April 17, 2001 1

Programming CG Tools
SDK Version 1.0

Contents
O 0 11 o] YRS 4
I R @111 VOSSOSO 4
111 ATCRITECUIE. ... ettt bbbt b et b et e s e b b e st e bt st e n e b et e ne e b e neen e e be st e neebenaenes 4
11.2 SOUICE COUE. ...ttt sttt st sttt ekttt s b ettt st et b e s b et e bt s b et e b s A et e bt s be e e bt s b e n e et e s b et e besbe e ebenbe e nbeneene 5
113 (0o =10 018 1 o 5
114 L 11 | 6
O €= o 0 1 YU RURURPR 7
121 [0 TaTex o] 7=) YT 7
122 L@ 01T 0] 1SS 7
123 (= oo o TR 8
124 107 0111002 1o o FS OSSP 10
R T = (LU [TSRS P TR 14
131 g Tex (0] 3 7= Y/ 14
132 = o 1 o TSRS 14
O X ox 0| ST STTOTSOOPUP PR SPTOPPPTPPO 16
14.1 g Tox 0] 7= Y 16
142 A= ok 1 o RS TRRT 16
1.4.3 L@ o) {10272 1o o S 17
ST N 4111 7= (o o RSO 18
151 FFUNCEIONAITTY ..ttt bbbt e e e s bt s bt e be s aeeae et e b e seesbesbeeaeese e s enbeseesbeenas 18
152 (= o (o F RSP 18
153 107 0111072z 1o o FU USRS 20
2 N O 1= PRSP 21
P2 R O V= V1= Y SO ST PTSTRT 21
211 LIS TS0 = = o] o= T =SS 21
212 g Tex 0] 3 7= Y 22
213 0o =10 01 o 23
214 SOUICE COUE.......uiteeeiiete ettt sttt ettt b et b et b et et b e b et bt s b et bt s b et e st s b et e st s be b e e nbebe e e bentne 25
1222 11U USRS 25
221 SOUFCE IMAOE FIIES. ..ttt e bbbt b e et et e s e besee st enas 25
222 o T oL 1 =TRSO 25
122 T O L = PSSR 28
231 OVEBIVIBIN ...ttt sttt ae et et et eebe bt e bt eb e e et e aeeae e ee e EeeEeeh e eReeh e e e e meeaEeebeebeebeebeeneenee e ebeseesbennis 28
232 SOUNCE FIES. .. ettt bbbt ae bt et et e s e e b e s bt ebeeb e e aeene e s e beseesbeenas 28
2.3.3 N SRS 28
234 A NOLE ADOUL EITOF MESSAGES ...vvevvereeeerresterseeseeseetestestessesseeseeseesessessessessessesssensessessessessessesssessessessessesses 30
22 1 1o 11| PSSR 30
24.1 1L 1 TSSO 30
24.2 CaChe fil@ AN FOMMIBLc.eitireeieere ettt sttt be b b e 30
2SR B 1< oo 0 = (o o OO TSP T 31
I o q (=0 110 I (g TC T O T ! S 33
4 Extending the texture CONVEITEr [IDIariES.ot et e e 34
4.1 Changing mipmap filter, COlOr COMPULBLIONS.coiiiiiiiiiiieee ettt se e b sae s 34
4.2 IMProving fil@ CAChINGco.oi ettt sb et se b b nae s 34
e B €T 0 = g To [7= = =TRSO 34
4.4 Mipmapping a ColOr-INAEXEA IMEBOEeiveruieiireeie ettt sb st e e besee st sbe s bt sbesaeenseseesbesbesaeas 35
TV T (T g To = 1= (== = PSSP 35

© Nintendo Technology Development, Inc. CONFIDENTIAL

2 Programming CG Tools April 17, 2001

451 I 36
452 QLI R 1= o =TSSP ST ST 36
453 UNPacking N iMBGE FIl...... .ot b b et e e e e b 36
Appendix A. BUIIAING SOUMCE COUR ...ttt sttt b et ae et e s e e besbesaeebe e e eneeseeneesbesneas 39
A.1 Building CPExport . dl e for 3D Studio MAX REIEASE 3.1ccueiiiiiiiiieeeeee e 39
A.2 Building CPEXPOrt. m | for Maya 3.0....cccceceiieieiere sttt st s e e e seenne e 39
y N B = U] o (g To R =) O oY 0 A = = USSR 40
Appendix B. TEXTUIE COMPIESSION......ueeuteeeiesiesteeteeseeseesees e seesressesseeseeeeseessessessesseeseeseesseneesseseeseessesseesenneensessensessnnes 41
2 R S C B 1o =TSSP 41
B.1.1 Complete S3library dOCUMENTELiONcoiiiiieieererte ettt sae e e e seeseesnens 41
B.2 Converting an S3 texture to hardware fOrMELooe oo 41
2 R e U 10 T= "= |1 o RSP PRR 42
2 B 0 o (=1 = = 011 o [RSP PRR 42
Appendix C. MipmappiNg tECHNICEl NOLES........couiieeieieiee ettt a e e e e e e eesee e 44
Appendix D. N 21 @001 1 =SS 46
Appendix E. C3 library internal arChitECIUIE...........ciuieieeee ettt e e e e aesnesrenns 47
S R 1 0110 [F ot (o o ISR TSR PRSPV 47
o Y - T g I oo o = 0 0 o ST 47
E.2.1 COINIIAIIZE vttt n e 48
E.2.2 (OGS (@)10 R SSP 50
E.2.3 C3BEGIN/CIENG....c.ceitiuirirteerieieesiete sttt sttt et se et e e sesbesese s b e st seebebe s e st e st sesbebe s e e b e st seebebe s st e st sesbebe s etenens 53
E24 C30PtimiZEBEfOFEOULPULeeeeieree ettt ettt sttt e et st esbesaeese e e eneeseesaesbesaeeseeneenseseessesensneas 53
E.2.5 COWWIITEFIIE .tttk b et bbbt £ bt e b b e bbb et 53
2 I O T = o TSSO 54
R B €= o 0 1= VA o] o 1= L1 g1 RSP 54
E31 g 7= e 0 o ST SE U ST STVRRPVN 54
E.3.2 C3TransfOrmMOD] ECITOPIVOLcce it ettt e e e e aesresseese e e enaesaeseesresrens 55
E.3.3 (10 @0 4101 0=5S I - - PR 56
E.3.4 C3ASSIGNV EITICESTOBONES.......eeviieiestesteeeeseeeestestestestesseeseesestessestestesseeseessessessessessessessenssassessnssessessens 60
E.3.5 C3SOMWEIGNELISE....ecviuirieiiireeieesieeere et n et 60
E.3.6 C3ProcessOpti ONSATIErCOMPIESSIONecueeeereeriertestesteseeeeseesessestestesseeseessesessessessessessesssessessessessessens 60
E.3.7 O 0001V g oS g o] =T OSSP 61
E.3.8 1000117 £ To o OSSP 62
N o TT= = VA o o= 1T = OSSP 66
E4.1 (= oo USSR 67
E.4.2 C3TransfOrMBONETOPIVOLcouiiiiiieiteiceee ettt bbbttt e b sbesbe s b e et e s e seesbeseesreas 67
EA4.3 (O @00 01V/= ¢ 1N (o GRS UURR R URTPR 67
E.4.4 10010177 1= To a0 o U111 | SRS 68
RSN 01T 4= (Ko g o o= L= ST 68
ES5.1 Q= o0 o ST SSETRPE PRSP 68
E.5.2 L0010 0] 1 [Y = 0 - P 69
E.5.3 C3TransformTraCkTOPIVOL........ccoiioireereirieire et 69
E.5.4 C3ComputeTrackBezierlNOULCONTIOLccuiriiierieriesieseeee e s be s re b e nee e e sbesbesnea 69
E.5.5 C3ComMPULETIACKINOULCONEIOLcviieiieieeeiieeeie ettt sttt st bbb e e e e e sbeseesaea 69
E.5.6 10010\V7< £ To g Ir=10 o o U111 | USRS UPTRPRN 70
I = a0 (= o T o= 1T =SSOSR 70
E.6.1 (= oo USRS 70
E.6.2 C3COMPIESSTEXLUNEDELAL ... cueeteeiteete ettt ettt et ettt ettt e s bt e sbe e see e e e sae e saeesbeebeenbeeabesaeesbeesbeesbeeneeanas 71
E.6.3 L 11 | P 71
Code Examples
Code 1 CoNVErsioN Program fIOW.........coiie ittt sttt st b e e e b e b e aeeae e e e beseesbesbesaeeae e s enbeseesaenaas 6
Code 2 C3 OPLION-SEING AP ...ttt b e bt ae et et e s e e s b e s b e e Rt e ae e e e beseeebesbesaeese e e enbeneesaenaas 8
Code 3 Nested eXtraCtion FUNCHIONS.........ooiiiiieee ettt e e b b aeese e e e beseesbesbe s st ese e e enbeseesaesaas 8
L0010 L B 19T [I oSSR 10
100 To L oI o (0= o N oSSR 15

CONFIDENTIAL © Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 3

Code 7 C3 hierarChy €XtraCtion APoceeoeeieiise sttt e e e et s resreeseesee e e e saesaesseeneeneeneensenneneennes 16
(00 lo RSO 1o [l 411 o 1Y/ 17
Code 9 C3 animation EXIFACHION AP ..ottt h et e bbb b e s st e e e e e b e sbesbesbeeneene e e e besbesbesaas 19
(00To L0l =TolgTC = 01T 4= (o o FE TSP 20
(000 L R = e U1 f oY o e 1V = o T USSP 25
(000 D WO s {T1= O Tol 1= S SR PP 28
Code 13 TCINSLAIIFITEREBAFN ..ottt ettt st et be s be b e e ae e e e e e besbesaeebeemeenee e eseseesaenaas 28
(00 To LI = = L= g A o TSP 29
(0010 LI LR W O @17 1= | 1 = TS 30
Code 16 Sample TC MaiN fUNCLION.......c.viicieece ettt e et s re et e e seesa et e testesaeeseeneeneeneensenseseennen 30
CO0E 17 CBUSES UALAAPI ...ttt ettt st b ettt st e st et e s b e se e bt s bese e b e sbese ek e sbeneebesbeneebenbeneebeneeneas 33
COUE 18 TCFII @ SITUCLUIE. ..ottt sttt sttt b s b e s e b e st e s e eb e s beseebe s beseebeebeneebeebeneebenbeneebesbeneebeneeneas 35
(000 LI L IS 00T 0 LR T = = L= TS 38
Code 20 Packing an S3 teXTUre fOr CONVEISIONccviiiieiieeeesiestesestestes e eaesaes e tesressesseeseessesesaesaessesseensesensessessenses 43
COUE 21 DSLINK @NG DSLISE ...viieviiiiieiisiesietisteseetesteseesesteseese s e seesesteseesesteseesesteseesesseseesesteseesestessesesteseesessesensessessnsessenens 49
(000 L A W 01 (= o RS A= o o] L= TSP 49
(0010 L T O U = 016 = = TSP 54
CO0E 24 C3COMPIESSPOSITIONS.eviiteiteiteeueeieeiesteste st et etee e eeeseesteseesaeeseaeaseeaseseaseseeaseaneanseasanseabesaeesesneeneesasessessesss 57
(0010 N O @e V= gl oIS] L= o [OOSR 61
COde 26 C3CONVEITPOSITTIONDE@LA. ... cveeverueeueeeeiesieste sttt etee e eeeseestesteseeesee e eseaseseeasesaeeseeneeneeasasesaesaeeseeneeneesansesaesaesss 63
Code 28 Extracting COlOr-iNAEXEA tEXTUIES...........ciiiireiieeeieeestesesesteetes e eeesae e stesresseeseesaessesesaesaessesseeneensensessessenses 71
Equations

