some mathematical operation on them (such as add, subtract, multiply, or LERP). Thisexample
multiplies the RGB component of arasterized color with the RGB component of atexture.

1.8.3.6 Using ashader with adisplay object

SHDRConpi | ed *t ext ur eShader ;

voi d Set TextureShader ( SHDRConpil ed *shader, DODi splayQoj Ptr di spCbj, u32 conbineSetting,
GXTex(bj *texture, BOCOL col or ChanUsed, Ptr data )
{

#pragma unused (data)

#pragma unused (conbi neSetti ng)

#pragma unused (texture)

#pragnma unused (col or ChanUsed)

#pragnma unused (shader)

SHDRBI ndText ur e(t ext ur eShader, SHADER TEXO, MyTexObj);
SHDRExecut e(t ext ur eShader) ;

void Main ( void )
{

/| Conpi | e shader
t ext ureShader = Creat eTextureShader ();

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 23

&ﬁg{ EF?lelcpgghahgprWsp(}Jj , (Ptr) Set Text ureShader, 0);

/I Render the display object
DORender (MyDi spObj, MyCaneraM x, 0);
}

Code 22 Creating a shader for use with a display object

This example declares the callback function Set Text ur eShader to bind and execute the global shader

t ext ur eShader . The Cr eat eText ur eShader function comesfrom Code 17 above. The callback function is
then attached to MyDi spObj with acall to DOSet Ef f ect sShader . Asaresult, the callback function is called
before MyDi spQbj isrendered, therefore executing the desired shader. When MyDi spCbj isrendered, it will be
mapped with whatever texture is specified by My TexQoj .

© Nintendo Technology Development, Inc. CONFIDENTIAL



24 Game Engine Programming April 17, 2001

2 Runtime libraries in detall

2.1 Geometry

The Character Pipeline geometry palette file format and library form the foundation for the display of geometry. All
data drawn by the Character Pipeline is processed by thislibrary. The main function of the format and library isto
provide a set of methods to display and manipulate artist-created data. The library provides basic support for loading,
manipulating, displaying, and freeing geometry objects. It also supports features such as instancing, lighting, and the
specification of programmable texture shaders.

2.1.1 Geometry palette

The geometry palette starts as afile on disk consisting of one or more display objects. A display object is the base
unit of displayable geometry in the Character Pipeline. When a geometry palette is|oaded into memory, itis
unpacked to represent asimple list of one or more of these display objects. The display objects are individually
accessible through an API call.

GPL FILE

Display Object 1

Display Object 2

AAN\

Display Object n

Figure1l The GPL file

2.1.2 Display object

As mentioned above, the display object is the base unit of displayable geometry available in the Character Pipeline. A
display object contains three main types of information:

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 25

Data Arrays— Data arrays contain all the necessary data used to make up this display object. A display object
can have positions, colors, texture coordinates, and normals as its data arrays. It is not necessary that a display
object carry all of this data; a display object could be made up of only position and color, for instance.
Connectivity I nfor mation — Connectivity information specifies how the data from the data arrays fits together to
form adisplayable mesh. This connectivity information comes in the form of hardware display lists that index
into the data arrays to form geometric primitives that are then drawn by the hardware.

Display State— A display object also carries with it some hardware state that must be set in order for the
geometry to be drawn correctly. This state consists of things like vertex make-up, data quantization information,
and texture combine modes.

4 Display Object R
Color Data Position Data Texture Data Lighting Data Display Data
- rgb[a] array - xy[z] array - s[t] array - xy[z] normal - primitive lists
- format - format - format array - display states
- TPL file name - format
- ambient color
information.
o /

Figure 2 Components of a display obj ect

2.1.2.1 Position data

Position data encompasses all of the state and data related directly to adisplay object’s position array. A display
object isrequired to have position data. The position data contains the actual quantized position array for an object, as
well as information on how the data is quantized and what the data looks like (e.g., 2D or 3D).

2.1.2.2 Color data

Color datais comprised of all the data and state necessary to describe the per-vertex colors of an object. It isnot
necessary for a display object to contain color data; for example, it is possible that an object could have position and
texture, but no color. The color data contains the actual color array for an object in addition to information about how
the colors are quantized and what the data looks like (e.g., RGB or RGBA). This data also acts as the vertex material
information if the object islit by a per-vertex light.

2.1.2.3 Texturedata

Texture data consists of al the data and state necessary to apply texture to a display object properly. Texture datais
not required in avalid display object. It ispossible, for instance, that an object could have position and color, but no
texture data. Texture data carries the actual quantized texture coordinate array along with information about how the
datais quantized and what the datalooks like (e.g., 1D or 2D). Also, the texture data contains a pointer to a texture
palette from which textures are loaded to draw the object. For more information on texture pal ettes, see section 2.2.

© Nintendo Technology Development, Inc. CONFIDENTIAL



26 Game Engine Programming April 17, 2001

2.1.2.4 Lighting data

Lighting data contains information for performing per-vertex lighting on a display object. Asaresult, objects that will
never be affected by a per-vertex light do not need to include lighting data. Lighting data includes a quantized normal
array, information on how the normals are quantized, and the type of normal (e.g., 2D or 3D). Also, lighting data
contains a percentage of the vertex color that will be considered ambient, which allows an ambient light effect without
having to actually burn alight in hardware.

2.1.2.5 Display data

Display datais abit more complex than the other data sets described above. Display datais comprised of two major
components:

Display State List — Thedisplay statelist isalist of individual hardware states that must be set at a given time
during the drawing of the object.

Primitive Lists— Primitive lists are hardware display lists which define how the display object data (positions,
normals, colors, and texture coordinates) fit together to form the object.

At runtime, the display state list istraversed in order. Each specified state is set in the hardware until a display state
entry is encountered that points to a primitive list. When this happens, the primitive list is drawn, and the display
routine resumes setting hardware state until the end of the state list is reached. At thistime, the entire object should be
drawn.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 27

A g
Display State Primitive List
A
Display State
| /\/
Display State
A
Display State »
A g
Primitive List
A
Display State
A
Display State ) /\/

Figure 3 Display state and primitivelists

2.1.3 Display object layout

After ageometry palette is loaded and unpacked into memory, it is stored as a series of display object layouts. A
display object layout acts as a sort of recipe for building a display object. The layout pointsto all of the necessary
datato display adisplay object, but it does not contain any of the information (such as orientation information) that a
useable runtime instantiation should have.

2.1.4 Creating an instance of a display object

When adisplay object is created from a display object layout, al of the dataisinstanced from the layout. However,
additional runtime information is added to the display object that does not behave in an instanced manner. For
example, if there are two instances of the same display object in a game, each instance can be positioned, oriented,
and scaled differently, but they share the same data arrays. This meansthat if you were to change adataelement in a
data array of the first object, the second object would reflect this change as well.

© Nintendo Technology Development, Inc. CONFIDENTIAL



28 Game Engine Programming April 17, 2001

Non-Instanced Data Instanced Data

Display
Object
Layout

Position Data

2

] Color Data

A >
A
ll

Y

A4

A4

Display | Display Data
Object ~ >
Orientation |
data ]
'

Figure 4 Display object instancing mechanism

2.1.5 Display object matrices

At runtime, a display object carries aworld matrix which transforms the object from local space to world space. This
world matrix is not instanced like data arrays; rather, it belongs to one—and only one—display object.

2.1.6 Display object visibility flag

Each display object has a unique visibility flag that determines whether or not the object should be rendered. That is,
sending a display object that istagged as “invisible” to the render routine will result in the display object not being
rendered. Thisflagis provided as an easy way to “turn off” adisplay object in a scene without removing it from the
database or freeing it from memory.

2.1.7 Processing the display object for display

When adisplay object isfirst sent to the rendering routine, a check is performed on the state of the display object’s
visibility flag. If thisflag indicates that the display object isinvisible, the routine simply returns. At this point, the
display object’sworld matrix is concatenated with the given camera matrix to create the modelview matrix. The
routine then begins to set up the hardware with the display object’s global state.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 29

2.1.7.1 Setting display object global state

Global state for adisplay object is defined as any hardware state that does not need to be changed over the course of
drawing the object. The global state of a display object includes:

Modelview matrix.

Data array locations.

Data quanti zation methods.
Lighting state.

2.1.7.2 Processing the display statelist

After the global stateis set for a display object, the rendering routine processes the display state list contained in the
display data section of the display object. Starting from the first entry in the list, the code parses the state entries and
sets the proper hardware state to the specified values. The hardware state set by display state entries includes:

Texture state.

Color Combine state.
Vertex Descriptor state.
Matrix state.

Each state entry contains a pointer to aprimitivelist. If this pointer isnot NULL, the rendering routine draws all the
geometry specified in the primitive list and then processes the next state entry.

2.1.7.3 Processing primitivelists

A primitive list is simply a hardware display list that contains no state. All hardware state is specified from the
display object rendering code via the immediate mode GX API, and therefore does not belong in the primitive list. It
isimportant to note that these primitive lists only refer to datain an indexed manner. No direct dataisallowed in a
display object’s primitive lists. Indexes can, however, be either 8-bit or 16-bit to aid compression. With the data
organized in this manner, it is a simple matter to send this primitive list directly to the GCN hardware.

2.1.8 Display object lighting

The display object rendering routine can accept eight per-vertex lights by which the specified display object will be
affected. These lights are specified as defined by the Character Pipeline light library (see section 2.5.3). If the given
display object contains lighting data, these lights are |oaded into hardware, and the display object’s color array is used
to provide per-vertex material information.

In addition to the ability to have an object affected by eight lights, it is also possible to simulate ambient lighting for
free. Each display object carries an ambient percentage field in itslighting data that specifies the darkest level the
object can ever appear. Thisfield is specified as a floating point number in the range from 0.0 to 100.00, inclusive,
and it can be modified at runtime. The ambient value for a display object is not instanced and can therefore be
changed on a per-object basis.

© Nintendo Technology Development, Inc. CONFIDENTIAL



30 Game Engine Programming April 17, 2001

2.1.9 Stitching a display object

Up until now, we've discussed a display object only as a series of primitives that are transformed by a single matrix.
In actuality, a display object also has the ahility to transform each of its vertices by a unique matrix. This technique,
in which you can warp amesh by transforming different vertices within it by different matrices, is called stitching.

A display object needs three sets of information to make stitching possible:

At runtime, the display object must be passed two arrays of matrices that will transform its positions and normals
into world space.

The display object must have state entriesin its display state list that instruct the hardware to load certain matrices
from the supplied matrix arrays into the hardware matrix cache.

The display object must have matrix indicesin its primitive list that describe by which matrix in the hardware
matrix cache each position is to be transformed.

2.1.9.1 Dealing with the matrix cache

A potentially confusing level of indirection is necessary when dealing with multiple matrices per display object. The
GCN hardware contains amatrix cache in which all matrices used to transform geometry must reside. The problem
occurs when the number of matrices needed to properly deform the given display object exceeds the hardware limit of
ten.

The solution is simply to break up the display object into several primitive lists that each require ten or less matrices to
draw. Then we simply load the matrices needed by any given primitive list into the matrix cache, draw the primitive
list, then move on to the next primitive list.

To accomplish this, we add entriesin the display state list instructing the hardware to load a matrix from the given
matrix arraysinto hardware. Once all the necessary matrices have been loaded into the matrix cache, the
corresponding primitive list can be drawn. It isimportant to note that the primitive list indexes the matricesin the
hardware cache, not the two arrays from which these matrices have been loaded.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming

31

Primitive List

Matrix S Display State Matrix
Array Cache
A <
« 3 v < X
< Display State —:
A

Figure5 The hardware matrix cache

2.1.10 Geometry palette structures

2.1.10.1 GEOPalette

typedef struct

u32 ver si onNunber ;
u32 user Dat aSi ze;
voi d* user Dat a;

u32 numDescri pt ors;

GEQDescriptorPtr descriptorArray,;

} CGEOPal ette, *GEOPal ettePtr;

Code 23 GEOPalette

versionNumber — Field to describe the version number of thefile.
user DataSize — Size of the GPL user-defined data.

user Data — Pointer to the GPL user-defined data.
numDescriptors — Number of geometry descriptorsin the file.
descriptorArray — Array of geometry descriptors.

© Nintendo Technology Development, Inc.

CONFIDENTIAL



32 Game Engine Programming April 17, 2001

2.1.10.2 GEODescriptor

typedef struct

DOLayout Ptr | ayout;
char *nane;

} GECDescriptor, *GEODescriptorPtr;

Code 24 GEODescriptor

layout — Pointer to a display object layout.
name — String name for this display object.

2.1.10.3 DOL ayout

typedef struct

DOPosi t i onHeader Pt r posi ti onDat a;

DOCol or Header Pt r col or Dat a;

DOText ur eDat aHeader Ptr  t ext ur eDat a;

DOLi ghti ngHeader Pt r i ghti ngDat a;

DODi spl ayHeader Pt r di spl ayDat a;

u8 nunText ur eChannel s;
u8 pads;

ulé pad1l6;

} DOLayout, *DOLayoutPtr;

Code 25 DOL ayout

positionData — Pointer to the display object layout’s position header.
colorData — Painter to the display object layout’s color header.
textureData — Pointer to the display object layout’ s texture header.
lightingData — Pointer to the display object layout’ s lighting header.
displayData — Pointer to the display object layout’s display header.
numTextureChannels — Number of texture headers in textureData.

2.1.10.4 DOPositionHeader

typedef struct

Ptr positionArray;
ulé nunPositions;
u8 quanti zel nf o;
u8 conmpCount ;

} DOPosi ti onHeader, *DOPositionHeaderPtr;

Code 26 DOPositionHeader

positionArray — Pointer to a quantized array of position data.

numPositions — Number of positionsin the position array. Note: atriplet of (X, y, 2) valuesis considered one

entry, not three.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 33

quantizelnfo — Bit field describing the quantization of the position data (see Figure 19).
compCount — Number of components that make up an individual position; e.g., 2 for (x, y) pairs, 3for (x, Y, 2)
triples.

2.1.10.5 DOColor Header

typedef struct

Ptr col orArray;
ul6é nunCol ors;

u8 quanti zel nfo;
u8 conmpCount ;

} DOCol or Header, *DOCol or Header Ptr;

Code 27 DOColor Header

colorArray — Pointer to a quantized array of color data.

numColors— Number of colorsin the color array.

guantizelnfo — Bit field describing the quantization of the color data (see Figure 19).

compCount — Number of components that make up an individua color; e.g., 3 for RGB, 4 for RGBA.

2.1.10.6 DOTextureDataHeader

typedef struct

Ptr textureCoordArray;
ulé nunirext ur eCoor ds;
u8 quanti zel nf o;

u8 conpCount ;

char *t ext ur ePal ett eNane;
TEXPal ettePtr texturePalette;

} DOText ur eDat aHeader, *DOText ureDat aHeaderPtr;

Code 28 DOTextureDataHeader

textureCoordArray — Pointer to a quantized array of texture coordinate data.

numTextureCoords — Number of texture coordinates in the texture coordinate array.

quantizelnfo — Bit field describing the quantization of the texture coordinate data (see Figure 19).

compCount — Number of components that make up an individual texture coordinate; e.g., 1 for 1D texture
coordinates, 2 for 2D texture coordinates.

texturePal etteName — String name of the texture palette file that is associated with this display object. NOTE:
there is no path included with this name—the file is assumed to exist in the same directory as the geometry palette
file

texturePal ette — Pointer to the unpacked texture palette in memory.

2.1.10.7 DOL ightingHeader

typedef struct

Ptr nornmal Array;

© Nintendo Technology Development, Inc. CONFIDENTIAL



34 Game Engine Programming April 17, 2001

488  QUINeT 7Bl Ri o:

u8 conmpCount ;
f32 anbi ent Per cent age;

} DOLi ghti ngHeader, *DOLi ghti ngHeaderPtr;

Code 29 DOL ightingHeader

normal Array — Pointer to a quantized array of normal data.

numNormals — Number of normalsin the normal array.

quantizelnfo — Bit field describing the quantization of normal data (see Figure 19).

compCount — Number of components that make up an individual texture coordinate; e.g., 1 for 1D texture
coordinates, 2 for 2D texture coordinates.

ambi entPer centage — Floating point value that specifies the percentage of color that is assumed to be ambient.

2.1.10.8 DODisplayHeader

typedef struct

Ptr primtiveBank;
DODi spl ayStatePtr di spl aySt at eLi st ;
ulé nuntt at eEntri es;
ulé padl6;

} DODi spl ayHeader, *DODi spl ayHeader Ptr ;

Code 30 DODisplayHeader

primitiveBank — Pointer to the first primitive list for the display object. (Primitive lists are described in detail in
section 2.1.7.3.)

displayStatelList — Pointer to an array of display state structures. (Display state is described in detail in section
21.7.2)

numSateEntries — Number of state entriesin the display state list.

2.1.10.9 DODisplayState

typedef struct

u8 id;
u8 pads;
ulé padlsé;

u32 setting;

Ptr primtivelList;
u32 |listSize;

} DODisplayState, *DCDi splayStatePtr;

Code 31 DODisplayState

id — Specifies which state this state entry sets. (For acomplete list of possible IDs, see section 2.1.7.2.)
setting — Specifies the setting for the state specified by id.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming

35

primitiveList — Pointer to a primitive list which is to be drawn after the specified stateisset. NULL isavalid

value for this member.
listSize — Size (in bytes) of the primitive list specified by primitiveList.

2.1.11 Geometry palette API

voi d CECGet Pal ette ( CEOPal ettePtr *pal, char *nane );
voi d CECRel easePalette ( CGEOPalettePtr *pal );

u32 GEOCGet User Dat aSi ze ( GECPal ettePtr pal );

Ptr CGEOGet User Dat a ( CEOPal ettePtr pal );

Code 32 Geometry palette API

2.1.12 Display object structures

2.1.12.1 DODisplayObj

typedef struct

DOPosi ti onHeader Pt r

posi ti onDat a;

DOCol or Header Pt r col or Dat a;
DOText ur eDat aHeader Ptr t ext ur eDat a;

DOLi ght i ngHeader Pt r i ghti ngDat a;

DODi spl ayHeader Pt r di spl ayDat a;

u8 nunmrext ur eChannel s;
u8 pads;

ulé padl6;

/1 Up to here, sane as DCOLayout
u8 visibility;
M X wor | dMvat ri x;

voi d* (*shader Func) ( SHDRConpi | ed *shader, struct DODi spl ayCbj *di spObj,

voi d* shader Dat a;

} DODi spl ayoj ect, *DODi spl ayoj ect Ptr, DODi spl ayCoj, *DCODi spl ayQoj Ptr;

Ptr data);

Code 33 DODisplayObj

positionData — Pointer to the display object’s position header.
colorData — Pointer to the display object’s color header.
textureData — Pointer to the display object’s texture header.
lightingData — Pointer to the display object’ s lighting header.
displayData — Pointer to the display object’s display header.
numTextureChannels — Number of texture headers in textureData.
visibility — Flag to denote if the display object should be rendered.

worldMatrix — Matrix used to transform the display object’s positions into world space.
shaderFunc — Pointer to a function which takes the default shader for this object, performs some shader

operations on it, and returns a new shader.

© Nintendo Technology Development, Inc.

CONFIDENTIAL



36 Game Engine Programming April 17, 2001

2.1.13 Display object API

voi d DOGet ( DODi spl ayQbj Ptr *di spCbj, CEOPal ettePtr pal, ul6 id, char *nane );
voi d DORel ease ( DODi splayOhj Ptr *di spOhj );
M xPtr DOGet Wor | dMat ri x ( DODi spl ayQoj Ptr di spObj );
voi d DCset Wor | dMat ri x ( DODi spl ayQoj Ptr dispCbj, Mx m);
voi d DCHi de ( DODi splayOhj Ptr di spOhj );
voi d DCshow ( DODi splayOhj Ptr di spOhj );
voi d DORender ( DODi spl ayQbj Ptr di spQbj, Mx canera, u8 nuniights, ... );
voi d DORender Ski n ( DODi spl ayQbj Ptr di spQbj, Mx canmera, MxPtr ntxArray,
M xPtr inverseTransposeM xArray, u8 nuniights, ... );

f32 DCset Anbi ent Per cent age ( DODi spl ayObj Ptr di spObj, f32 percent );

Code 34 Display aobject API

2.2 Texture

The TPL format and library are designed to provide an easy method of texture storage and access. The library
attempts to abstract away many of the format issues, allowing any of The GCN’s myriad texture formats to be used in
aconsistent manner. The library provides the basic functionality of loading a file from disk and unpacking it into
memory, retrieving information about an individual texture from the palette, and then loading that texture into
hardware so that it can be used to draw geometry. The library provides support for true-color textures as well as
color-indexed textures.

2.2.1 Texture palette in memory

When atexture palette file is loaded and unpacked into memory, it smply represents a list of texture descriptors. A
texture descriptor maintains a pointer to a texture image and, if needed, a Color Lookup Table (CLUT).

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 37

TPL File
Texture Texture Images
Descriptor 1 | 'y N >
A Y Y
Texture
Descriptor 2
— Texture
Descriptor 3 »
4 »
Color Look-up Tables
Texture >
Descriptor n d
P ! i

Figure 6 Thetexture palettein memory

2.2.2 Instancing CLUTs within a texture palette

Because texture images and CLUTSs are referenced via pointer, you can instance them within a texture palette.
Textures might share a CLUT, for example, or there might be one instance of a texture image using multiple CLUTSs.