Equation 1 Texture conversion (the right WaY)o oot e e se e e sne s 45
Equation 2 Texture CONVErsion (tNE WIONG WEY)eouererieierieniesie it eteeeeeesees e seesteseesaeeseeseaneeseessesaessessesneansessessesaessens 45
Figures

Figure 1 3D Studio MAX CONVEIrSION PALNcoveiiiiiiieicece et ae st et e stesreesesneenaeseeneeseesrenrn 4
Figure 3 C3 1IDrary @rChitECIUIE........ecuiieieeeeeee sttt et s e e e st e st e s besaeeseeseesseseeteseesaeesenneenaeneeneeneenrenrn 5
FIQUIE 4 SIMPIET i .ttt et e e s e st e te st e s beebeeaees e e e e s teseeseeseeaseeseeneanseseeseeseesseaseeneenseneeneenennrens 10
Figure 5 C3 Triangle strip and fan @l gorithm..........cceie ettt snenne s 11
L 18 N SR =L 4= o [SRS 15
Figure 7 TWO triangleS iN NIEIAICHYooiiieee ettt e et b e et et eae e e e neeseesbesaesneas 17
Figure 8 TeXIUIe data PIPEIINE ..ottt sttt se et e et b s bt eaeeae e e eneeseeeeesaeeaeeaeeneansesseneesaesneas 21
Figure 9 TC library Program flOW ..ottt ae e e e e st e ee bt e aeeae e e ensesseneesaesneas 24
Figure 11 Creating an RGBA image from two different files.........ooo oo 27
Figure 12 LOD level generation and re-MEPPINGceeeeeeereresesieeeeeeeeeseeseseeseesae e sseeseeeessessessessessesneensessessessessens 27
Figure 13 RGBA fOr LOD QENEFBIIONeiieieieiteite ettt e seeste st sae sttt e e e se e e seesbesaesaeeaee e ensessessesaesaesseeneansessessesaesnens 44
Figure 14 C3 library main program flOWoooieie i e e et e e e e e ntesaenneas 48
Figure 15 Schematic of linked list example (COUE 22)cc.eveiiieiieieeeerer et sae st snenneas 50
Figure 17 C3TransformODJECETOPIVOLc.ccceiiiiiecie et see st e et resseese e e e e stestesaesaeeneeneenseseensenaennens 56
Figure 18 ComMpPression Of POSITIONScuiiuerieiirere s eeeeeeseesteste st se e e se e e s tesresresseesee s essessessessesseeseensensessensesanssens 59
Figure 20 State Nodes and diSplay [ISES.......ccueueiiriie et et e e st e st e aesreene e e enaesaentesaennens 65
Tables

Table 1 APl fOr 1080ING VEIEX TBEA.eieieeeeeeee ettt s b e be et ehe e e e eeseesbesaesaesaeeneeneessenseseesaeas 9
Table 2 C3teXtUre XITACHTION AP ...ttt ae et e e e et e bt e aeeae e e emeeseeeeesaeeaeeae e e aneeseeseesaeens 15
Table 3 Keyframe tranSfOINMatiONS.........c.viiieeieeee et s et e e st et e tesseeseessessessessessesneeseeneeneeseenseneenns 19
Table 4 Partial reCONVErSION PAraMELErS.cucueieresesesteseeeesee e seeste e sreeseeeetessestestesseeseessessessessessesseesenssensessnnsessenns 31
Table 5 SUPEr til€ COMPOSITIONcueiieiesiecieee et ettt s e s e e e st et e s teeaeeseensenteseeseeseesneeneeneeneeseenseneenns 41

© Nintendo Technology Development, Inc. CONFIDENTIAL

4 Programming CG Tools

1 C3library

1.1 Overview

April 17, 2001

The C3 library exports data from a CG tool to the NINTENDO GAMECUBE (GCN) runtime format. CG tool

programmers will find this document helpful in explaining how to use or port the C3 library to various CG tools.

1.1.1 Architecture

During development, we used 3D Studio MAX primarily, so our converter for this CG tool in the NINTENDO
GAMECUBE Character Pipeline (CP) SDK is more mature. We've also included an export tool for Maya 3.0, but
thisoneislessrobust. Inany case, the C3 library was coded with maximum portability in mind, so other CG tool data
conversion paths may be constructed quickly. Figure 1 showsthe 3D Studio MAX conversion path, which is similar

to that of Maya 3.0.

3D Studio MAX
format

010100101110
100101011001

010101111010
101000001010
10 \

3D Studio MAX

CPExport.dle

?

TC script
file
010001001101
011101010101
010000111110
100101..
texture
converter

texture data
TGA format

Figure 1 3D Studio MAX conversion path

header
00101010001
01011110001
10...

header
00101010001
01011110001
10...

Geometry file Hierarchy file
GPL format ACT format

header
00101010001
01011110001
10...

header
00101010001
01011110001
10...

Animation file Skinning file
ANM format SKN format

header
00101010001
01011110001
10...

Texture file
TPL format

CONFIDENTIAL © Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 5

To maximize portability, we' ve divided the conversion process into several modules:

The export plug-in, in this case CPExpor t . dl e, the 3D Studio MAX Release 3.1 converter.
3D conversion library (c3. | i b).
Texture conversion path.

CPExport . dl e isentirely 3D Studio MAX-specific; i.e., it uses MAX functions and C++ class definitions to access

MAX data structures. Respectively, CPExport . m | isaconverter specific to Maya 3.0. Both tools extract data that
is then loaded into the C3 library, which provides APIs to perform the following operations:

Extract data from the CG tool into C3 internal data structures.
Optimize datafor GCN hardware.

CG Tool Data Output
Structure/Format Converter API Data Structure(s) Format

)

Y
trees

0100010011
0101110101
0101010000
1111101001
01

data extraction API
data optimization API

L] tists]
L | converter

tool
\ %

¢
C

Figure2 C3library architecture

In order to support a particular CG tool, therefore, you need only to understand the data extraction APl and format
supplied by the CG tool vendor, and the data optimization API.

To learn more about the texture conversion path, please refer to Chapter 2. To learn more about how to visually
preview the data on the GCN hardware or emulator, see Chapter 1 in “Character Pipeline for Artists.”

1.1.2 Source code

In order to view the header and source files, please use Visual C++ 6.0 to load the desired workspace:

C3library: / cp/ bui l d/ i braries/c3/vc++/c3. dsw.
3D Studio MAX converter: / cp/ bui | d/ t ool s/ Max/ CPExport/vc++/ MaxConv. dsw.
Maya converter: / cp/ bui | d/ t ool s/ Maya/ CPExport/vc++/ MayaConv. dsw.

1.1.3 Program flow

In order to utilize the C3 library properly, you must follow a simple program flow order:
1. [Initialization.

2. Option setting.

© Nintendo Technology Development, Inc. CONFIDENTIAL

6 Programming CG Tools April 17, 2001
Extraction.

3

4. Optimization.
5. Output.

6

Conversion clean-up.

The following code segment from CPExpor t . dl e usesthe C3 library and exemplifies this progression:

/1 Initialize C3 library
C3lnitialize();

/1 Send options using C3 options APl to control data optimzation and extraction
Set Opti ons(&raxOptions);

/1 Extract data from 3DS MAX SDK usi ng C3 extraction API

C3ReportStatus("Extracting information fromMax...");

i Node = gi->Get Root Node();

numChi | d = i Node- >Nunber O Chi | dren();

for(int i =0; i < nunChild; i++) /1 Traverse the tree of geonetry objects

{
Processl Node(i Node->Get Chil dNode(i)); // 3DS MAX function using C3 extraction API

/1 Optimze the data: conpress duplicates, weld, and renpve null primtives.
/'l Finish processing optinization options: conpute quantization shift bits
/1 Optim ze geonetry: convert triangles to strips and fans

/1 Optimize actor: convert vertex stitching info, prune bones

C30pt i m zeBef oreCQut put ();

/Il Wite the files: assenble display list, quantize, and output to GPL, ACT, ANM
I/l Wite TCS texture conversion script and then call TexConv to generate TPL
CG3WiteFile(nPath, nFile);

/1 Cleanup C3 library
C3d ean();

Code 1 Conversion program flow

These sets of functions are all that a CG tool programmer needs, except for those routines to set the options and
extract data that should be written individually. The API to set optionsis detailed in section 1.2.2. The extraction AP
is explained separately in the relevant sections for geometry, texture, hierarchy, and animation.

If you areinterested in learning about the internal architecture and program flow of the C3 library, please refer to
Appendix E.

1.1.4 Output

The C3 library can output up to six files:

Geometry data (GPL).

Hierarchy/bones data, also known as actor data (ACT).

Animation data (ANM).

Texture conversion script (TCS) used by TexConv to generate texture data (TPL).
Skinning data for runtime CPU skinning (SKN).

Statistics of geometry data.

The 3D Studio MAX CPExport code also exports a cameraand light setup file (STP) specifically for the GCN

previewer. The C3 library does not export the STP format since cameras and lights are game-specific. For more
information, refer to “Character Pipeline for Artists” in this guide.

CONFIDENTIAL © Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 7

In the following sections, we will examine in detail the geometry (GPL), hierarchy (ACT), and animation (ANM)
formats, as well as the conversion process.

1.2 Geometry

1.2.1 Functionality

The C3 library can load the following primitives and attributes:

Triangles, quads, and lines.

Vertex attributes: position, texture coordinate, color with alpha, normal, and weights for stitching/CPU skinning.
Objects with multiple textures. (Note: We do not mean multiple textures per polygon; rather, we mean objects
with different textures for different groups of polygons).

Texture attributes. wrap/clamp property and filter method (point sample, bilerp, trilerp/mipmap).

The C3 library can perform the following optimizations:

Compression by removing duplicate vertex data; C3 can also weld position and texture coordinates.

Triangle strip and fan generation to maximize hardware performance; C3 can enable a strip and fan view to set
vertex colors of primitives based on type.

Quantization of vertex attributes to 8 bits or 16 hits, signed or unsigned.

Display list creation with indexed position, texture coordinate, color, and normal (C3 uses indexed methods to
refer to all vertex attributes), with minimal index byte size selection for display list.

Indexing of normalsinto adefault normal table of 252 normals.

Primitive list sorting to minimize state changes among display lists.

Output of all GCN texture formats.

1.2.2 Options

Options control the C3 library behavior during extraction, optimization, and output. The option API functions are all
prefixed with “C3Set Opt i on” or “C3Get Opt i on”; we have shown only those functions which set an option:

/'l Feedback options

voi d C3Set Opti onReport St at usFunc (C3Report StatusFunc func);
voi d C3Set Opti onReport Error Func (C3ReportErrorFunc func);
/] Qutput options

voi d C3Set Opti onFi | eExport Fl ag (u32 filekxportflag);

voi d C3Set Opti onCut put Endi an (u8 endi anType);

/'l Geonetry general options

voi d C3Set Opti onSrcVertexOrder (u8 vtxOrder);

voi d C3Set Opti onEnabl eStitchi ng (C3Bool flag);

voi d C3Set Opti onEnabl eLi ghti ng (C3Bool flag);

voi d C3Set Opti onAmbi ent Per cent age (32 percent);

/] Ceonetry optimnization options

voi d C3Set Opti onConpr ess (ulé targets);

voi d C3Set Opti onWel dRadi us (u32 target, f32 radius);
voi d C3Set Opti onEnabl eStri pFan (C3Bool flag);

voi d C3Set Opti onEnabl eStri pFanVi ew (C3Bool flag);

voi d C3Set Opti onPosi ti onRange (£32 range);

voi d C3Set Opti onQuanti zati on (u32 target, u8 channel, u8 quantinfo);
voi d C3Set Opti onUseDef aul t Nor mal Tabl e (C3Bool flag);

voi d C3Set Opti onUseExt er nal Nor nal Tabl e (C3Bool flag);

© Nintendo Technology Development, Inc. CONFIDENTIAL

8 Programming CG Tools April 17, 2001

voi d C3Set Opti onExt er nal Nor nal Tabl ePath (char* nane);

Code 2 C3 option-setting API

Y ou can understand how to use this option-setting API properly by referring to section E.2.2 in the Appendix.
Becoming familiar with how to use the GCN converter will also help you to get afedl for the effects these options
have. Section 1.2.4 explains the geometry optimization options in more detail.

1.2.3 Extraction

Since the 3D data we need to extract from a CG tool is hierarchical, we have designed the C3 API to extract geometry
datainto itsinternal C3 representation hierarchically. The code segment below shows how functions may be nested:

C3Begi nOhj ect

C3Set Col or /'l color for entire object
C3Begi nTexture /1 texture for entire object
C3Set TexFnt
C3Set | mage

C3Set | mageAl pha

C3Set TexTi l i ng

C3Set TexFi | ter Type

C3Set | ngLCD
C3EndText ure

C3Begi nLinePrimtive /1 line primtives (can do line strips)
C3Set Col or /1 color for primtive, override object color
C3Begi nVert ex
C3Set Posi ti on
C3Set Col or /1 color per vertex, override primtive/object color
C3Set Nor mal
C3Set Wi ght
C3EndVert ex
C3EndLi nePrimtive

C3Begi nPol yPrimtive /1 polygon primtives (only triangles. quads are untested)
C3Set Col or /1 color for primtive, override object color
C3Begi nText ure /] texture per prinmtive, override object texture

C3EndText ure

C3Begi nVert ex
C3Set Posi ti on
C3Set Text ur eCoor d
C3Set Col or /1 color per vertex, override primtive/object color
C3Set Nor mal
C3Set Wi ght

C3EndVert ex

C3EndPol yPrinmitive
C3Endhj ect

Code 3 Nested extraction functions

These functions and data all have stack-based states, so if color and texture are defined after C3Begi nCbj ect , the
same color and texture will continue in all primitives and all vertices until primitives or vertices override the current
state.

1.2.3.1 Loadingvertex data

Y ou can load vertex data easily by using the following functions between C3Begi nVer t ex and C3EndVer t ex:

CONFIDENTIAL © Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 9

Function Description
C3Set Position(float x, float y, float 2z) Sets the position. This function must be called.

C3Set TexCoord(float s, float t, u8 chnl) Sets the texture coordinate for the given texture
channel. Currently, the only texture channel

supported is 0.
C3SetColor(u8 r, u8 g, u8 b, u8 a) Sets the vertex color, including apha.
C3Set Nornal (float x, float y, float 2z) Sets the normal.

C3Set Wi ght (char* boneNane, f32 weight) Sets one bone to which this vertex is attached, as
well as the amount of its influence. The name
must match exactly with bone names sent to
C3Begi nHi er ar chyNode(char* nane).

Table 1 API for loading vertex data

It is not necessary to call al of these functions. For example, if you do not wish to export normals, do not call
C3Set Nor mal for any of the current geometry object’ s vertices.

Use the C3Set Wei ght function to assign weights to vertices for use in skinning or stitching. If all of the verticesin
a geometry object have aweight of 1.0, the object will be converted as a stitched object; otherwise, the C3 library will
output an additional SKN file to be used by the Character Pipeline runtime CPU skinning library.

1.2.3.2 Loading primitive data

C3 can load two types of primitives:

Lines. You can create lines and line strips by calling C3Begi nLi nePrimitive and

C3EndLi nePrim ti ve between C3Begi nCbj ect and C3End(hj ect , and loading data for at least two
vertices.

Polygons: Code 4 illustrates how al calls must be between the C3Begi nObj ect and C3End(bj ect
functions in order to load polygons. This example shows how to load atriangle:

© Nintendo Technology Development, Inc. CONFIDENTIAL

10 Programming CG Tools April 17, 2001

C3Begi nChj ect(“SinpleTri”);
C3Begi nPol yPrimtive();

C3Begi nVertex();

C3Set Position(0, 0, 0);
C3Set Col or (255, 0, 0, 255);
C3EndVertex();

C3Begi nVertex();

C3Set Posi tion(20, 20, 0);
C3Set Color (0, 0, 255, 255);
C3EndVertex();

C3Begi nVertex();
C3Set Posi tion(0, 20, 0); Figure 3 SimpleTri
C3Set Col or (0, 255, 0, 255);

C3EndVertex();

C3EndPol yPrimtive();
C3Endbj ect () ;

Code4 SimpleTri.c

Y ou can run this segment after setting options, then follow it with calls to the rest of the functions outlined in section
1.1.2, to produce the triangle in Figure 3. Y ou can a so use the C3 library to load quads.

1.2.4 Optimization

Optimization in the C3 library is driven by the options set previously (see section 1.2.2).

1.2.4.1 Compression and welding

Call C3Set Opt i onConpr ess to compress positions, texture coordinates, colors, and normals independently in
order to remove duplicate data and save space.

Since CG tools do not alow precise control in arranging positions or texture coordinates, small errors may occur.
Welding can eliminate these errors by collapsing all data within a given radius to the same data. Since welding isa
superset of compression through the removal of duplicate vertex data, welding can further reduce the size of the
output data as well as maximize triangle stripping performance. Enable welding by calling

C3Set Opt i onWel dRadi us with anon-zero argument.

1.2.4.2 Trianglestrip and fan

Y ou can enable a simple stripping algorithm by calling C3Set Opt i onEnabl eSt ri pFan:

CONFIDENTIAL © Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 11

For each triangle,
+ C find an adjacent

triangle and form

an 2-triangle strip.
Combine
smaller
strips into

':H:' E larger strips

until there
are no more

combinable
strips.
Convert 2-triangle
C strips into 2-
triangle fans.
ambine 2-

3 . triangle fans and
leftover single
triangles into fans

+ —> until there are no
more fans
o — °\ |possible.

Figure4 C3 Triangle strip and fan algorithm

There are two methods of evaluating the performance of the C3 triangle strip and fan algorithm. Thefirst is by the
number of vertices per triangle given in the C3 statistics file. The worst caseis three vertices per triangle, meaning
that no strips, fans, or quads were created. If al primitives were converted into quads, then there would be two
vertices per triangle; one vertex per triangle is the best theoretical limit. The lower the number, the better the triangle
strip/fan generation performance.

The second method is through visual feedback enabled with C3Set Opt i onEnabl eSt ri pFanVi ew. C3 can set
vertex colors for primitives based on the primitive type: red for triangles, blue for quads, and random colors for
triangle strips and fans. C3 will also export awireframe of the triangles so that strips and fans can be distinguished by
their triangle edges. Problem areas may thus be spotted and fixed.

By definition, triangle strips and fans in C3 break when any of the vertex attributes are not considered to be the same.
We therefore recommend use of the C3 welding feature to minimize slight errorsin position and texture coordinates
that may be caused by CG tool or floating point imprecision. Please also remember that atriangle strip or fan can
have only one texture.

Due to limitations in the current development hardware, there is a maximum limit of four verticesin any triangle fan
converted in C3; however, this restriction should not be an issue in subsequent hardware rel eases.

Y ou should also be aware of the preprocessor flag C3_QUADS _TO FANS in C3Def i nes. h. Thisflag convertsall
guads to fans to work around a Macintosh OpenGL bug which alows non-coplanar quads to be wholly clipped if any
one of the triangles are backfacing. This flag should be disabled for the Dolphin Devel opment Hardware (DDH), but it
should be enabled when running the GCN previewer on a PowerMac.

© Nintendo Technology Development, Inc. CONFIDENTIAL

12 Programming CG Tools April 17, 2001

1.2.4.3 Quantization

C3Set Opt i onQuant i zat i on sets the quantization type to output positions, colors, texture coordinates, and
normals as 32-hit floating point numbers or fixed point numbers. When outputting to fixed point, the number of
necessary fractional bits (shift bits) is computed alittle differently among positions, texture coordinates, and normals.

12431 Position quantization

C3 can output positionsto all GX formats:

us 8-bit unsigned.
8 8-bit signed.
ui16 16-bit unsigned.
S16 16-bit signed.

FLOAT 32-bit float.

Sinceit is desirable to quantize all non-skinned positions to a global fixed grid, you should specify a position range
when gquantizing positions to fixed point. Otherwise, if the position rangeis 0, C3 will automatically calculate the
optimal position range. C3 will reserve only as many integer bits in the fixed point number as necessary to store the
position range; the remaining bits are used for fractions.

Please be careful to call C3Set Opt i onPosi t i onRange before setting position quantization type with
C3Set Opt i onQuanti zati on(C3_TARGET_POSI TI ON, ..).

A fixed global grid of positionsin the CG tool can be created among various geometry objects. Since positions are
guantized according to alocal coordinate system set by C3Set Hi er Cont r ol (see section 1.2.3), local transforms
should have the same scale and should be rotationally orthogonal. We' ve included a simple examplein

/ cp/ max/ t est / Pos@nt which tests how all positions can be quantized to a fixed grid.

Due to optimizations in the runtime CPU skinning library, skinned positions and normals will always be exported to a
signed 16-bit format.

12432 Vertex color quantization

C3 can output vertex colorsto all GX formats:

32-bit RGBA (8888) and RGBXA (888X).
24-bit RGBA (6666) and RGB (888).
16-bit RGBA (4444) and RGB (565).

C3 isoptimized to export vertex colors per geometry object with or without the al pha component, depending on
whether it uses transparent vertex alphaor not. A minor test casein/ cp/ max/t est/ Col or Qnt showsthat for the
given model, there is not much color quality trade-off between exporting colorsin 24-bit RGB8 or 16-bit RGB565.