TPL File
P Texture Texture Images
Descriptor 1 | % >>
A
« Texture R
l_»Descriptor 2

Color Lookup Tables

DD

Figure 7 CLUT instancing within atexture palette

© Nintendo Technology Development, Inc. CONFIDENTIAL



38 Game Engine Programming April 17, 2001

2.2.3 Retrieving texture information via a texture descriptor

Once a texture palette has been loaded and unpacked, individual textures within the palette can be accessed viaID.
One method to retrieve texture information is via a texture descriptor pointer. The texture descriptor pointsto a
texture image header and, if the texture is color-indexed, a CLUT header. The texture image header contains the
actual bitmap for the image as well as format information, wrap and clamp information, size information, and
mipmapping information. A CLUT header contains the actual CLUT data as well as format information and size
information. The information from these structures can be used to initialize a GXTexCbj and a GXTI ut Obj ,
respectively. These objects can then be sent to the hardware to perform necessary graphics operations.

2.2.4 Retrieving texture information via a GXTexObj and a GXTIutObj

In addition to providing texture information via a texture descriptor, the texture palette library aso provides two
functionstoinitialize a GXTexObj and a GXTI ut Qbj directly. These functions simply look at the texture descriptor
information and properly initialize the GX objects specified.

2.2.5 Texture palette structures

2251 TEXPalette

typedef struct
u32 ver si onNunber ;
u32 nunDescri pt ors;
TEXDescriptorPtr descriptorArray;

} TEXPal ette, *TEXPal ettePtr;

Code 35 TEXPalette

versionNumber — Field to describe the version number of the file.
numDescriptors — Number of texture descriptorsin the file.
descriptorArray — Array of texture descriptors.

2.25.2 TEXDescriptor

typedef struct

TEXHeader Pt r t ext ur eHeader ;
CLUTHeader Ptr CLUTHeader ;

} TEXDescriptor, *TEXDescriptorPtr;

Code 36 TEXDescriptor

textureHeader — Pointer to a texture header.
CLUTHeader — Pointer to a Color Lookup Table header.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 39

2.25.3 TEXHeader

typedef struct

ulé hei ght ;
ulé Wi dt h;
u32 format;
Ptr dat a;

GXTexW apMbde w aps;
GXTexW apMbde wrapT;

GXTexFi |l ter mnFilter;
GXTexFi l ter magFil ter;

fl oat LODBI as;

u8 edgeLCODEnabl e;
u8 m nLOD;

u8 max LOD;

u8 unpacked;

} TEXHeader, *TEXHeaderPtr;

Code 37 TEXHeader

height — Height (in pixels) of texture image.

width — Width (in pixels) of texture image.

format — Format of the texture image.

Data — Pointer to the actual texture image data.

wrapS — Describes how texture coordinates will be wrapped in the s direction. Accepted values. GX_CLAMP,
GX_REPEAT, GX_M RROR.

wrapT — Describes how texture coordinates will be wrapped in the t direction. Accepted values: GX_CLAMP,
GX_REPEAT, GX_M RROR

minFilter — Filter mode to use when the texel/pixel ratio is <= 1.0. Accepted values: GX_NEAR, GX_LI NEAR,
GX_NEAR M P_NEAR, GX_LI N_.M P_NEAR, GX_NEAR M P_LIN,GX_LIN. M P_LIN.

magFilter — Filter mode to use when the texel/pixel ratio is> 1.0. Accepted values: GX_NEAR, GX_LI NEAR.
LODBias - Bias to add to computed LOD value.

edgelL ODEnable — Compute LOD using adjacent texels when GX_TRUE, else use diagonal texels.

minLOD — Minimum LOD value. The hardware will use MAX( m n_I od, | od).Rangeis0.0to 10.0.
maxLOD — Maximum LOD value. The hardware will useM N( max_I| od, | od).Rangeis0.0to0 10.0.
unpacked — Internal flag used for file unpacking.

2.254 CLUTHeader

typedef struct

ulé nunentries;
u8 unpacked;
u8 pads;
GXTlutFnt  format;

Ptr dat a;

} CLUTHeader, *CLUTHeaderPtr;

Code 38 CLUTHeader

© Nintendo Technology Development, Inc. CONFIDENTIAL



40 Game Engine Programming April 17, 2001

numeEntries — Number of palette entries.
unpacked — Internal flag used for file unpacking.
format — Format of the CLUT data.

data — Pointer to CLUT data.

voi d TEXGet Pal ette ( TEXPal ettePtr *pal, char *nane );
TEXDescri ptor Ptr TEXGet ( TEXPal ettePtr pal, u32 id);
voi d TEXRel easePal ette ( TEXPal ettePtr *pal );
voi d TEXGet GXTexOhj FronPal ett e ( TEXPal ettePtr pal, GXTexOhj *to, u32 id);
voi d TEXGet GXTexOoj FronPal etteCl ( TEXPal ettePtr pal, GXTexQoj *to,

GXTlut Obj *tlo, GXTlut tluts, u32 id);
Code 39 Texture palette API

2.3 Hierarchy

The Character Pipeline Actor (ACT) format and library provide a topology for grouping display objects together
hierarchically. Thistopology aso provides alogical binding to animation. Using the ACT format and library, you
can create and manipulate hierarchical characters and databases as a whole, rather than having to access each display
object individually and manipulate it independently of another.

We refer to the global database as an actor, while each node in the hierarchy is called abone. A display object can be
attached to an individual bone, inheriting its animation parameters completely, or, in the case of stitching, it can be
attached to multiple bones, having individual vertices affected by different bones.

2.3.1 Actor layout in memory

The actor database behaves in much the same manner as the display objects we have seen in previous sections. When
an actor fileisloaded from the disk and into memory, it is unpacked into alayout structure that contains some, but not
all, of the information necessary to use an actor at runtime.

Layout structures contain information about how the database organizes hierarchically, and about which geometry
palette/display objects the actor affects. While the actor is being unpacked, the corresponding geometry palette is
loaded or instanced based on the state of the Character Pipeline cache. Display objects that are used in this actor are
instanced and bound to the actor layout structures.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 41

I " Example.GPL
Actor Header
Display Object 1
Bone B
. Display Object 2
Bone —‘ Bone Display Object 3

AR

Display Object n

A

Figure 8 Actor layout

2.3.2 Bone layout in memory

Within the actor layout, each bone has a packet of information called the bone layout. Thislayout contains
information about the bone, such as what display object is attached, the bone’ s display priority, and the bone’ s default
orientation in relation to the root of the hierarchy.

2.3.3 Actor instancing mechanism

When an instance of an actor is created, each display object to which the actor refers behaves in the exact same
instanced manner as described in section 2.1.4. The actor structure is so small that the overhead of instancing actually
becomes more costly than the overhead of copying; therefore, all of the static datais copied—not instanced—from the
actor layout structures. Additional runtime information, such as animation control data, is added to the actor and bone
structures.

© Nintendo Technology Development, Inc. CONFIDENTIAL



42 Game Engine Programming April 17, 2001

Orientation
Control/Data

Actor Layout y Geometry Palette
Display
I_AaCtgL:t > & »  Object |
y ' Layout 1
~ . g Data Arrays
o 2
) < A
Bone %\ .
Layout 1 R — -] |« a
Instanced Actor
Display \
4 Object 1 / '
Orientation ] ] >
Control/Data Orientation
Data

Figure9 Instancing an actor

2.3.4 Actor at runtime

The actor at runtime maintains arelatively complex topology. At thetop level, the actor header contains all of the
global state for the entire actor, as well as atree of bone structures that make up the hierarchy. For each bonein the
hierarchy, there is one bone header that contains local information for that bone.

2.3.4.1 Theactor header

The actor header serves as a depository for al of the global state for an actor. Key members of the actor header data

structure include:

Actor Global Control — The actor’s global control yields a matrix used to manipulate the actor as awhole. This
matrix will be inherited by all of the bones in the hierarchy regardless of their inheritance state. This allowsthe
user to position, orient, and scale an actor relative to the environment in which it exists.

Bone Tree — The actor’s bone tree organizes all of the actor’ s bones into a hierarchical database. This
representation is used to perform matrix concatenations at runtime because bones often inherit matrix information

from their parents.

CONFIDENTIAL

© Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 43

BoneList — The actor’sbone list isalinked list containing all of the bonesin the hierarchy sorted in order of
display priority. (Display priority isa property of each bone and is discussed below.) This representation is used
to process each bone’ s display object (if thereis one present) for display.

Skin Object — The actor’s skin object points to a display object that represents a deformable mesh that has been
attached to the actor. Currently, there can be only one skin object attached to an actor.

Geometry Palette — The actor’ s geometry palette is the geometry palette from which all display objects attached
to the actor areinstanced. This geometry palette isloaded when the actor is unpacked.

Forward Matrix Array — The forward matrix array represents an array of matrices into which each bone places
its final matrix. In other words, there is a one-to-one correspondence between the number of matricesin this
array and the number of bonesin the hierarchy. When a bone buildsits final matrix from its orientation,
animation, and inheritance, that matrix is stored in the bone' s matrix in this array.

Skinning Matrix Array — The skinning matrix array is present only in actors that have a skin object attached to
them. Thisarray performs the same function as the forward matrix array, except that the matrices contained
within this array are used only on skin objects.

Skinning Inver se Transpose Matrix Array — This array performs the same function as the skinning matrix
array, except that the matrices stored within this array are used to transform a skin object’s normals rather than its
vertices. Also, thisarray is not present in actors that do not have a skin object attached.

2.3.4.2 Thebone header

Each bone within an actor is represented by a bone header structure. The key elementsin this structure are as follows:

Orientation Control — A bone's orientation control defines a default orientation, position, and scale for abone
within an actor. All animation performed on this bone should be relative to these default parameters. The boneis
always transformed by the matrix yielded by these default parameters.

Animation Control — The animation control for a bone defines some animation relative to the bone' s default
orientation, position, and scale that should be factored into the final matrix for the bone. The animation control is
manipulated by the animation pipe structure (described next).

Animation Pipe— The animation pipe is a structure that binds a bone to animation. A bone that has never been
animated will not contain an animation pipe structure—it is allocated when the bone is first bound to animation.
Bone Priority — Each bone has adisplay priority that indicates when its corresponding display object should be
drawn in relation to the other bones in the hierarchy.

Display Object — A bone can have only one display object attached to it at any given time. A display object
attached to a bone will completely inherit the bone’s motion. This display object isinstanced from the geometry
palette attached to the actor in the actor header structure.

2.3.5 Processing an actor for display

When an actor is rendered, the code first draws the skin object attached to the actor (if oneis present), then it smply
traverses the bone list and draws the display object attached to each bone in the order determined by thelist. The
actor can also belit by up to eight per-vertex lights. These lights get passed to each call to the display object
rendering routine.

2.3.6 Actor structures

2.3.6.1 ACTLayout

typedef struct

© Nintendo Technology Development, Inc. CONFIDENTIAL



Game Engine Programming April 17, 2001

u32 ver si onNunber ;
ulé actorl D,
ulé t ot al Bones;
DSTree hierarchy;
char *geoPal et t eNane;
ulé ski nFil el D,
ulé padl6;
u32 user Dat aSi ze;
Ptr user Dat a;
} ACTLayout, *ACTLayoutPtr;
Code 40 ACT L ayout

versionNumber — Field to describe the version number of thefile.

actor|D — ID number for this actor.

totalBones — Total number of bones in the actor.

hierarchy — DSTr ee structure which describes the hierarchical relationship of the bonesin the actor.

geoPal etteName — String name of a geometry palette file that contains the geometry to be attached to the actor’s

bones.

skinFilelD — ID number of the actor’s skin (deformable mesh) geometry within the geometry palette specified by
geoFileName. A value of ACT_NO DI SPLAY_OBJECT indicates that the actor has no skin geometry.
userDataSize — Size of the ACT user-defined data.

userData

— Pointer to the ACT user-defined data.

2.3.6.2 ACTBonelL ayout

typedef struct

CTRLCont
DSBr anch
ulé

ulé

u8

u8

ulé

rol Ptr orientationControl;
branch;
geoFi | el D
bonel D,
i nheritanceFl ag;
drawi ngPriority;
padl6;

} ACTBonelLayout, *ACTBonelLayoutPtr;

Code 41 ACTBoneL ayout

orientationControl — Pointer to a control which specifies the bone' s default orientation. (See section 2.5.2 for
more information on controls.)

branch — DSBr anch structure which specifies the bone's position within the hierarchy.
geoFilelD — ID number of the display object associated with this bone within the geometry palette specified in the
actor layout. A value of ACT_NO DI SPLAY_OBJECT indicates that the bone has no geometry attached to it.

bonelD —

Unique ID number for the bone within the actor.

inheritanceFlag — Flag which specifies whether the matrix from the bone’s parent should be concatenated with
the bone’ s matrix before rendering it.

DrawingPriority — Number stating when this bone’ s geometry should be drawn in relationship to the other bones
in the actor. A lower value for thisfield indicates a higher drawing priority.

CONFIDENTI

AL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 45

2.3.6.3 ACTActor

typedef struct

ACTLayout Pt r | ayout ;

ulé actorl D,

ulé t ot al Bones;

DSTr ee hi erar chy;

GECPal ettePtr pal ;

DODi spl ayObj ect Ptr  ski nObj ect ;

ACTBonePt r * boneArray;

CTRLCont r ol wor | dCont r ol ;

M xPtr f orwar dM xArr ay;

M xPtr ski nM xArray;

M xPtr ski nl nvTransposeM xArray;
M xPtr orientationl nvM xArray;
DSLi st drawPrioritylist;
SKHeader * skHeader ;

} ACTActor, *ACTActorPtr;

Code 42 ACTActor

layout — Pointer to the actor layout from which this actor is instanced.

actor|D — ID number for this actor.

total Bones — Total number of bonesin the actor.

hierarchy — DSTr ee structure which describes the hierarchical relationship of the bonesin the actor.

pal — Pointer to the actor’s geometry palette in memory.

skinObject — Pointer to adisplay object which is attached to this actor asitsskin. A NULL value indicates that no
skin is attached to the actor.

boneArray — Array of bones which comprise the hierarchy.

worldControl — Top-level control for the actor. (See section 2.5.2 for more information on controls.)
forwardMtxArray — An array of matrices used by the bones to control rigid display objects. Each bone references
one unique matrix in this array.

skinMtxArray — An array of matrices used by the bones to control deformable display objects. Each bone
references one unique matrix in this array.

skinlnvTransposeMtxArray — An array of matrices used by the bones to control the normals of deformable display
objects. Each bone references one unique matrix in this array.

orientationlnvMtxArray — An array of precomputed inverse orientation matrices. Thisarray allows for better
efficiency when building actor matrices for a skinned object.

drawPriorityList —DSLi st structure describing alist containing all the bones in the actor sorted by display
priority.

skHeader — Pointer to skinning header in SKN format if actor is skinned.

2.3.6.4 ACTBone

typedef struct

ulé bonel D

© Nintendo Technology Development, Inc. CONFIDENTIAL



46 Game Engine Programming April 17, 2001
it bPRS hbBPFSFl £9:
DSBr anch branch;

DODi spl ayoj ect Ptr  di spQbj ;

CTRLCont r ol orientationCtrl;
CTRLCont r ol ani mationCtrl ;

ANl MPi pePt r ani nPi pe;

M xPt r f orwar dM x;

M xPt r ski nM x;

M xPt r ski nl nvTransposeM x;
M xPt r orientationl nvMx;
DSLi nk drawPrioritylLi nk;

} ACTBone, *ACTBonePtr;

Code 43 ACTBone

bonel D — Unique ID number for the bone within the actor.

inheritanceFlag — Flag which specifies whether the matrix from the bone’s parent should be concatenated with
the bone’ s matrix before rendering it.

drawingPriority— Number stating when this bone's geometry should be drawn in relationship to the other bones
inthe actor. A lower value for thisfield indicates a higher drawing priority.

branch — DSBr anch structure which specifies the bone's position within the hierarchy.

dispObj — Pointer to the display object associated with thisbone. A value of NULL indicates no geometry is
attached to this bone.

orientationCtrl — A control that specifies the bone's default orientation. (See section 2.5.2 for more information).
animationCtrl — A control that specifies the bone's current animation. (See section 2.5.2 for more information).
animPipe — A pointer to an animation pipe. This structure is allocated dynamically when animation is applied to
an actor. (For more information on animation pipes, see section 2.5.1.)

forwardMtx — Pointer to a matrix in the actor’ s forwardMtxArray. This matrix is used to control rigid geometry
attached to this bone.

skinMtx — Pointer to a matrix in the actor’s skinMtxArray. This matrix is used to control deformable geometry
attached to this bone.

skinlnvTransposeMtx — Pointer to a matrix in the actor’s skinlnvTransposeMtxArray. This matrix is used to
control the normals of deformable geometry attached to this bone.

orientationlnvMtx — Pointer to amatrix in the actor’s orientationlnvMtxArray. This matrix is precomputed when
the actor isinitialized so that building actor matrices for a skinned object is more efficient.

displayPriorityLink — Structure to fit the bone into the actor’s drawPriorityList.

2.3.7 Actor API

voi d ACTGet ( ACTActorPtr *actor, char *nane );

voi d ACTRel ease ( ACTActorPtr *actor );

voi d ACTRender ( ACTActorPtr actor, Mx canmera, u8 nunlLights, ... );
voi d ACTH de ( ACTActorPtr actor );

voi d ACTShow ( ACTActorPtr actor );

voi d ACTBUi | dvatri ces ( ACTActorPtr actor );

CTRLControl Ptr ACTGet Cont r ol ( ACTActorPtr actor );

voi d ACTSet | nheri tance ( ACTActorPtr actor, u8 inheritanceFlag );

voi d ACTSet Anbi ent Percentage ( ACTActorPtr actor, f32 percent );

voi d ACTSor t ( ACTActorPtr actor );

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 47

Yghd ACTEt BLLPRLPRRRIE ¢ ACTAGISFBLF 8Et8F)Ptr shaderFunc, Ptr data );

Ptr ACTGet User Dat a ( ACTActorPtr actor );

Code 44 Actor API

2.3.8 ActorAnim API

voi d ACTSet Ani mation ( ACTActorPtr actor, AN MBankPtr ani nBank,
char *sequenceNane, ul6 seqNum float time );

voi d ACTSet Ti ne ( ACTActorPtr actor, float time );
voi d ACTSet Speed ( ACTActorPtr actor, float speed );
voi d ACTTi ck ( ACTActorPtr actor );

Code 45 Actor Anim API

2.4 Animation

The Character Pipeline Animation (ANM) format and library provide simple methods to store and retrieve keyframed
animation. Thislibrary does not perform any of the interpolation or playback features of animation—those are
handled at adifferent level. Thislibrary simply provides away to access the information necessary to properly
animate an object.

An animation bank is made up of one or more animation sequences that define whole animations for an actor in the
world. These animations can be accessed and used to perform the necessary calculations to perform smooth
animation playback in agame.

2.4.1 Animation bank in memory

When an animation bank is unpacked into memory, it comprises three major components in a hierarchical fashion.
The animation bank contains animation sequences, an animation sequence contains animation tracks, and an
animation track contains keyframes that are organized in order of when, in time, they occur.

© Nintendo Technology Development, Inc. CONFIDENTIAL



48 Game Engine Programming April 17, 2001

Animation Bank

Sequence 1 Sequence 2 Sequence n
[ | |
A
Track 1 > Keyframe | Keyframe | Keyframe < Keyframe
[
> Time >
N - Keyframe | Keyframe | Keyframe Keyframe
Track 2 "
[
v > Time >
M Keyframe | Keyframe | Keyframe Keyframe
Track n >
| E—
> Time >

Figure 10 Layout of animation bank in memory

24.1.1 Animation sequences

An animation segquence is defined as an entire animation loop for a character. For instance, the animation of a
character running is considered to be an animation sequence. A character will probably have multiple sequences such
as“run,” “jump,” and “punch.” Animation sequences can be referenced by string name or by sequence ID with the

animation bank.

2.4.1.2 Animation tracks

An animation track is defined as all of the information needed to move a single bone through an animation sequence.
In general, each bone in an actor should have an animation track for each animation sequence.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 49

24.1.3 Keyframes

A keyframe is on instance of animation data within an animation track. A track is made up of multiple keyframes
causing the corresponding bone to move through these keyframes as time passes. A keyframe carriesinformation
specifying the time at which it occursin the animation track.

2.4.2 Keyframe data

A keyframe can specify any combination of rotation, translation, and scale. Also, given the type of animation,
keyframes can be interpolated differently. The only limitation isthat all of the keyframes within any given animation
track must carry the same type of information and be interpolated by the same method.

24.2.1 Settingdata

The setting data for a keyframe specifies the actual values for the given combination of rotation, translation, and scale.
This data can be specified in afew different forms:

Rotation can be specified as Euler angles or quaternions.
Scale and trangdlation can be supplied as individual values.
Rotation, scale, and trand ations can be specified together as a matrix.

2.4.2.2 Interpolation data

Interpolation data for a keyframe is the information needed to interpolate between two consecutive keyframes.
Different types of interpolation and interpolation data can be associated with different setting data.

Euler Rotation, Trandation, Scale — Euler rotation, tranglation, and scale can be interpolated using linear,
Bezier, or Hermite interpolation. Linear interpolation needs no interpolation data, but Bezier and Hermite require
extra parameters to specify how keyframes are interpol ated.

Quaternion Rotation — Quaternions can be interpolated using either spherical linear, SQUAD, or SQUAD with
ease-in and ease-out interpolation (SQUADEE). SLERP requires no extrainterpolation data, but SQUAD and
SQUADEE require extra parameters to specify how keyframes are interpol ated.

Matrix — Matrices cannot be interpolated and therefore do not require any interpolation data.

2.4.3 Quantization

Both keyframe data and interpolation data can be quantized from floating point to 16-bit or 8-bit fixed point to save
memory. Normals and quaternions are assumed to be 2.6 or 2.14 depending on whether they are quantized to 8-bit or
16-bit, respectively. For al other data, a shift value must be explicitly specified. Note that all interpolation data must
be quantized in the same way. Setting data must also all be quantized in the same way.