We expect that color may be compressed more efficiently by generating CLUTs. Compression quality will likely
depend heavily upon pre-assigned vertex lighting. Currently, this technique is not implemented in the C3 library.

CONFIDENTIAL © Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 13

12433 Texture coordinate quantization

C3 can output texture coordinates to all GX formats:

us 8-bit unsigned.
8 8-bit signed.
ui16 16-bit unsigned.
S16 16-bit signed.

FLOAT 32-bit float.

Texture coordinates are quantized in the same manner as positions, except that C3 individually calculates the number
of integer bits necessary to store the maximum texture coordinate value for each object. The remaining bits of the
fixed point number are used for fractions.

Y ou may also consider generating lookup tables for texture coordinates, however, we have not tried this technique and
do not have any information regarding the trade-off between compression and quality.

12434 Normal quantization

C3 can output positionsto all GX formats:

us 8-bit unsigned.
S8 8-bit signed.
ui16 16-bit unsigned.
S16 16-bit signed.

FLOAT 32-bit float.

When C3 quantizes normals to a fixed point number format, it reserves one bit for the integer portion since the values
of al normals are always between —1 and 1, inclusive. The remaining bits are used for the fractional portion of the
fixed point number.

C3 can utilize normal tables; in this case, C3 will not quantize and output normal data since the normal table will be
loaded at runtime. Normal indices into the normal table will still be provided in the display list.

NOTE: The user cannot control the type of quantization for normalsin a skinned object, since the runtime CPU
skinning library requires normals to be quantized to S16.

12435 Keyframe quantization

The C3 library implements basic animation compression by quantizing all keyframe information into one of the GCN
fixed point formats (see above). Quaternions and ease information within the keyframe is always quantized to S16
(1.14) because their values are always between —1 and 1, inclusive.

1.2.44 Minimal index selection

C3 automatically selects an 8-bit or 16-bit indexed array for positions, texture coordinates, colors, and normals
depending on the number of elementsin each array (e.g., if an array has fewer than 256 elements, C3 selects an 8-hit
index instead of a 16-bit index). Thetest casein/ cp/ max/t est /| ndex(nt testsindex selection aswell as
comparing output size differences.

© Nintendo Technology Development, Inc. CONFIDENTIAL

14 Programming CG Tools April 17, 2001

1.2.45 Normal table

C3 canindex into a global normal table for all geometry objects instead of exporting a normal array for each geometry
object, which is avery good method of saving space. A default normal table of 252 normals which point roughly
uniformly in all directionsis provided in nor mal Tabl e. c. Thetest case/ cp/ max/t est/ Nr mfabGn shows
how a normal table can be generated easily by using a special define called C3_ GENERATE_NORMAL _TABLE
(found in C3Def i nes. h).

1.2.4.6 Primitive sorting

C3 sorts primitives to minimize state changes when creating display lists. For example, some of the important state
changes that can occur in stitched primitives are texture changes and matrix loads. This sorting occurs automatically
in the C3 library; for more information, please consult / cp/ max/test/ D i st Srt.

1.3 Texture

1.3.1 Functionality

The C3 library can set any texture aslong as it is supported by TexConv, described in further detail in section 2.1.2.

1.3.2 Extraction

C3 can load textures for awhole geometry object or per primitive, depending on whether the call to
C3Begi nText ur e/C3EndText ur e comes between C3Begi nCbj ect /C3EndObj ect or
C3Begi nPol yPri m ti ve/C3EndPol yPri mtive, respectively.

Y ou can call the following functions between C3Begi nText ur e and C3EndText ur e:

CONFIDENTIAL © Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 15

Function
C3Set TexFnmt (C3TexFnt texFnt)

Description

Sets the current texture format for a color map, alpha
map, or palettes.

C3Set | mage(char* fil eNane)

Sets the relevant color map from the given file.

C3Set | rageAl pha(char* fil eNane)

Sets the relevant alpha map from the given file.

C3Set Pal | mage(char* fil eNane)

Sets the relevant paletted image from the given file.

C3Set TexTi | i ng(u8 wrap)

Sets whether the texture should be wrapped or
clamped.

C3Set TexFi | t er Type(u8 net hod)

Sets whether the texture should be point-sampled,
bilerped, or mipmapped.

C3Set I ngLOD(u8 mi nLOD, u8 maxLOD, u8
baselLOD)

Sets the number of mipmap LODs.

Table 2 C3 texture extraction API

Texture formats and wrap and filter mode constants are outlined in C3Text ur e. h. A test case using al of the
Character Pipeline-supported texture formatsislocated in/ cp/ max/ t est/ TexFrmt s.

Using some of the preceding routines, the Si npl eTr i example can be extended by adding a texture:

C3Begi nOhj ect (“TexturedTri”);
C3Begi nPol yPrimtive();

C3Set Col or (255, 255, 255, 255);

C3Begi nTexture(0);

C3Set TexFnt (RGB565) ;

C3Set Il mage(“D:\\temp\\srcl mage\\wood2.tga”);
C3Set TexTi | i ng(C3_REPEAT_S | C3_REPEAT_T);
C3Set TexFi | t er Type(C3_FILTER LI NEAR);
C3EndTexture();

C3Begi nVertex();

C3Set Position(0, 0, O
C3Set TexCoord(0, 0, O
C3EndVertex();

)
)

C3Begi nVertex();

C3Set Position(20, 20, 0);
C3Set TexCoord(1, 1, 0);
C3EndVertex();

C3Begi nVertex();

C3Set Position(0, 20, 0);
C3Set TexCoord(0, 1, 0);
C3EndVertex();

C3EndPol yPrimtive();
C3Endbj ect () ;

Figure5 TexturedTri

Code5 TexturedTri.c

© Nintendo Technology Development, Inc.

CONFIDENTIAL

16 Programming CG Tools April 17, 2001

Currently, the C3 library supports only one texture channel, so the argument to C3Begi nText ur e, aswell asthe
last argument to C3Set TexCoor d, must always be 0.

1.4 Actor

1.4.1 Functionality

The C3 library provides three basic services for hierarchies:

Specifies rel ationships between geometry objectsin a hierarchy.
Performsinstancing.
Orders display priority.

Thereis no support for non-inheritance.

1.4.2 Extraction

The extraction of hierarchy information is simple using the C3 API:

voi d C3Begi nHi erarchyNode (char* nane);
voi d C3Set Hi er Cont r ol (u8 control Type, f32 x, f32y, 32 z, 32 w);
/'l sets the transformation from parent bone

voi d C3Set Pi vot OF f set (f32 x, f32y, f32 z); // offsets the rotation and scal e pivot

voi d C3Set bj ect (char* identifier); /1 links a geonetry object to this bone

voi d C3Set Obj ect Skin (char* identifier); /1 links a stitched object to this root bone
voi d C3Set Di splayPriority (u8 priority); /1 assigns a display order priority

voi d C3EndHi er ar chyNode ();

Code 6 C3 hierarchy extraction API

C3 supports the extraction of hierarchy information in one of two ways:

Recursively, by nesting the function callsto C3Begi nHi er ar chyNode, or
Iteratively, by using C3Set Par ent to set parenting information manually.

The function C3Set Hi er Cont r ol setstrandation, rotation, and scale controls (specified by the control Type)
relative to the parent transformation.

NOTE: The C3 library no longer supports arbitrary hierarchy matrices with the obsolete C3Set Mat ri x. Insome
transformations, the rotation and scale pivot point may not necessarily be in the same place as the translation from the
parent; therefore, C3Set Pi vot OF f set provides a method to specify the position offset of the rotation and scale
pivot from the trandation. The latter function may be necessary in Maya, but is not necessary for 3D Studio MAX.

In order to associate a specific geometry object to the current hierarchy node, call C3Set Obj ect with the exact
name of the object. If the geometry object is stitched, then call C3Set Obj ect Ski n. Currently, only one stitched
object is allowed per export.

Referring tothe Si npl eTri and Text ur edTri examples, the following code segment shows how to arrange
them, respectively, in a parent-child relationship. This code can be called before or after the objects are extracted.

CONFIDENTIAL © Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 17

C3Begi nHi er ar chyNode(“Parent”);
/] C3SetHi erControl not called so identity assumed
C3Set bj ect(“SinpleTri”);

C3Begi nHi erarchyNode(“Child”);

C3Set Hi erControl (CTRL_TRANS, 40, 0, 0, 0);

C3Set Qbj ect (“TexturedTri”);

/1 No need to use C3SetParent since parenting

/1 is assunmed by the nesting of C3Begi nH erarchyNode
C3EndHi er ar chyNode() ;

C3EndHi er ar chyNode() ;

Figure 6 Two trianglesin hierarchy

Code 7 Creating hierarchy

1.4.2.1 Instancing

Since the hierarchy simply indexes geometry objects, you can perform instancing simply by using C3Set Obj ect
again with the name of a previously extracted object. Then, C3Set Hi er Cont r ol can be used to position, rotate, or
scale the geometry object uniquely.

1.4.2.2 Display order priority

Since the Character Pipeline does not support multitexturing, we have used duplicate layers of geometry with vertex
alphato ssimulate it on the GCN previewer for Macintosh. (Note, however, that the same effect can be achieved in
GCN hardware with one layer of geometry—making display priority unnecessary.)

Objects should be depth-sorted at runtime to determine proper display order. Runtime depth sorting is not currently
supported, however, so objects may be sorted before runtime to minimize the improper display of transparent objects.
Thisworks particularly well for terrain that uses vertex alphain conjunction with multiple layers of geometry (such as
theKnol | database), since the camerawill aways be above the terrain.

All objects have a default display priority of O, unless C3Set Di spl ayPri ori ty iscalled between

C3Begi nObj ect and C3EndQbj ect . All non-transparent objects should use the default display priority, while
transparent objects should use an appropriate display priority between 1 and 254 (set by calling

C3Set Di spl ayPriority).

Geometry objectsin a scene will be rendered in ascending display priority in the GCN previewer. For example, if an
object “Box” has adisplay priority of 10, and an object “ Transparent Sphere” has a display priority of 20, then
“Transparent Sphere” will aways be drawn after “Box.”

Objects with the same display priority will be drawn in some arbitrary order.

1.4.3 Optimization

The C3 library performs automatic pruning of unused hierarchy bones to save space. A bone will be pruned if al of
the following conditions exist:

There is no attached geometry object.
There is no attached vertices in the case of stitching.
Thefirst two conditions are true for all of the bone's children.

© Nintendo Technology Development, Inc. CONFIDENTIAL

18 Programming CG Tools April 17, 2001

As you can see from the conditions above, bone pruning works properly only if geometry is extracted, or else al
bones will be pruned. Since the C3 library allows selective output of geometry and hierarchy, we have chosen to
prune bones only if geometry is output. If geometry is not output, no pruning will occur.

NOTE: Outputting geometry meansthat C3_FI LE_GEOVETRY isaset flagin C3Get Opt i onFi | eExport Fl ag,
not that geometry is extracted with C3Begi nQbj ect /C3End(hj ect . In other words, geometry can still be
extracted without being output, so bones will not be pruned.

1.5 Animation

1.5.1 Functionality

The C3 library can only extract keyframe animation of hierarchy bones. Rotations may be specified using quaternions
or Euler XY Z anglesin degrees. Major types of keyframe interpolation methods are supported, including linear,
Bezier, and TCB (tension, continuity, bias) with ease.