© Nintendo Technology Development, Inc. CONFIDENTIAL



50 Game Engine Programming April 17, 2001

2.4.4 AnimBank structures

2441 ANIMBank

typedef struct
u32 ver si onNunber ;

ANl MSequencePtr ani nSequences;

ulé bankl D;

ulé nunSequences;
ulé nunilr acks;
ulé nunKeyFr anes;
u32 user Dat aSi ze;
voi d* user Dat a;

} ANl MBank, *AN MBankPtr;

Code 46 ANIM Bank

versionNumber — Field to describe the version number of thefile.
animSequences — Array of animation sequences.

bankliD — ID number for the animation bank.

numSeguences — Number of sequences contained within the animation bank.
numTracks — Number of tracks contained within the animation bank.
numKeyFrames — Number of keyframes contained within the animation bank.
userDataSze — Size of the ANM user-defined data.

user Data — Pointer to the ANM user-defined data.

2.4.4.2 ANIM Sequence

typedef struct
char *sequenceNane;
ANl MIrackPtr trackArray;

ulé t ot al Tr acks;
ulé padl6;

} ANl MSequence, *AN MsSequencePtr;

Code 47 ANIM Sequence

seguenceName — String name uniquely identifying the sequence within the animation bank.
trackArray — Array of animation tracks.
total Tracks — Total number of tracks for this sequence.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 51

2443 ANIMTrack

typedef struct
fl oat ani nili me;

ANl MKeyFr anePtr  keyFr anes;

ulé t ot al Franes;

ulé trackl D

u8 quanti zel nf o;

u8 ani nifype;

u8 i nt erpol ati onType;

u8 repl aceH erarchyCrl;

} ANI MIrack, *AN MrrackPtr;

Code 48 ANIM Track

animTime — Total time duration for this animation track.

keyFrames — Keyframe array.

totalFrames — Total number of keyframes for this animation track.

tracklD — ID number for this animation track.

guantizel nfo — Information about how the keyframe datais quantized. (For more information on keyframe
guantization, see section 2.4.3.)

animType — Specifies which control parameters are animated by this animation track. (For more information on
thisfield, see section 2.4.2.1.)

inter polationType — Specifies the method of interpolation for keyframe data. (For more information on keyframe
interpolation, see section 2.4.2.2.)

replaceHierarchyCtrl — Specifies whether the resulting animation control should replace the hierarchy control or
be concatenated with it (making animation relative to orientation). This flag depends on how animation datais
converted from the CG tools; currently, it should always be TRUE. Note that thisflag is maintained for backward
compatibility, since the earlier animation library was more inefficient and restrictive in making animation relative
to hierarchy matrices.

2444 ANIMKeyFrame

typedef struct
float tine,
Pt r setting;
Pt r i nterpol ation;

} ANl MKeyFranme, *AN MKeyFranePtr;

Code 49 ANIMK eyFrame

time — Time during the animation at which this keyframe occurs.

setting — Pointer to the actual keyframe data. This datais made up of animation data for the control parameters
specified by animType in the animation track that contains this keyframe. This datais quantized according to
quantizelnfo in the animation track that contains this keyframe. (For more information on keyframe setting data,
see section 2.4.2.1.)

© Nintendo Technology Development, Inc. CONFIDENTIAL



52 Game Engine Programming April 17, 2001

inter polation — Pointer to the interpolation data needed to interpolate the setting data by the method specified by
interpolationType in the animation track that contains this keyframe. (For more information on keyframe
interpolation data, see section 2.4.2.2.

2.4.5 AnimBank API

voi d ANl MGet ( ANl MBankPtr *ani nBank, char *nanme );
voi d ANl MRel ease ( ANl MBankPtr *ani nBank );
voi d ANl MGet KeyFr aneFromirack ( ANl MIrackPtr ani mirack, float tine,

ANl MKeyFramePtr *current Frane,
ANl MKeyFr amePtr *next Frame );

ANl MSequencePtr ANl Mcet Sequence ( ANl MBankPtr ani nBank, char *sequenceNane,
ulé segNum);

ANl MTr ackPtr ANl MZet Tr ackFr onfSeq ( ANl MsequencePtr ani nSeq, ul6 ani nilracklD );

u32 ANl MGet User Dat aSi ze ( ANl MBankPtr ani nBank );

Ptr ANl MGet User Dat a ( ANl MBankPtr ani nBank );

Code 50 Animation bank API

2.5 Support

The Character Pipeline support libraries are libraries that are used by the major libraries (geometry, actor, animation,
and texture), but might not be readily visible at the top level.

2.5.1 Animation pipe

The Character Pipeline animation pipe library provides the backbone for the Character Pipeline' s animation
capabilities. In the Character Pipeline, any object that isto be animated using an animation bank must contain an
animation pipe.

25.1.1 Function of the animation pipe

The function of the animation pipe isto bind an animation control to an animation track, and then correctly update the
control with interpolated data from the track as necessary. The animation pipe maintains state relevant to the
animation, such as the current time and speed. Also, thislibrary keeps and executes all of the code to interpolate
keyframe data.

25.1.2 How an animation pipe bindsto a control/animation track

When an animation pipe is bound to a control and atrack, it sets the type of parameters the control accepts (see
section 2.5.2) based on the type of animation track to which it isbound. Once this binding has occurred, the
animation pipe may be “ticked,” meaning that it can be told to update the control’ s parameters with interpolated
animation information from the animation track.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 53

Animation Bank

Keyframe Array

Orientation - Anim [T T
Control Anim Pipe Track

«—— Time ——»

N

Figure 11 Animation pipe bound to control and animation track

2.5.1.3 Understanding an animation pipe’'s parameters

The animation pipe keeps afew parameters that are key to the playback of animation. It isgood to know about the
following when using the animation pipe:

Time— Thisisthe current time stamp of the animation within the animation track. The animation pipe
processing will handle wrapping this time back around to the beginning of the track when it reaches the end.
Speed — The speed parameter specifies the current time increment at which the animation is playing. Make this
increment smaller and the animation will play more slowly; make it greater and the animation will play faster.
Thisincrement is added to the animation pipe’ s time after a frame of animation is processed.

25.1.4 How an animation pipeinterpolates keyframe data

When an animation pipeis instructed to update its associated control with animation data, it starts by finding the start
frame and end frame from the animation track as discussed above. The setting data from these two keyframesis then
interpolated using the interpolation data from the two keyframes, and based on how the data is specified as being
interpolated in the animation track. Once this data has been properly interpolated, it is stored in the correct manner in
the control.

25141 Currently supported interpolation methods

The animation pipe library currently supports the following types of interpolation:

None — It is possible to not interpolate keyframe data at all. In this case, the data from the start frame is used
regardless of where the start and end frames occur relative to the current time. Usually, this method is used only
if the keyframe setting data uses entire matrices to describe animation.

Linear — Linear interpolation can be used on data for scale, trandation, and Euler rotation. Linear interpolation
requires no extrainterpolation data.

Bezier — Bezier interpolation smoothly interpolates values along a curve specified by an in-tangent and an out-
tangent for each keyframe. Bezier interpolation can be used for scale, translation, and Euler rotation data. The
in-tangent and out-tangent are specified for each data member in the interpolation data section of a keyframe.
Her mite — Hermite interpolation smoothly interpolates Kochanek-Bartel cubic splines, otherwise known as TCB
(tension, continuity, bias) cubic splines. In thisimplementation, Hermite interpolation also carries two extra
parameters in the interpolation data; these are ease-in and ease-out values for each data member to be
interpolated. Hermite interpolation can be used for scale, trandation, and Euler rotation data.

SLERP — Spherical, Linear Interpolation is used to interpolate quaternions linearly. SLERP isused only to
interpolate quaternion values and requires no extrainterpolation datain the keyframe.

© Nintendo Technology Development, Inc. CONFIDENTIAL



54 Game Engine Programming April 17, 2001

SQUAD - Spherical, Quadratic Interpolation is, effectively, the quaternion equivalent of Bezier interpolation for
Euler angles. SQUAD interpolation smoothly interpolates quaternions along a specified curve, requiring an in-
guaternion and an out-quaternion for each quaternion keyframe.

SQUADEE — SQUADEE interpolation is, effectively, the quaternion eguivalent of Hermite interpolation for
Euler angles. In addition to an in-quaternion and an out-quaternion, SQUADEE requires an ease-in and ease-out
value for each parameter being interpolated.

25.1.5 Animation pipe structures

25151 ANIMPipe

typedef struct AN MPi pe
{

fl oat time;
fl oat speed;

ANl MI'r ackPt r current Tr ack;
CTRLControl Ptr control;

} ANI MPi pe, *ANI MPi pePtr;

Code 51 ANIMPipe

time — The current time for the animation being played by the animation pipe.

speed — The current speed of the animation being played by the animation pipe.
currentTrack — Pointer to the animation track which is currently bound to the animation pipe.
control — Pointer to the control to which the animation pipe is currently bound.

25.1.6 Animation pipe API

void AN MBi nd ( ANl MPi pePtr ani nPi pe, CTRLControl Ptr control,
ANl MIr ackPtr ani mirack, float tine );

void AN MsetTine ( ANl MPi pePtr aninPipe, float time );

voi d AN Mset Speed ( AN MPi pePtr ani nPipe, float speed );

void AN Mick ( ANl MPi pePtr ani nPi pe );

Code 52 Animation pipe API

2.5.2 Control

The Character Pipeline control library provides some abstraction on top of the MTX library so that you can easily
build and control amatrix. The control library is also more efficient than MTX in two ways:

Matrices are built arithmetically instead of using costly matrix concatenations to combine translation, rotation,
and scale components.

Matrices are built selectively; for example, if rotation is not set in the control, then the code to integrate rotation is
not called.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 55

2.5.2.1 Understanding waysto use a control

A control can be used in three different forms to compute a matrix:

1. Scale, Euler (%, Y, 2) rotation, and/or trand ation, using the following functions:
CTRLSet Scal e
CTRLSet Rot at i on
CTRLSet Tr ansl ati on

2. Scale, quaternion rotation, and/or translation, using the following functions:
CTRLSet Scal e
CTRLSet Quat
CTRLSet Tr ansl ati on

3. Matrix using the following function:
CTRLSet Mat ri x

The type of the control is set automatically depending on which of the three preceding forms you use. The control
structure is a union of the structures that represent these three methods of using a control. Before a control is used,
however, it must be initialized with CTRLI ni t to clear the control type data structures.

25.2.2 Yieding amatrix from the control

Once the control parameters are set with one of the three forms specified in section 2.5.2.1, a control can be instructed
to build the matrix using CTRLBui | dMat ri x. If no parameters are set, the control will build an identity matrix.
These data values are not cleared or re-initialized until the type of the control isreset. This meansthat dataremains
resident in a control until it is specifically overwritten. Matrices are produced in the order of scale, rotation (Euler (X,
Yy, Z) or quaternion), then translation. Inverse matrices can also be built arithmetically using the function

CTRLBuUi | dl nver seMatri x.

For a code example, see section 1.8.2.1.