There are several restrictions when extracting and converting animation information:

All scaling in the hierarchy transformation should be positive.

Keyframes must exist at the beginning and end of the animation range.

All keyframesin atrack must contain the same combination of position, rotation, and scale information. For
example, if atrack isanimating position and rotation without scale, then all keyframesin that track must contain
only position and rotation information.

The C3 library has only been tested to extract one sequence of animation per export because 3D Studio MAX allows
only one animation per file. However, the ANM format has the capability to store multiple animation sequences. To

support this, we have written a separate application called AnnConbi ne to splice ANM files together into one ANM
file. For moreinformation, please consult Appendix D.

1.5.2 Extraction

The C3 API for animation extraction continues to use the hierarchical begi n/ end paradigm:

voi d C3Begi nAni nat i on (char* hi erNodeNane);

voi d C3EndAni mat i on ();

voi d C3Begi nTrack (char* sequenceNane);

voi d C3Set Start Ti ne (float tine);

voi d C3Set EndTi ne (float tine);

voi d C3Set I nterpTypeTransl ation (u8 interpType);

voi d C3Set I nt er pTypeScal e (u8 interpType);

voi d C3Set | nter pTypeRot ati on (u8 interpType);

voi d C3EndTr ack ();

voi d C3Begi nKeyFr anme (float tine);

voi d C3Set KeyTransl ati on (float x, float y, float z);

voi d C3Set KeyScal e (float x, float y, float z);

voi d C3Set KeyRot at i onQuat (float x, float y, float z, float w);

voi d C3Set KeyRot at i onEul er (float x, float y, float z);

voi d C3Set KeyMat ri x (MxPtr nmx);

voi d C3Set Keyl nCont r ol (u8 control Type, float x, float y, float z, float w);
voi d C3Set KeyQut Cont r ol (u8 control Type, float x, float y, float z, float w);
voi d C3Set KeyTCB (u8 control Type, float tension, float continuity, float bias);
voi d C3Set KeyEase (u8 control Type, float easeln, float easeCQut);

CONFIDENTIAL

© Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 19

voi d C3EndKeyFr anme (s

Code 8 C3 animation extraction API

First, hereis adefinition of terms:

A keyframe describes the position, rotation, and scale for abone at a certain time.
A track isacollection of keyframes.
A sequenceis acollection of tracks.

Note that C3Begi nAni mat i on cannot nest itself recursively (unlike C3Begi nHi er ar chyNode), and
C3EndAni mat i on must be called before another animation can begin. If C3Begi nAni mat i on iscalled between
C3Begi nHi er ar chyNode and C3EndHi er ar chyNode to animate that particular hierarchy node, then a NULL
argument should be sent. Otherwise, C3Begi nAni mat i on should be called with the name of the hierarchy node it
will animate.

1521 Tracks

Call C3Begi nTr ack/C3EndTr ack between C3Begi nAni mat i on and C3EndAni mat i on. Astracksare

created with new seguence names, the new sequences are created automatically. If no sequence nameis provided,
tracks will be added to a default sequence called “NULL". Set start and end times using C3Set St art Ti me and
C3Set EndTi ne.

Theinterpolation type must be specified for the keyframesin this track using the C3Set | nt er pType* functions
before keyframes are extracted. The interpolation types possible are listed in C3AnnEXxt . h. Note that the C3 library
has no concept of how keyframes should be looped within a track.

15.2.2 Keyframes

Call C3Begi nKeyFr ame/C3EndKey Fr ane between C3Begi nTr ack and C3EndTr ack.

The transformation information in keyframes can be either amatrix (which cannot be interpolated) or some
combination of trandation, rotation, and scale. Y ou may need to provide additional information depending on the
interpolation type of the track.

Interpolation Type Transfor mation I nfor mation
Linear, Slerp, Squad No interpolation information needed.
Bezier In and Out tangent angle in radians should be specified

using C3Set Keyl nCont r ol and
C3Set KeyQut Cont rol .

Hermite (TCB) or Squad with ease in/out (SquadEE) | Tension, continuity, and bias parameters should be
specified using C3Set Key TCB, and ease in/out
parameters should be set using C3Set KeyEase. Inand
Out tangent angles will be computed by the C3 library
appropriately.

Table 3 Keyframe transfor mations

The following code segment shows how to animate any bone 90 degrees about the bone' s y-axis:

© Nintendo Technology Development, Inc. CONFIDENTIAL

20 Programming CG Tools April 17, 2001

C3Begi nAni nmation();

C3Begi nTrack(“Rotate90Y”);

C3SetStartTime(0);

C3Set EndTi ne(100);

C3Set I nter pTypeRot ati on(C3_| NTERPTYPE_SQUAD) ;

C3Begi nKeyFrame(0);
C3Set KeyRot ati onQuat(O, 0, 0, 1);
C3EndKeyFrane() ;

C3Begi nKeyFranme(50);

C3Set KeyRot ati onQuat (0, 0.7071f, 0, 0.7071f); // 90 degrees around Y axis
C3EndKeyFrane() ;

C3Begi nKeyFrame(100);

C3Set KeyRot ati onQuat(O, 0, 0, 1);

C3EndKeyFr ame() ;

C3EndTr ack();

C3EndAni mation();

Code 9 Bone animation

1.5.3 Optimization

Currently, there is no significant optimization in the Character Pipeline, except for the quantization of keyframe data
(described in section 1.2.4.3.5).

CONFIDENTIAL © Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 21

2 TClibrary

2.1 Overview

The Texture Converter (TC) library converts a collection of artist-generated textures into the GCN Texture
Palette (TPL) format.

The conversion “recipe’ is specified in atexture conversion script file (TCS) that includes the file names, mipmap
information, output formats, and TPL packing order.

Plug-in architecture allows tool programmers to write file readers for any input file type.

TexConv. exe isatexture conversion application that acts as awrapper for the TC library. It includes asimple
user interface and a default TGA file reading function.

2.1.1 Texture data pipeline

texture data

TGA format
__C 010001001101
d 011101010101 Dolphin texture file
{ 010000111110 TPL format
1 100101... texture
1 converter --
TexConv.exe
header
- oo

01011110001 TPL access
10... library
texPalette.lib

fileO=tree.tga
filel=rock.tga
file2=door.tga

texture
conversion library

tc.lib

plug-in
— file reader(s)

conversion script file
text format (TCS)

Figure 7 Texture data pipeline

The TPL file format packs multiple texturesinto asingle file in order to speed disk loading time. For the sake of
efficiency, TPL files should be composed of textures that share temporal locality within the game application. TPL
files may contain many different texture maps and color lookup tables in different formats.

At runtime, games can use functions supplied by the texPalette library to access any texture in the TPL file and send it
directly to the GX library.

© Nintendo Technology Development, Inc. CONFIDENTIAL

22 Programming CG Tools April 17, 2001

2.1.2 Functionality

The TC library has many features, the most important of which include:

Conversion to al non-Z GCN texture formats including RGBA, intensity alpha (IA), intensity (1), color-indexed
(CI), and compressed (CMPR). All texturedatain TPL filesis 32-byte tiled and can be used by the GX library
directly.

Conversion of input palettes to RGB565 or RGB5A 3 output format.

Mipmap generation.

S3TC texture compression (see Appendix B).

Automatic color conversion (e.g., RGBA to |A, Cl to RGB, RGB to RGBA)

NoOTE: The GX library refersto acolor palette as a Texture Lookup Table (TLUT), while many other tools call it a
Color Lookup Table (CLUT).

2.1.2.1 Optimizations

We assume that artists will want to make many small changes to their TGA files before they settle on afinal look. It
should therefore not be necessary to incur the overhead of regenerating an entire TPL file each time an artist makes a
small change to atexture.

To increase conversion speed, TC has the ability to update only those parts of a TPL file which have changed since
the last execution. When the texture converter runs, it compares each new image and palette to the contents of the
most recently-generated TPL file. If any data blocks match, the pre-existing blocks are copied directly to the new
TPL file, bypassing the conversion process.

For a complete explanation of partial conversion rules, see section 2.4.2.

2.1.2.2 Color indexed texture support

Compression and animation are the two main reasons to use color-indexed textures. However, because the CMPR
(S3TC) format offers high quality compressed textures from true color images, we expect many people to use this type
of texture compression instead of Cl. Therefore, we have not designed TC to support CLUT generation from true
color images. This should not be confused with TC’ s ability to convert automatically from a Cl input format to an
RGB output format.

Moreover, TC does not support any Cl texture animation encoding rules because it is difficult for usto define how to
“encode” the CLUT for CI texture animation. These encoding rules are often specific to the desired animation, and
the animation techniques are often specific to the gamein question. TC support for CI texturesistherefore very
simple, our intent being only to show developers how to convert Cl textures and CLUTs for The GCN to use, not
necessarily the best way to generate them for a specific game.

Internally, TC stores color-indexed texturesin 16-bit format. Output indices are copied directly from input indices.
There is no shifting or masking of bits. Therefore, it is up to the programmer to ensure that the input color indiceslie
entirely within the output bit range. For example, if output is Cl4, input indices should range from 0-15.

Internally, TC stores palette entriesin RGBA format. Palettes may be output in either RGB565 or RGB5A3 formats.
A8 is not supported for palette entries.

NOTE: The 3D Studio MAX converter assumes that each TGA color indexed texture file will contain both the CI
texture map and CLUT. 3D Studio MAX then instructs Tex Conv to use this Cl texture map with this CLUT. Please
note that the 3D Studio MAX converter does not provide any method for sharing an input CLUT with multiple input
Cl texture maps.

CONFIDENTIAL © Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 23

2.1.3 Program flow

We provide the full source code for both the Tex Conv program and the TC library. To assist code comprehension,
this section provides an overview of the major processing steps TC takesto convert raw TGA filesintoa TPL file. If
you intend to alter the source code, read this section first.

Figure 8 showsthe logical flow for making a TPL file with the TC library. Here are the major steps involved:

1. Input: Inthisphase of the program, the texture converter reads and parses the input script file. Error checking is
performed to make sure that all the datais coherent and that all requested input files exist. If these requirements
are not met, the program exits with an error message.

2. Setup: TexConv gatherstogether the input data and organizesit for conversion. During this phase TexConv
creates and manages four lists of information:

Source Image List — Lists all the raw input files along with some information about size and format.

Image List — Contains information about how different raw files are combined to form afinal image. For
instance, an image can take its RGB information from one source and get its al phainformation from another.
Palette List — Maintains palette information from source data. Palettes are extracted from the source files and
stored here.

Texture List — Contains binding information to associate images with palettes in the output TPL file.

3. Conversion/Output: During the conversion/output phase, Tex Conv reads through the texture list and converts
the raw datainto GCN format data. If pre-converted data exists, it is used directly and the conversion operation is
skipped. During conversion, TC generates mipmap levels as necessary. Once atextureis fully converted and
processed, it is output to the new TPL file. When all the textures in the texture list have been processed, the
program closes the TPL file, which is now ready for the runtime libraries.