2.5.2.3 Control structures

25231 CTRL Control

typedef struct

u8 type;

u8 pads;

ulé pad1l6;

uni on
CTRLSRTCont r ol srt;
CTRLMTXCont r ol nm x;

} control Pararns;

} CTRLControl, *CTRLControl Ptr;

Code 53 CTRL Control

© Nintendo Technology Development, Inc. CONFIDENTIAL



56

Game Engine Programming April 17, 2001

type — Specifies the current type of the control; also shows which parametersin the control are valid for building a
matrix. There are four valid types which are set automatically by the control library:

CTRL_NONE, which yields an identity matrix.
CTRL_SCALE | CTRL_ROT_EULER | CTRL_TRANS
CTRL_SCALE | CTRL_ROT_QUAT | CTRL_TRANS
CTRL_MTX

PwbdE

controlParams — Union containing data with which a matrix can be built.

25232 CTRLMTXControl

typedef struct

Mx m

} CTRLMrXControl, *CTRLMIXControl Ptr;

Code 54 CTRLMTXControl

m— A matrix as defined in nt x. h.

25233 CTRLSRTControl

typedef struct

Vec S;
Quaternion r; /1l Also used for Euler (x, y, z) paraneters (typecast as Vec)
Vec t;

} CTRLSRTControl, *CTRLSRTControl Ptr;

Code 55 CTRLSRTControl

s— Floating point values describing scalein (x, y, 2), respectively.
r — Floating point values describing quaternion or Euler rotation in (, y, 2), respectively.
t — Floating point values describing trandation in (X, y, 2), respectively.

25.2.4 Control API

voi d CTRLI nit ( CTRLControl Ptr control ); /1 This is a nmacro
voi d CTRLDi sabl e ( CTRLControl Ptr control, u8 type ); /1 This is a nacro
voi d CTRLEnabl e ( CTRLControl Ptr control, u8 type ); /1l This is a nacro
voi d CTRLSet Scal e ( CTRLControl Ptr control, float x, float y, float z );

voi d CTRLSet Rot ati on ( CTRLControl Ptr control, float x, float y, float z );

voi d CTRLSet Quat ( CTRLControl Ptr control, float x, float y, float z, float w);
voi d CTRLSet Transl ati on ( CTRLControl Ptr control, float x, float y, float z );

voi d CTRLSet Matri x ( CTRLControl Ptr control, Mx m);

voi d CTRLGet Scal e ( CTRLControl Ptr control, float *x, float *y, float *z );

voi d CTRLGet Rot ati on ( CTRLControl Ptr control, float *x, float *y, float *z );

voi d CTRLGet Quat ( CTRLControl Ptr control, float *x, float *y, float *z, float *w);
voi d CTRLGet Transl ati on ( CTRLControl Ptr control, float *x, float *y, float *z );

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 57

voi d CTRLGet M x ( CTRLControl Ptr control, MxPtr nmtxPtr ); // This is a nacro

voi d CTRLBui | dvatri x ( CTRLControl Ptr control, Mx m);
voi d CTRLBui | dl nverseMatrix ( CTRLControl Ptr control, Mx m);

Code 56 Control API

2.5.3 Light

The Character Pipeline Light library servesto mirror the GX API while adding extra functionality, such aslogical
positioning, manipulation, and animation of lights. Thelight library only modelslocal lights, not infinite lights. If
you want alight to be infinite, smply placeit very far from the scene with no attenuation. Also, the Light library
supports both distance and angle attenuation.

25.3.1 Contralling alight

A light structure carries a control structure so that the light may be manipulated by a matrix to produce animation. The
matrix yielded by this control transforms the light’s position and direction before the light is transformed by the
cameramatrix. Thisallows the user to specify alight in local space, then position and orient it based on the values set
in the control.

25.3.2 Understanding the parametersof a light

A light structure carries many parameters necessary to the GX API for the proper description of alight. The important
data membersinclude:

Position — Position data determines where in space the light exists. The position will be transformed by the
matrix specified by the light’s control (see the previous section), then concatenated with the camera matrix before
itissent to the GX API. If thelight’s control specifies an identity matrix, this position can be considered as
specified in world space; otherwise, this position can be considered as being in the light’s local space.

Direction — Direction data determines the direction the light is pointing. This direction will be transformed by
the inverse-transpose of the matrix specified by the light's control (see the previous section), then concatenated
with the camera matrix before it is sent to the GX API. If thelight's control specifies an identity matrix, this
direction can be considered as specified in world space; otherwise, this direction can be considered as being in the
light’slocal space.

Color — Color data simply specifies the color of the light.

25.3.3 Transformingalight

Before the GCN hardware can use alight, it must be transformed into camera space. The LI TXFor mfunction takes a
light pointer and a camera matrix and performs this calculation for you. Also, prior to transforming the light by the
camera matrix, this function builds a matrix from the light’s control and transforms the light by it. The application
should call thisfunction for alight before passing it to any rendering routine.

25.3.4 Animating alight with an animation bank

In addition to manipulating alight by hand at runtime, it is possible to bind an animation track to the light’s control
and play it back using the standard Character Pipeline animation mechanisms. Note that when an animation sequence
isbound to alight, the light will use animation track O from the sequence.

© Nintendo Technology Development, Inc. CONFIDENTIAL



58 Game Engine Programming April 17, 2001

25.35 Light structures

25351 LITLight

typedef struct

GXLi ght Obj I't_obj;

Vec posi tion;

Vec wor | dPosi ti on;
Vec direction;

Vec wor | dDi recti on;
GXCol or col or;

CTRLControl control;
M xPtr parent;

ANl MPi pePtr ani nPi pe;

} LITLight, *LITLightPtr;

Code57 LITLight

It_obj — Structure used to pass light information to hardware.

position — Position of the light in local space.

worldPosition — Position of the light in world space (after transformation by the matrix specified by control and
parent).

direction — Direction of the light in local space.

worldDirection — Direction of the light in world space (after transformation by the inverse transpose of the matrix
specified by control and parent).

color — Color of the light.

control — Control used to position and orient the light in world space.

parent — Pointer to the matrix of the light’s parent. This matrix is concatenated with the matrix specified by the
control to yield the final light matrix.

animPipe — Pointer to the animation pipe used to animate the light. This pointer remains NULL until the light is
first bound to animation, at which point memory is dynamically alocated for the structure.

25352 CPParentType

typedef enum
PARENT_BONE,
PARENT_DI SP_0BJ,
PARENT_MTX

} CPPar ent Type;

Code 58 CPParentType

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 59

2536 Light API

voi d LI TAl | oc ( LITLightPtr *light );
voi d LI TFree ( LITLightPtr *light );
voi d LITInitAttn ( LITLightPtr light, f32 a0, f32 al, f32 a2,
f32 k0, f32 k1, f32 k2 );
voi d LI TI ni t Spot ( LITLightPtr Iight, f32 cutoff, GXSpotFn spot_func );
voi d LITInitD stAttn ( LITLightPtr light, f32 ref_distance,
f32 ref _brightness, GXDistAttnFn dist_func );
voi d LI Tl ni tt Pos ( LITLightPtr light, f32 x, f32y, f32 z);
voi d LITInittDr ( LITLightPtr light, f32 nx, f32 ny, f32 nz );
voi d LI Tl ni t Col or ( LITLightPtr light, GXCol or color );
voi d LI TXForm ( LITLightPtr light, Mx view);
voi d LI TAttach ( LITLightPtr light, Ptr parent, CPParentType type );
voi d LI TDet ach ( LITLightPtr light );
CTRLControl Ptr LI TGet Control ( LITLightPtr light );
voi d LI TSet Ani nSequence ( LITLightPtr |ight, AN MBankPtr ani mBank,
char *seqName, float tine );
voi d LI TTi ck ( LITLightPtr light );

Code59 Light API

2.5.4 Shader

The Character Pipeline Shader library sits on top of the GX API and serves to abstract much of the complexity behind
the Texture Environment (TEV). Thegoal of thislibrary isto allow usersto define complex color blending equations
without worrying about the resource limitations of the TEV. Also, the Shader library allows you to build complex
operations into complex shaders that you can easily apply to multiple objects in the scene without having to
completely redefine the effect.

2.5.4.1 De€finition of a shader

A shader is defined simply as some expression that results in an RGB or alphavalue. This means that a shader may
be as simple as returning a constant color, or as complex as combining eight textures, two rasterized colors, and three
constant colors to produce some desired result.

2.5.4.2 Shader channels

As mentioned above, a shader resultsin either an RGB or an alpha value; therefore, the application must specify
which one a shader will return. When creating shaders, simply specify to which of these two channels (RGB or apha)
the shader belongs. RGB shaders can take input from other RGB shaders as well as alpha shaders, but alpha shaders
can take input only from other alpha shaders.

2.5.4.3 Shader types

Because there are a few different types of datathat can be used in shaders, we' ve defined afew of the simple onesto
aid understanding. These simple shader types are:

Trivial — A trivial shader simply returns a constant value. The possible constant values are 1.0, 0.0, 0.5, and
0.25. The constant values 0.5 and 0.25 cannot be used in an alpha shader. Trivial shaders, unlike all other

© Nintendo Technology Development, Inc. CONFIDENTIAL



60 Game Engine Programming April 17, 2001

shaders, cannot be created. Instead, they are statically allocated globally. The global names for these shaders are
Shader Zer o0, Shader One, Shader Hal f , and Shader Quart er , respectively.

Constant — A constant shader takes a GXCol or asinput when it is created, and simply returns that same color
during triangle rasterization.

Rasterized — A rasterized shader takes a color channel asinput when it is created, and returns the interpolated
color for the current triangle at the current position.

Texture— A texture shader takes a GXTex Obj and atexture coordinate expression as input when it is created. It
returns the processed color for the current triangle at the current position.

Complex Input — A complex input shader takes a compiled shader as input and returns the result.

25.4.4 Complex shaders

At the heart of the Shader library isthe complex shader. The complex shader allows other shadersto be combined in
some mathematical manner. A complex shader takes input from four other shaders and receives some combination
information when it is created, then combines the results of those individual shaders in the manner specified. The
following diagram shows how the inputs into a complex shader may be combined:

Bias—
Shader A —)|
k) o
Shader B —— a*(10-¢) + b*c —H Op —H F— § —» & ¢
2 o
ShaderC —»

ShaderD  —

Figure 12 Shader combination method

Asshown in Figure 12, here are the combination parameters that need to be given to a complex shader:

Op —Plus or minus.

Bias — Some value by which the result of the equation is biased.
Scale — Some value by which the result of the biased equation is scaled.
Clamp — A method by which the scaled, biased equation is clamped.

As mentioned earlier, complex shaderstake four other shaders asinputs. It isimportant to note that any or all of these
inputs can be other complex shaders. This allows the user to build up complex expression trees.

25.45 Compiling shaders

When shaders are specified, their inputs are specified generically. Real datais bound to these genericsinputs later so
that specific operations can be performed. Shaders are meant to be compiled at 1oadtime and bound and executed at

runtime.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 61

2.5.4.6 Binding shaders

At runtime, real application data must be bound to the generic inputs of a shader. A shader will not execute unless all
of its generic inputs are properly bound.