© Nintendo Technology Development, Inc. CONFIDENTIAL

24

script

Programming CG Tools

image files

parse script, create lists

file reading
code

Figure8 TC library program flow

April 17, 2001

CONFIDENTIAL

source image palette texture
image list list list
list
Y
set image dimensions,
extract palette data
source | image palette texture |
image | list list list ;
list ! !
p- COMpute
tpl header info
& file offsets
Y
convert textures tpl file
p in sequence
- header block
palettes > palette data
block
images
image data
| block

intermediate
LOD

A

Dolphin LOD

© Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 25

2.1.4 Source code

Header and source files for TexConv. exe and the TC library can be viewed in Visual C++ 6.0 by loading
/ cp/ bui | d/ t ool s/ TexConv/ vc++/ TexConv. dsw.

2.2 Input

2.2.1 Source image files

The TexConv program has asingle plug-in file reader. We chose to support the True Graphics Adapter (TGA)
format sinceit is capable of storing many different texture formats, including true color, intensity, intensity alpha,
color indexed, and 256 color palettes. The TGA format has been available for years, many graphics tools can import
and export it.

For a detailed description of the TGA format, please refer to James Murray, et a., Encyclopedia of Graphics File
Formats, 2™ Ed., O’ Reilly & Assoc., Sebastopol, CA, 1996, pp. 860-879.

To learn how to add more plug-in file readers, please refer to section 4.5.

2.2.2 Script file

The following is a sample texture converter script file:

; coments begin with a senmicolon and continue to
; the end of a line

path = c:/level 1/ mari o/ ; path sets directory for files
; if path = NULL, full path is required for file nanes
; path is pre-concatenated to all subsequent file nanes
; path may be set on any line
path may be absolute or relative

file 0 = nmarioHead_rgha8.tga ; full file name is c:/level 1/ mari o/ mari oHead_rgba8.tga
i mge 0 = 0, 0, RGBA8 ; 1 mageO[RGB] =fil e0,i mageO[Al =fil e0, convert to RGBAS8
texture 0 = 0, x ; texture 0 of TPL file. Inage index is image0
; CLUT index is ‘x’ since it’'s not a color-indexed texture
path = d:/tenp/ mariol ; change path
file 1 = mari oArmrgb565.tga ; full file name is d:/tenp/ mario/ mari oArmrgb565.tga
i mage 1 = 1, x, RGB565, 0, 3, 0 ; generate mpmap O through 3 (4 LODs) and remap to O
texture 1 = 1, x
file 2 = marioFoot_ci8.tga
i mage 2 = 2, x, A8 ; convert to Cl fornmat
palette 0 = 2, RGB565 ; create palette O frominage 2
; convert palette entries to RGB565 fornmat
texture 2 = 2, 0 ; texture 2[RGB] = inmage 2, texture 2[CLUT] = palette O
path = NULL ; no nore path
file 3 = c:/marioBody_i8.tga ; file nane now requires full path
i mge 3 = 3, X, 18, GX_REPEAT, GX REPEAT ; TC will auto-convert fromrgb input to intensity
output. WIIl set wwap node in S and T to repeat.
; Can set wap nodes with mpnap argunents as well.
texture 3 = 3, X

Code 10 Texture converter script

© Nintendo Technology Development, Inc. CONFIDENTIAL

26 Programming CG Tools April 17, 2001

2.2.2.1 General noteson script files

White spaceisignored; eg., “imagel=1" and“image 1 = 1" arethe same thing.

Text isparsed line by line. Lines end with anewline and must be < 255 characters.

Images, textures, palettes, and their indices may be listed in any order. TC sorts each list into ascending order
before conversion.

Comments begin with a semicolon and continue to the end of aline.

Missing components are indicated by an “Xx”; e.g., an image that lacks an alpha plane is described as“image 1 =
1, x, RGB565", while a texture without a palette is described as “texture 1 = 1, x”.

Directory pathnames may be absolute or relative to the current directory.

2.2.2.2 Noteson list order

Inthescript file: All lists are opened when script file parsing begins. Text lines are identified by their first word
(e.g., “image,” “paette,” “texture”), and anew element is added to the appropriate list. Therefore, images, textures,
palettes, and their indices may be listed in any order. In Code 10, images, palettes, and textures are listed in
alternating order. Itisalso acceptableto list all images together in a single block, followed by all palettes, and so on.
Once the script fileis closed, TC sorts each list into ascending order.

Inthe TPL file: Images, textures, and palettes are packed into the TPL in the order in which they appear in their
sorted lists. Normally, list indices will correspond to sorted list position (e.g., image O will befirst in the list, and
image (n-1) will be last). However, it may be convenient to comment out some elements of the script file when trying
to determine an optimal TPL configuration. Once you have the final TPL configuration, indices should be
renumbered so that they run continuously from 0 to (n-1). Although renumbering is not mandatory, we strongly
recommend it in order to avoid confusion when trying to access textures at runtime.

path = directory_path

directory path isthe directory containing the input files. directory path is pre-concatenated to all subsequent file
names. path remainsin effect until changed. To turn path off, set path = 0 or path = NULL.
path may be either absolute or relative to the current directory.

filefile_id = file_name

file_id isanumber used by the image and textur e commands to reference the file file_name. Valid numbers are 0
to any positive integer.

If path isNULL, file_name must include a full pathname. The pathname may be absolute or relative to the
current directory. If path isset, directory_path will be pre-concatenated to file_name.

imageimage_id =rgb_image file id, alpha_image file id, format [,start_lod, end _lod, remap_lod] [,wrapS, wrapT]

image _id isanumber used by the textur e command to reference the image. Valid numbers are 0 to any positive
integer.

rgb_image file id isthe file which contains the RGB portion of thisimage.

alpha_image file_id isthe file which contains the alpha portion of thisimage.

Asyou can see, theimage command is very powerful. Using rgb_image file id and alpha_image file id, you can
compose an output RGBA image from two different source files. This featureis not often used with image formats
that have full alpha plane capability (like TGA), but it is extremely useful with image formats that cannot store alpha
information.

CONFIDENTIAL © Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 27

resulting texture
image

file 1 file 2

Figure 9 Creating an RGBA image from two different files

format specifies the desired output GCN format. The possibilitiesinclude all non-Z texture formats in the GX
library GXTexFor nat s enumerated type. We have removed the GX_TF_ prefix in the script for smplicity.
[,start_lod, end lod,remap_lod] are optional arguments needed only for generating mipmaps. start_lod and
end_lod specify which mipmap levels TexConv should generate. remap_lod specifies how to map to LOD at
runtime. Typicaly, remap_lod will be 0.

[,wrapS, wrapT] are additional optional arguments for overriding the default wrap modes for the sand t axes.
The possible values are GX_REPEAT, GX_CLAMP, and GX_M RROR. The default will be GX_REPEAT if both
height and width dimensions are a power of 2, and GX_CLAMP if otherwise.

The following example shows how to generate two LOD levels and re-map to lodO at runtime.

C convert time] C runtime)

lod2 (end_lod)
lod1 (start_lod)

A
lod0 Odl
original tev " lodO (remap_lod)
map image

«—wigdth—»

Figure 10 LOD level generation and re-mapping

palette CLUT palette id = CLUT file_id, dolphin_ CLUT format
Supported palette entry formats are RGB565 and RGB5A 3.
texturetexture id = image id, CLUT palette id

The textur e command actually defines atexturein the TPL file. The value of texture_id must be from 0 to any
positive integer.

image_id defines the image that represents this texture.
CLUT palette id definesthe CLUT palette used for this texture. For non-color-indexed textures, set this
parameter to ‘x’.

© Nintendo Technology Development, Inc. CONFIDENTIAL

28 Programming CG Tools April 17, 2001

2.3 TCAPI

2.3.1 Overview

The TC library provides a public API to enable the following features:

Limit the number of open files resident in memory.

Install a user-defined file reader function.

Create the components of TC'sinternal file structure (TCFi | e).
CreateaTPL file.

2.3.2 Source files

For the full structure definitions, function prototypes, and source code of the public API, see:

/cp/include/ charPipeline/tc (headers)
/cp/build/libraries/tc/src (source)

2.3.3 APlIs

To conserve memory, TC limits the number of source image files that may be resident in memory at any given time.
A fileinmemory isstored asa“TCFi | e” structure. A TCFi | e isasimplified form of an imagefile, consisting of
an RGB or indexed color plane, an optional alpha plane, and an optional palette. Caching afilein TCFi | e format
saves the time required to fetch and decode the raw file on subsequent loads.

2.3.3.1 TCSetFileCacheSize

voi d TCSet Fi | eCacheSi ze (u32 size);

Code 11 TCSetFileCacheSize

TCSet Fi | eCacheSi ze() alowsthe user to define the number of elementsin thisfile cache. Maximum cache
size varies depending on input file sizes, TC'sinternal memory allocation requirements, and available RAM.

Use of thisfunctionis optional. If itisnot called, the cache defaultsto size = 1.

2.3.3.2 TClInstallFileReadFn

We expect that artists will create source imagesin avariety of formats. Since we cannot support all possibilities, TC
includes a plug-in mechanism to implement file reading functions. This allows the tool programmer to define and
install file readers for any input file type desired.

void TClnstall Fil eReadFn(char* ext, u32 (*fileFn)(u32 rawSize, u8* rawBits, TCFile* fPtr));

Code 12 TClInstallFileReadFn

Thereis no limit to the number of file readers that may be installed. To install multiple readers, call
TCl nst al | Fi | eReadFn as many times as necessary with different “ext” and “fileFn” parameters.

CONFIDENTIAL © Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 29

For example, toinstall two file readers:
TCl nstal |l Fil eReadFn(“TGA”, pTgaFn);
TCl nstal | Fil eReadFn(“BMP”, pBnpFn);

NoTE: TexConv includes adefault TGA file reader that installs with acall to this function. The source code is
availablein:

dol phi n\ bui | d\ graphi cTool \ TexConv\ src\tga. cpp

2.3.3.3 Filereader APIs

TC registersfile typesin atable of 3-letter file extensions and function pointers. When TC reads afile, it first
searches this table for a matching extension and calls the corresponding function. TC providesthe raw file size, a
pointer to the raw file bits and an empty TCFi | e structure. Thefile reader is responsible for unpacking the raw data
intothe TCFi | e.

The TCFi | e splits the source image into three components:

Color layer (RGB or ClI).
Alphalayer.
Pal ette.

The user-defined file reader is responsible for initializing and filling each relevant component.

TCLayer* TCCreat eLayer (void);

void TCSetLayerAttributes (TCLayer* |y, u32 type, u32 width, u32 height);

u8* TCSet Layer Buffer (TCLayer* |y);

voi d TCSet Layer Val ue (TCLayer* |y, u32 x, u32y, ul6é ria, u8 g, u8 b);

voi d TCGet Layer Val ue (TCLayer* |y, u32 x, u32 vy, ul6* riaPtr, u8* gPtr, u8* bPtr);

TCPal Tabl e* TCCr eat ePal Tabl e (u32 nunEntry);
voi d TCSet Pal Tabl eVal ue (TCPal Tabl e* ptPtr, u32 index, u8 r, u8 g, u8 b, u8 a);
voi d TCGet Pal Tabl eVal ue (TCpPal Tabl e* ptPtr, u32 index, u8* rPtr, u8* gPtr, u8* bPtr, u8* Ptr);

Code 13 Filereader APIs

A layer (TCLayer) storesimage data as 24-bit RGB, 8-bit alpha or 16-bit color-indexed (Cl) texels. Texe datais
stored in uncompressed format, row-major order, with the top left corner of the image as texel (0,0).

A palette (TCPal Tabl e) contains an array of 32-bit RGBA color values. Palette array indices map directly to the
TCFi | e’scorresponding Cl color layer indices.

Thefile reader APIs shield the programmer from layer and palette internals. Y ou create alayer by calling
TCCr eat eLayer, TCSet Layer At tri but es and TCSet Layer Buf f er. After that, the dataisfilled in one
texel at atime by (width x * height y) callsto TCSet Layer Val ue. Depending onitstype, TCSet Layer Val ue
interprets “ria” to mean “red, index or alpha.” If the g and b parameters are not required, they are ignored.

Y ou can create and fill palettes (TCPal Tabl e) in asimilar manner; i.e., by calling TCCr eat ePal Tabl e followed
by numEntry callsto TCSet Pal Tabl eVal ue.

NoTE: If aninput palette lacks alpha, all TCFi | e palette alphas must be set to 255.
For detailed information about writing afile reader, see section 4.5.

© Nintendo Technology Development, Inc. CONFIDENTIAL

30 Programming CG Tools April 17, 2001

2.3.34 CreatingaTPL file

You can create a TPL file with asingle function call. Passin the name of the TCS file and the name of the desired
output file.

void TCCreateTpl File(char* srcTxtFile, char* dstTplFile);

Code 14 TCCreateTplFile

TC uses most of the public API to implement the user-defined file reading functions. Once you’ve created afile
reader, using TC isvery simple.

The following is a sample program to invoke TC. Assume that pFileFn is a user-defined file reader, and that
srcTesFile and dstTplFile are input and output file names.

voi d mai n()

TCSet Fi | eCacheSize(1);
TC nstal | Fi | eReadFn(“TGA’, pFileFn);
TCCreateTpl File(srcTcsFile, dstTplFile);

}

Code 15 Sample TC main function

2.3.4 A note about error messages

Non-recoverable errorstrigger apr i nt f -style message and terminate the program. Depending on where the error
occurred, the new TPL file and CSF file may be corrupt. After afatal error, delete the CSF file (C: \ Tenp\ *. csf)
or TPL file to ensure full reconversion the next time.

Error messages appear in the console window intheform“error: <functi on nanme> <nmessage>".

<message> provides a short description of the error condition and should be sufficient to identify common
problems.

<functi on nane> refersto theinternal function where the error occurred. This can help programmers track
bugsin cases where <nessage> does not provide sufficient information.

2.4 Output

2.4.1 TPLfile

For a byte-by-byte description of the TPL format, please refer to section XXX.

2.4.2 Cache file and format

We expect that an artist will iterate many times through the “ edit—convert—preview” loop when fine-tuning textures.
In this situation, most of the texturesin a TPL file will remain unchanged between successive conversions. TC saves
conversion time by block-copying the unchanged textures from the previous TPL, then reconverting only those
textures that have been altered since the last time the file was run.

CONFIDENTIAL © Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 31

To determine if an image or palette requires conversion, TC maintains a cached file (CSF) describing the contents of
the previous TPL. TC usesthe CSF file, previous TPL file, and source image files to identify and copy pre-existing
data.

The CSFfileisstored asC: \ Tenp\ t pl Cache. csf.

In general, it should not be necessary to read or modify the CSF file. However, in case of need, the CSF file format is
fully described by the comments and structures at the top of the following source file:

/cp/build/libraries/tc/src/ TCTPLTool Box. cpp
The following situations will trigger full reconversion:;

Missing . csf file.

Missing previous. t pl file.

Previous. t pl has been modified since it was created.

Previous. t pl version number does not match current “code” version number.
Previous. t pl and new . t pl have no images or palettesin common.

When deciding whether to convert or copy data blocks, TC asks, “Does the previous. t pl contain an image/palette
block with the same filename and attributes as the image/pal ette to be converted?’ This means that script file indices
and the. t pl filename may be changed between conversions while still leveraging pre-converted data.

The following situations will trigger partial reconversion:

Condition TC Action

Change to source image file modification time. Reconvert any image, palette referencing thisfile.

Change to script file contents. Reconvert affected images, palettes.

Addition to script file contents. Convert any new images, palettes.

Table 4 Partial reconversion parameters

NoOTE: When deciding whether data can be re-used, TC checks script file tokens and file modification dates; it does
not check actual source image bits. If any conversion code has been rewritten between successive callsto TC, this
may cause errors because previous TPL datawill be out of sync with current conversion code. To force afull
reconversion, delete either the. csf fileor the previous. t pl file.

2.5 Demonstration

Files for the texture converter demo are provided in the following directory:
/ cp/ bui | d/ t ool s/ TexConv/ sanpl e

The demo shows how to write a script to generate a TPL file. To run this demo to generate a sample TPL file, type
cd /cp/build/tool s/ TexConv/ sanmpl e
/ cp/ x86/ bi n/ TexConv sanpl e.tcs sanple.tpl

After conversion, the result will be stored insanpl e. t pl .

To view the TPL files generated by TexConv, you can utilize the texture previewer. The texture previewer iscalled
t exPr ev2 and should not to be confused with the GCN previewer that can preview geometry files. The texture
previewer islocated in

/ cp/ bui | d/ denos/ t exPrev2/ bi n/ MAC/ t exPrev2D. bi n

© Nintendo Technology Development, Inc. CONFIDENTIAL

32 Programming CG Tools April 17, 2001

Copy thisfileto a PowerMac G3 computer. Double-click on thisfile to launch Stufflt Expander to create the
executable. When you execute the texture previewer, directions should appear in the text box below the viewport.

CONFIDENTIAL © Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 33

3 Extending the C3 library

We created the C3 library in order to demonstrate an example of a generic tool path optimized for the GCN hardware;
however, the converter library’ s feature set is very basic, so providing a simple method of extension was crucia. The
C3 library allows programmers to attach their own datain one batch to each of the GPL, ACT, and ANM formats:

voi d C3Set GPLUserData (u32 size, void *data);
voi d C3Set ACTUserData (u32 size, void *data);
voi d C3Set ANMUserData (u32 size, void *data);

Code 16 C3 user data API

A corresponding API exists for retrieving the size and data pointer in the C3 library. The user data beginsin its
appropriate format, starting at a 32-byte-aligned boundary. It is padded to a 32-bit boundary at the end. Keep in mind
that you may have to swap bytes to ensure the correct endian format, depending on your data structures.

© Nintendo Technology Development, Inc. CONFIDENTIAL

34 Programming CG Tools April 17, 2001

4 Extending the texture converter libraries

Y ou may find it necessary to modify the TC library to provide additional functionality. While this document cannot
cover every scenario, sections 4.1 to 4.4 discuss how and where to integrate new code for the following most likely
types of extensions:

Changes to mipmap filter.

Improved file caching.

Pal ette generation.

Mipmapping a color-indexed image.

Section 4.5 explains how to write and install afile-reading function for image formats other than TGA.

4.1 Changing mipmap filter, color computations

TC's current mipmapping algorithm is fully described in Appendix C. This algorithm assumes that alphais used to
indicate atexel’s transparency value. RGB color components are treated as a single channel, and color is pre-
multiplied by alpha.

To use color or aphain some other manner:

Edit the mipmapping functions TCCr eat eNext M pMapLayer and TCBoxFi |l ter in
/[cp/build/libraries/tc/src/ TCM pMap. cpp.
Rebuild both TC and TexConv.

4.2 Improving file caching

TC's current file cache scheme is primitive. The file cache consists of an array of entries. Each time afileis opened,
TC checksfor afree entry. If it finds one, it stores the new filein the free element. Otherwise, the new file overwrites
entry O.

Because TPL filesrarely re-useimage files, it is difficult to devise a more sophisticated cache-management algorithm.
One possibility is a*“least-recently used” algorithm, but a better option may be to create a number of “locked” cache
elements for frequently used files (i.e., they load once and stay resident) and designate a single entry as a buffer into
which “one-time use” files are loaded in turn.

File loading and management code is located in
/cp/build/libraries/tc/src/TCFile.cpp

4.3 Generating palettes

Although TC does not provide any mechanism for generating pal ettes from true-color images, there are a number of
well-known algorithms available to perform color reduction. However, integrating color reduction code directly into
TC's conversion loop may be difficult. A better approach isto perform the operation from within the user-defined
file-reading function at file load time. (For information on writing afile reader, see section 4.5.)

NoTE: Wi teTpl I mageBank in TCTPLTool box. cpp contains a switch statement preventing Cl input to RGB
output. Edit this statement to remove the error flag.

CONFIDENTIAL © Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 35

4.4 Mipmapping a color-indexed image

Currently, TC generates an error if an attempt is made to mipmap a Cl image. To disable this error, edit the switch
statement in TCCheckM pMapFor mat s located in

/cp/build/libraries/tc/src/ TCM pMap. cpp
To create Cl mipmaps, add the appropriate code to TCCr eat eNext M pMapLayer inthe samefile.

NoOTE: TPL files support a maximum of only one palette per Cl image, regardless of the number of LODs created.
Therefore, all LODs of a Cl image will be forced to use the base palette for their color selections.

4.5 Writing a file reader

TexConv supplies afile reader for TGA files. Studying the source code should help to clarify the issues covered in
this section. Y ou can find the file reader source code in

/ cp/ bui | d/ t ool s/ TexConv/ src/tga.cpp

Thefile reader is responsible for unpacking raw image bitsinto a TCFi | e structure. A TCFi | e isTC' sinternal
representation of afile. It stores color and palette datain a ssimplified, modular, non-lossy format.

Y ou must write a separate file reading function for each additional image file format you wish to support. Thefile
reader function must have this prototype:

u32 fileFn(u32 rawSi ze, u8* rawBits, TCFile* fPtr);
TC provides the rawS ze, rawBits and fPtr parameters.

rawSze isthe size of the raw file in bytes.

rawBitsis a buffer containing the raw file data.

fPtr is a pointer to a zeroed-out element of TC'sinternal file cache.
fileFn must return 1 on success, 0 on failure.

The public portion of aTCFi | e structure looks like this:

typedef struct

/1 ...other nmenbers

TCLayer * | yCol or; /1 image color |ayer
TCLayer * | yAl pha; /'l image al pha | ayer
TCPal Tabl e* pal Ptr; /1l palette

} TCFile, *TCFilePtr;

Code 17 TCFile structure

A TCFi | e contains other data members, but they are for TC'sinternal use only. When fPtr is passed to fileFn, all of
its public pointers are set to NULL. fileFn must set the lyColor member; lyAlpha and pal Ptr are optional. fileFn may
safely ignore the pointer for any layer or palette it does not intend to set.

TC providestheinput file as a buffer full of raw data, and an API to create and fill the components of fPtr. Therefore,
fileFn does not require any file I/O or memory allocation operations.