25.4.7 Executing shaders

Once an entire shader has been compiled and bound to valid application data, it must be executed to set the proper
hardware state in order to carry out the specified expression. When the execute function is called, the shader’s
compiled hardware tokens are passed to the GX API.

2.5.4.8 Shader API

typedef enum

SHADER TG _PCS,
SHADER TG _NRM
SHADER TG _BI NRM
SHADER TG_TANGENT,
SHADER TG_TEXO,
SHADER TG TEX1,
SHADER TG _TEX2,
SHADER TG _TEX3,
SHADER TG _TEX4,
SHADER TG _TEXG,
SHADER TG_TEX,
SHADER TG _TEX7,
SHADER TG_COLORO,
SHADER TG _COLORL

} Shader TexGenSrc;

typedef enum

SHADER TG _MTX3x4,
SHADER TG _MTX2x4,
SHADER_TG_BUMPO,
SHADER TG _BUMPL,
SHADER TG _BUMP2,
SHADER TG _BUMP3,
SHADER TG _BUMP4,
SHADER TG_BUMPS,
SHADER TG _BUMPS,
SHADER TG _BUMP7,
SHADER TG _SRTG

} Shader TexGenType;

typedef enum

SHADER_MTX0,
SHADER_MTX1,
SHADER_MTX2,
SHADER_MTX3,
SHADER_MTX4,
SHADER_MTX5,

© Nintendo Technology Development, Inc. CONFIDENTIAL



62 Game Engine Programming April 17, 2001

SHABER-MFXS;

SHADER | DENTI TY

} SHADER MIXI nput ;

typedef enum

SHADER OP_ADD,
SHADER CP_SUB

} SHADER CP;

typedef enum

SHADER CLAMP_LI NEAR 1023,
SHADER _CLAMP_LI NEAR 255,
SHADER _CLAMP_GE_255,
SHADER CLAMP_GE 0,

SHADER _CLAMP_EQ 255,
SHADER CLAMP_EQ 0,

SHADER CLAMP_LE_255,
SHADER _CLAMP_LE 0

} SHADER CLAMP;

typedef enum
SHADER_BI AS_ZERO,
SHADER_BI AS_ADDHALF,
SHADER BI AS_SUBHALF

} SHADER BI AS;

typedef enum

SHADER SCALE_1,
SHADER_SCALE_2,
SHADER SCALE 4,
SHADER _SCALE_DI VI DE_2

} SHADER SCALE;

typedef enum

SHADER CHANNEL_RGB,
SHADER _CHANNEL_RRR,
SHADER _CHANNEL GGG
SHADER_CHANNEL_BBB,
SHADER _CHANNEL_A

} SHADER CHANNEL;

typedef enum

SHADER _TEXO,

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 63

SHABER-TEX3:
SHADER TEX3,
SHADER TEX4,
SHADER TEXS,
SHADER TEXS,
SHADER TEX7

} SHADER TexI nput ;

typedef enum

SHADER RASO,
SHADER_RAS1

} SHADER Rasl nput ;

typedef enum

SHADER _COLORO,
SHADER _COLORL,
SHADER _COLOR2,
SHADER_COLOR3

} SHADER Col or | nput ;

typedef enum

SHADER_COWPLEXO,
SHADER COWPLEX1,
SHADER_COWPLEX2,
SHADER_COWPLEXS,
SHADER _COWPLEX4,
SHADER _COWPLEXS,
SHADER_COWPLEX6,
SHADER_COWPLEX7

} SHADER Conpl exl nput ;

SHDRTexCoor d * SHDRCr eat eTexCoor dExpr essi on ( Shader TexGenSrc src,

SHDRTexCoor d * SHDRCr eat eTCPassThr ough
SHDRShader * SHDRCr eat eText ure
SHDRShader * SHDRCr eat eRasteri zed
SHDRShader * SHDRCr eat eCol or

SHDRShader * SHDRCr eat eConpl ex| nput

SHDRShader * SHDRCr eat eConpl ex

voi d SHDRFr ee

(

SHDRTexCoor d *shadSrc,
Shader TexGenType t exGenType,
SHADER _MI'XI nput nt xI nput );

( Shader TexGenSrc src );

SHADER TexI| nput tex, SHDRTexCoord *texCoordShader,
SHADER CHANNEL channel );

SHADER Rasl nput rasCol or, SHADER CHANNEL channel );
SHADER Col or | nput col or, SHADER CHANNEL channel );
SHADER Conpl ex| nput i nput, SHADER CHANNEL channel );

SHDRShader *inputl1, SHDRShader *i nput 2,
SHDRShader *input3, SHDRShader *i nput 4,
SHADER OP op, SHADER CLAMP cl anp,
SHADER BI AS bi as, SHADER SCALE scal e,
SHADER CHANNEL channel );

SHDRShader *shader );

© Nintendo Technology Development, Inc.

CONFIDENTIAL



64

Game Engine Programming

April 17, 2001

SHDRConpi | ed  * SHDRConpi | e

voi d SHDRBi ndText ure

voi d SHDRBi ndRast eri zed

voi d SHDRBi ndCol or

voi d SHDRBi ndConpl ex| nput

voi d SHDRBi ndTexGenM x

voi d SHDRExecut e

( SHDRShader *rgbShader,

SHDRShader *aShader );

SHDRConpi | ed *shader, SHADER Texl| nput tex,

GXTexQhj] *texCbj );

SHDRConpi | ed *shader, SHADER Rasl nput rasCol or,

GXChannel I D channel );

SHDRConpi | ed *shader, SHADER_Col or | nput col orl nput,

GXCol or color );

SHDRConpi | ed *shader, SHADER Conpl ex| nput i nput,

SHDRConpi | ed *i nput Shader );

SHDRConpi | ed *shader, SHADER MIXI nput input, Mx ntxData );
SHDRConpi | ed *shader );

Code 60 Shader API

CONFIDENTIAL

© Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 65

3 Formats

3.1 Display object

This section presents the GPL inits byte-wise file format. In the following figures, the figure caption text within
parentheses shows the structure used to access the GPL format in memory. For more details, see section 2.1.10.

GPL Header

Geometry Descriptor Array

Display Object Bank

String Bank

Figure 13 GPL overview

Size (in bytes) M eaning

4 Version number.

User-defined data size.

Offset to user data (32-byte aligned).
Number of geometry descriptors.

BRI S

Offset to geometry descriptor array (8).

Table 2 GPL header (GEOPalette)

Size (in bytes) Meaning
4 Offset to display object.
4 Offset to the string name of the display object.

Table 3 Geometry descriptor (GEODescriptor)

© Nintendo Technology Development, Inc. CONFIDENTIAL



66 Game Engine Programming April 17, 2001

Display Object O

Display Object 1

Display Object n

Figure 14 Display object bank

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 67

Display Object Header

Position Data Header

Position Array

Color Data Header

Color Array

Texture Data Header

Texture Coordinate Array

Display Data Header

Display State List

Primitive Bank

Lighting Data Header

Normal Array

String Bank

Figure 15 Display object overview

© Nintendo Technology Development, Inc. CONFIDENTIAL



68 Game Engine Programming April 17, 2001

Size (in bytes) M eaning

Offset to position data header from the beginning of the display object (24).

Offset to color data header from the beginning of the display object.

Offset to texture data header from the beginning of the display object.

Offset to lighting data header from the beginning of the display object.

Offset to display data header from the beginning of the display object.

Number of texture headers (for multitexturing).
Pad.
Pad.

(O] Y =Y NS BN I N (N RN

Table 4 Display object header (DODisplayObjectL ayout or DOL ayout)

Size (in bytes) M eaning

4 Offset to position array from the beginning of the display object.

Number of positions.

2
1 Quantize info (see Figure 19).
1

Number of components (2 or 3).

Table 5 Position data header (DOPositionHeader)

Size (in bytes) M eaning

4 Offset to color array (from beginning of display object).
2 Number of colors.

1 Quantize info (see Figure 19).

1 Number of components (3 or 4).

Table 6 Color data header (DOColor Header)

Size (in bytes) M eaning

Offset to texture coordinate array (from beginning of display object).

Number of texture coordinates.

Quantize info (see Figure 19).

Number of components (1 or 2).

Offset to texture palette file name (from beginning of display object)

E- I ol Bl B N )

Pad (reserved for runtime usage).

Table 7 Texture data header (DOTextureDataHeader)

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming

Size (in bytes) M eaning

4 Offset to primitive bank (from beginning of display object).
4 Offset to display state list (from beginning of display object).
2 Number of display state list entries.

2 Pad.

Table 8 Display data header (DODisplayHeader)

Size (in bytes) Meaning

4 Offset to normal array (from beginning of display object).
2 Number of normals.

1 Quantize info (see Figure 19).

1 Number of components (2 or 3).

4 Ambient percentage (0.0 — 100.0).

Table 9 Lighting data header (DOL ightingHeader)

Size (in bytes) Meaning

1 State ID.

3 Pad.

4 Setting.

4 Offset to primitive list from the beginning of the display object.
4 Length of primitivelist (in bytes).

Table 10 Display state entry (DODisplayState)

DI SPLAY_STATE_TEXTURE See Figure 16.
Dl SPLAY_STATE_TEXTURE_COMBI NE | GXTevMbde.
DI SPLAY_STATE_VCD See Figure 17.
DI SPLAY_STATE_MI'XLOAD See Figure 18.

Table 11 Display state settings

69

© Nintendo Technology Development, Inc. CONFIDENTIAL



70 Game Engine Programming April 17, 2001

31 16

Mag Filter Min Filter Wrap T Wrap S
15 0]

Texture Index

Figure 16 Setting for DISPLAY_STATE_TEXTURE

31 16
Tex Tex Tex Tex Tex
Coord 7 Coord 6 Coord5 Coord4 Coord3
15 0]
Position
Tex Tex Tex Color1l ColorO Normal position Matrix

Coord 2 Coord 1l CoordO
Index

Figure 17 Setting for DISPLAY_STATE_VCD

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 71

31 17

Source Matrix Index

16 0

Destination Matrix Index (0-7)

Figure 18 Setting for DISPLAY_STATE_MTXLOAD

For Floating Point Data For Color
ﬂoat = 0x1 16 bit 565 = 0x0
uleé = 0x2 24 bit 888 = Ox1
— i _ H 32 bit 888x = Ox2
s16 = Ox3 shift 0-15 bits 16 bit aaa4 — o | UNUSEd
u8 = Ox4 24 bit 6666 = Ox4
s8 = 0x5 32 bit 8888 = 0x5

Figure 19 Quantization data layout

3.2 Texture

This section presents the TPL in its byte-wise file format. In the following figures, the figure caption text within
parentheses shows the structure used to access the TPL format in memory. For more details, refer to section 2.2.5.

© Nintendo Technology Development, Inc. CONFIDENTIAL



72 Game Engine Programming April 17, 2001

TPL Header

Texture Descriptor Array

CLUT Header Bank

CLUT Bank

Image Header Bank

Image Bank

Figure 20 TPL overview

Size (in bytes) Meaning

4 Version number.
4 Number of texture descriptors.
4 Offset to texture descriptor array (8).

Table 12 TPL header (TEXPalette)

Size (in bytes) Meaning
4 Offset to image header.
4 Offset to CLUT header.

Table 13 Texture descriptor (TEXDescriptor)

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 73

CLUT Header 0

CLUT Header 1

CLUT Header n

Pad

Figure 21 CLUT header bank

The CLUT header bank should pad enough bytes to align to a 32-byte boundary from the top of the TPL file.

Size (in bytes) Meaning

2 Number of entries.

2 Pad.

4 Pixel format.

4 Offset to CLUT data.

Table 14 CLUT header (CLUTHeader)

CLUT O

CLUT1

CLUT n

Figure22 CLUT bank (optional)

© Nintendo Technology Development, Inc. CONFIDENTIAL



74 Game Engine Programming April 17, 2001

The CLUT format is described in “Graphics Library (GX)” in the NINTENDO GAMECUBE Graphics Programmer’s
Guide.

Image Header O

Image Header 1

Image Header n

Pad

Figure 23 Image header bank

The image header bank should pad enough bytes to align to a 32-byte boundary from the top of the TPL file.

Size (in bytes) M eaning

Height.

Width.

Color format.

Offset to image data.
WrapS.

WrapT.

MinFilter.

MagFilter.
LODBisas.
Edgel ODEnable.
Image min. LOD.

Image max. LOD.
Pad.

[N N N SN S ' NS B BN B N NS Y N N

Table 15 Image header (TEXHeader)

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 75

Image O

Image 1

Image n

Figure 24 Image bank

The texture image format is described in “ Graphics Library (GX)” in the NINTENDO GAMECUBE Graphics
Programmer’s Guide.

3.3 Actor

This section presents the ACT in its byte-wise file format. In the following figures, the figure caption text within
parentheses shows the structure used to access the ACT format in memory. For more details, refer to section 2.3.6.

ACT Header

Bone Array

Pivot Paoint Array

String Bank

Figure 25 ACT overview

© Nintendo Technology Development, Inc. CONFIDENTIAL



76 Game Engine Programming April 17, 2001

Size (in bytes) Meaning

Version number.

Actor ID.

Number of bones.

Branch offset (Tr ee. Of f set ).

Offset to root bone (Tr ee. Root ).
Offset to .GPL file name.

Skin file ID (OXFFFF = not present).
Pad.

User-defined data size.

Offset to user data (32-byte aligned).

BB DN DB BN N A

Table 16 Actor header (ACT L ayout)

Size (in bytes) Meaning

Offset to orientation control.

Offset to previous sibling (Br anch. Pr ev).

Offset to next sibling (Br anch. Next ).

Offset to parent (Br anch. Par ent ).
Offset to children (Br anch. Chi | dr en).
Display Object ID (OxFFFF = not present).
Bone ID.

Inheritance flag.

Drawing priority.
Pad.

Nl R P NN AR R B D

Table 17 Bone (ACTBoneL ayout)

3.4 Animation

This section presents the ANM in its byte-wise file format. In the following figures, the figure caption text within
parentheses shows the structure used to access the ANM format in memory. For more details, refer to section 2.4.4.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 77

ANM Header

Sequence Array

Track Array

Key Frame Array

Key Frame Setting Bank

Interpolation Info Bank

String Bank

Figure 26 ANM overview

Size (in bytes) Meaning

Version number.

Offset to sequence array.
Bank ID.

Number of sequences.

Number of tracks.

Number of keyframes.

User-defined data size.

Offset to user data (32-byte aligned).

BB DN NN DR

Table 18 ANM header (ANIMBank)

Size (in bytes) Meaning

4 Offset to sequence name.
4 Offset to track array.

2 Number of tracks.

2 Pad.

Table 19 Sequence (ANIM Sequence)

© Nintendo Technology Development, Inc. CONFIDENTIAL



78 Game Engine Programming April 17, 2001

Size (in bytes) Meaning

Animation time.

Offset to keyframe array.

Number of keyframes.

Track ID.

Parameter quantization info (see Figure 19).

Animation type (see Figure 27).

Interpolation type (see Figure 28).

[N RN N N I NI S RS

Replace hierarchy control (always true).

Table 20 Track (ANIMTrack)

quat euler

i - scale trans
rotation | rotation

matrix

Figure 27 Animation type

’ 0
\ | \
Rotation Scale _Translatipn
interpolation interpolation  interpolation
type type type

None = 00 (Euler, scale, and trans)
Linear = 01 (Euler, scale, and trans)
Bezier = 10 (Euler, scale, and trans)
Hermite = 11 (Euler, scale, and trans)
SQUAD = 100 (quat rotation only)
SQUADEE = 101 (quat rotation only)
SLERP =110 (quat rotation only)

Figure 28 Interpolation type

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001

Game Engine Programming

4 Time.
4 Offset to setting bank.
4 Offset to interpolation info.

Table 21 Keyframe (ANIMK eyFrame)

Size (in bytes)
12

Meaning

In control.

12

Out control.

Table 22 Bezier interpolation (Euler, scale, and trandation)

Size (in bytes)

Meaning

12 In control.

12 Out control.
Ease-in (2.14).

2 Ease-out (2.14).

Table 23 Hermite interpolation (Euler, scale, and translation)

Size (in bytes)
16

Meaning

In quaternion.

16

Out gquaternion.

Table 24 SQUAD interpolation (quater nion only)

Size (in bytes)

Meaning

16 In quaternion.

16 Out gquaternion.

2 Ease-in (2.14).
Ease-out (2.14).

Table 25 SQUADEE interpolation (quaternion only)

© Nintendo Technology Development, Inc.

79

CONFIDENTIAL



80 Game Engine Programming April 17, 2001

3.5 Skinning

This section presents the SKN in its byte-wise file format. In the following figures, the figure caption text in
parentheses indicates the structure used to access the SKN format in memory. For more details, refer to NINTENDO
GAMECUBE Development News I ssue #2 (1/23/2001).

Skinning Header

1 MTX Header Array

2 MTX Header Array

Accumulation Header Array

Position/Normal Array

Flush Index Array

Weights for
2 MTX Headers

Source Position/Normal,
Destination Index, Weights
for Accumulation Header

Figure 29 SKN overview

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001

Game Engine Programming

Size (in bytes) M eaning

Number of 1 MTX lists.

Number of 2 MTX lists.

Number of accumulation lists.

Position/normal quantization.

Pad.

Offset to 1 MTX header array.

Offset to 2 MTX header array.

Offset to accumulation header array.

Offset to top of memory to clear.

Byte size of memory to clear.

Offset to flush index array.

Bl A D BB PR N NN

Number of flush indices.

Table 26 SKHeader

Size (in bytes)

Meaning

48 ROMtx (matrix at runtime)

4 Offset to source position/normal array
Offset to destination position/normal array
(in GPL file)

2 Boneindex into ACT file
Number of verticesin thislist

1 Offset to correct start of position/normal
array since it may not be 32-byte aligned.

1 Pad.

2 Pad.

Table27 SK1List Header

© Nintendo Technology Development, Inc.

81

CONFIDENTIAL




82 Game Engine Programming April 17, 2001

Size (in bytes) Meaning

48 ROMtx (Matrix 1 at runtime).

48 ROMtx (Matrix 2 at runtime).

4 Offset to source position/normal array.

4 Offset to weight array.

4 Offset to destination position/normal array

(in GPL file).

Bone 1 index into ACT file.
Bone 2 index into ACT file.
Number of verticesin thislist.

PN NN

Offset to correct start of position/normal
array (since it may not be 32-byte aligned).

1 Pad.

Table 28 SK2List Header

Size (in bytes) Meaning

48 ROMtx (matrix at runtime).

4 Offset to source position/normal array.
Offset to destination index array.

4 Offset to destination position/normal array
(in GPL file).

4 Offset to weight array.
Boneindex into ACT file.
Number of verticesin thislist.

Table 29 SKAccList Header

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Game Engine Programming 83

Appendix A. Building source code

This appendix describes how to build the runtime CP libraries and demos. To learn how to build tools (export plug-
ins and texture converter), refer to Appendix A of “CG Tools Programming” in this guide.

A.1 Building runtime libraries

The Character Pipeline runtime libraries are built using a makefile system similar to that of the GCN SDK. For more
detailed information, please refer to “Build System” and “ SDK Roadmap” in the NINTENDO GAMECUBE
Programmer’s Guide included with the GCN SDK.

The GCN SDK must be installed before the CP SDK can be built. Since the GCN SDK ships with pre-built libraries,
those CP libraries not included in the CP SDK need not be rebuilt unless you modify them. The CP makefile system
will use the DOLPHI N_RQOOT environment variable to automatically link in the necessary librariesin the GCN SDK.
Some CP libraries are still kept in the GCN SDK because of the dependence that GCN demos have on the texPalette

library (the TPL format is very useful).

Library Purpose Makefile L ocation
TexPalette (GCN SDK) | Accessestexture objects from TPL file. | / dol phi n/ bui | d/ char Pi pel i ne/
texPal ett e/ makefile
Structures (GCN SDK) | Link list, trees, hashtable data / dol phi n/ bui | d/ char Pi pel i ne/
structures. structures/ makefile
FileCache (GCN SDK) | File access caching. / dol phi n/ bui | d/ char Pi pel i ne/
fileCache/ makefile
GeoPalette Accesses display objects from GPL /cp/build/libraries/
file. geoPal ett e/ makefil e
Control Typica 3D object control/manipulation | / cp/ buil d/1ibraries/
structures. control / makefil e
Actor Accesses hierarchy from ACT file. /cp/build/libraries/
actor/ makefil e
Anim Accesses animation from ANI file. /cp/build/libraries/
ani m makefil e
Skinning Provides skinning data for CPU /cp/build/libraries/
processing. ski nni ng/ makefil e

Table 30 Runtimelibraries

To build an individual library, go to the directory of the makefile location and in type
make —r PLATFORME. ..

in the Cygnus bash shell. For a non-debug build, type
make —r NDEBUG=TRUE PLATFORME. ..

The PLATFORMvariable should be one of the following: HA2, HW\L, MAC, or MAC2. The*“-r” option in not
necessary, but speeds up build time by bypassing built-in makefile rules.

© Nintendo Technology Development, Inc. CONFIDENTIAL




84 Game Engine Programming April 17, 2001

To build al libraries, use the following commands in a Cygnus bash shell:

cd /cp/build
make —r |ibrari es NDEBUGCTRUE PLATFORM:. ..

A.2 Building demos

Several demos and utilities are available in the Character Pipeline:

previewer: previews GPL, ACT, ANM filesw/ SKN and STP optiona files.
texPrev2: previews TPL files.

perfView: performance viewer.

cardemo: demo.

sketchdemo: demo.

These demos are also built using the makefile system. Y ou can build all demos with the following commandsin a
Cygnus bash shell:

cd /cp/build

make —-r denbs NDEBUG=TRUE PLATFORME. ..

Like libraries, demos can be built individually. Use the make command in any subdirectory of
/ cp/ bui | d/ denps.

CONFIDENTIAL © Nintendo Technology Development, Inc.