© Nintendo Technology Development, Inc. CONFIDENTIAL

36 Programming CG Tools April 17, 2001

Unpacking an image file is the process of separating its data into three components:

Color layer.
Alphalayer
Palette.

4.5.1 TClLayer

A layer (TCLayer) isaset of like components from an image color map. A layer may contain RGB colors, apha
values, or color indices. A layer’stype and dimensions are defined by TCSet Layer At tri but es.

The #defined type of acolor layerisLY_| MAGE_COLOR_RGB24.
A color-index layerisLY | MAGE_COLOR _CI 16.
AnalphalayerisLY_| MAGE_ALPHA AS8.

To represent an image in intensity/grayscale format, create an RGB color layer and set (r = g = b) for each texel. TC
takes the sum of color components and divides it by three when converting to | or 1A output formats.

A layer contains image data in uncompressed format. Image data begins with the top left corner of the image at texel
(0,0) and proceedsin row order.

RGB colors are stored as 24 hits per texel; unsigned 8-bit values for each of r, g and b. Color indices are stored as
unsigned 16-bit values per texel, with only the lower 14 bits used. Alphais stored as an unsigned 8-bit value per
texel.

Every source image must set a color layer. If the source image has alphainformation, it must also set an alphalayer.

452 TCPalTable

TCPal Tabl e isthe palette from asourceimage. A TCPal Tabl e contains an array of palette entries, and an
entry’ s array index equalsits colormap index. For example, if paletteent r y[5] isr=0, g=0, b=255, a=255, and the
value of texel (m, n) is 5, then the color at texel (m, n) is blue.

Entries are stored as 32-bit RGBA values; i.e., as unsigned 8-bit values for each for r, g, b and alpha.
If the input palette has no apha, each TCPal Tabl e entry must set alphato 255.

4.5.3 Unpacking an image file

It is not necessary to know TCLayer or TCPal Tabl e internals to unpack afile because TC provides an API for
compl ete layer/pal ette management.

To create and fill fPtr’ s layers:

Call TCCr eat eLayer to allocateanew TCLayer .

Call TCSet Layer Attri but es to set the new layer’swidth, height and type (“type’ tells TC how many bits
per texel thislayer's datawill require; for #defined type values, see section 4.5.1 above).

Call TCSet Layer Buf f er to allocate a data buffer.

Set texel valuesindividually with (width* height) callsto TCSet Layer Val ue. If acolor component is not
required (e.g., g and b for an alpha layer), pass 0.

CONFIDENTIAL © Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 37

To create and fill fPtr’s palette:

A call to TCCr eat ePal Tabl e will both alocate and initialize anew TCPal Tabl e. Passin the number of
entries required.

Set individua palette entries with (numEntry) callsto TCSet Pal Tabl eVal ue. If theinput palette has no
alpha, be sure to set each entry’ s alpha value to 255. Otherwise, if the output palette format is RGB5A3, the
alpha component will contain garbage.

NoTE: fileFn does not know the intended output format of a source image. In cases where TC must auto-convert
from a Cl input image to an RGBA output format, only the color layer isfirst converted from color-indexed to an
intermediate RGB format—the apha layer is passed straight through. Thisis aby-product of TC'simage-gluing
scheme whereby output color and alpha can be derived from separate source images. Therefore, you have a color-
indexed image and its pal ette has an alpha component, you must preserve alpha both in an alpha layer and in the
palette. Create atrue alphalayer for fPtr->lyAlpha by performing the color lookup for each texel, then set the input
palette alphain the new fPtr->pal Ptr.

Here is a simple code example:

/*
APl structures, #defines, prototypes are |ocated in dol phin/includel/charPipeline/tc
Wor ki ng code is located in dol phin/build/graphicTool s/ TexConv/src/tga.cpp

user-defined structures, functions, variables for exanple fileFn:

nmyFi | el nf o: define a structure to store header information from‘rawBits’
nmyLayer Type: true-color (rgb) layer is LY_| MAGE_COLOR RGB24
color-index layer is LY_ | MAGE_COLOR Cl 16
al pha | ayer is LY_| MAGE_ALPHA A8.
myCet Col or Pl aneType(): determ nes ‘nylLayer Type’ value from'‘'rawBits’
my CGet Texel Col or () : fetches r,g,b values for texel (x, y) from‘rawBits’.
If ‘rawBits’ is intensity format, nust set r = g = b.
my CGet Texel Al pha(): fetches 8-bit al pha value for texel (x, y) in ‘rawBits’.

myCet Pal etteEntry(): fetches rghba value from‘rawBits' for CLUT entry.
If input palette has no al pha, nust set ‘a to OxFF.
*/

Il sanple file reader
u32 fileFn(u32 rawsSi ze, u8* rawBits, TCFile* fPtr)

{

struct nyFil el nfo; /1 user-defined header for ‘rawBits’

u32 nylLayer Type; // defines |ayer type — rgb color, color-index or al pha

ulé ria; /1l “red, index or al pha”:
/1 = 8b red conponent of an rgb texel (col or layer)
/1 or 16b index of a color-index texel (col or layer)
/1 or 8b value of an al pha texel (al pha | ayer)

u8 g, b; /'l green, blue conponents of an rgb texel (col or layer)

/'l each source file nust have a col or | ayer
fPtr->lyCol or = TCCreatelLayer();

/1 determine ‘rawBits’ color |ayer type.
myLayer Type = nyCet Col or Pl aneType(&nyFilelnfo); // one of LY_I MAGE
/1 LY_I MAGE_

COLOR_RGB24,
COLOR_Cl 16
/1 initialize TCLayer nenbers

TCSet Layer Attri butes(fPtr->lyCol or, nyLayer Type,

nmyFi | el nf o->wi dth, nyFil el nfo->hei ght);

/1 allocate |ayer data buffer
TCSet LayerBuffer(fPtr->lyColor);

/'l translate one texel at a tine:
/1 read from‘rawBits'; wite to fPtr->lyCol or
for(row = 0; row < nyFil el nfo->hei ght; row+)

© Nintendo Technology Development, Inc. CONFIDENTIAL

38

Programming CG Tools

April 17, 2001

{ for(col = 0; col < nyFilelnfo->width;

/1 note: if
myCet Texel Col or(rawBits,
TCSet Layer Val ue(fPtr->lyCol or,

}
} /1 done

/1 al pha layer is optional:
/1l note: if
/1 layer for this file.

i f(nyFilelnfo->hasAl pha)

/! create and fill as for color |ayer,
/1 but set nylLayerType =
/1l wite myGet Texel Alpha to fetch *a’
/1 and call TCSetlLayerValue with (..,

}

/] palette is optional: if no palette,
if(nyFilelnfo->hasPalette)

rawBits is intensity fornmat,

col,
col,

col ++)

I ow,
I ow,

if no alphain rawBits,
rawBits contains a palette with al pha, nust create a true al pha

LY_| MAGE_ALPHA A8,
fromrawBits
a, 0, 0)

nyGet Texel Col or nust set (r = g = b)
&, &g, &);
r, g b);

skip this step.

skip this step

entry++)

...) to set palette entries.

‘a’ to OxFF for each entry.

{
/1 call fPtr->pal Ptr = TCCreatePal ette(nyFil el nfo->pal NunEntry);
/1 loop (for entry = 0; entry < nyFil el nfo->pal NunEntry;
/1 call TCSetPal Tabl evVal ue(.., entry,
/1 note: if input palette | acks al pha, nust set

}

/1 note: do NOT free rawBits
return 1; // success

}

Code 18 Samplefilereader

CONFIDENTIAL

© Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 39

Appendix A. Building source code

A.1 Building CPExport . dl e for 3D Studio MAX Release 3.1

The 3D Studio MAX Release 3.1 plug-in converter requires Microsoft’s Visual C++ 6.0 compiler with Service Pack
3. Beforeyou can build CPExport . dl e, please complete the following steps:

1. Make surethat the NINTENDO GAMECUBE (GCN) SDK isinstalled (required to access additional CP libraries
that could not be separated into the CP SDK).

2. Install the SDK for 3D Studio MAX Release 3.1, which islocated on the 3D Studio MAX Release 3.1 Installation
CD.

3. Copy thefilesBi pexp. h and Phyexp. h fromthe[MAX R3 I nstall CD]/ Cstudi o/ Cstudi o/ Docs
directory to the[Maxsdk] / | ncl ude directory.

4. Launch Microsoft Visual C++ 6.0 and open this workspace:
/ cp/ bui | d/ t ool s/ Max/ CPExport/vc++/ MaxConv. dsw.

5. If the 3D Studio MAX SDK isinstalled in the default path “C: \ 3dsmax3_1\ Maxsdk”, skip to step 10.
6. InVisua C++, changeto “File View” in the Workspace Window.

7. Right-click on “MaxConv files’ and select “ Settings...”. Make sure the “ Settings For:” drop-down list shows
“All Configurations”.

8. Click onthe“C/C++" tab. In the “ Category” drop-down list, select “ Preprocessor”. Under “Additional include
directories’, add the full path to your [Maxsdk] /i ncl ude directory (installed when you completed step 1).
This directory may be hiding at the end of the line.

9. Click onthe“Link” tab. In the “Category” drop-down list, select “Input”. Under “Additional library path”, add
the full path to your [Maxsdk] / I i b directory. Close the dialog.

10. Finally, click on Build > Build CPExport.dle. CPExport . dl e will belocatedin/ cp/ x86/1i b.

To learn how toinstall CPExport . dl e asan export plug-in to 3D Studio MAX, please refer to Chapter 1 of
“Character Pipeline for Artists.” The debug version of the export plug-in will be named CPExpor t D. dl e.

Y ou can build both release and debug versions for the 3D Studio MAX converter. Make sure to set the active project
configuration for “Win32 Release” or “Win32 Debug,” respectively, for all projects under Build > Set Active
Configuration...

NOTE: The CP SDK installer makes sure that programs are in their correct directories. For your information,
CPExport . dl e will call TexConv. exe to generate the TPL file for the exported scene. It expects

TexConv. exe to bein the directory specified by the environment variable CP_X86_BI N, which should be installed
by the CP SDK.

A.2 Building CPExport.m | for Maya 3.0

The Maya 3.0 export plug-in also requires Microsoft’s Visual C++ 6.0 with Service Pack 3. Please follow the
following steps to set up the build process:

1. Make surethat the NINTENDO GAMECUBE (GCN) SDK isinstalled (required to access additional CP libraries
that could not be separated into the CP SDK).

2. Install Maya 3.0.

© Nintendo Technology Development, Inc. CONFIDENTIAL

40 Programming CG Tools April 17, 2001

3. Launch Microsoft Visual C++ 6.0 and open this workspace:
/ cp/ bui | d/ t ool s/ Maya/ CPExport/vc++/ MayaConv. dsw.

4. If Mayaisinstalled in the default path “C:. \ AW Maya3. 0", skip to step 9.
In Visual C++, changeto “File View” in the Workspace Window.

6. Right-click on “MayaConv files” and select “ Settings...”. Make sure the “ Settings For:” drop-down list shows
“All Configurations”.

7. Click onthe“C/C++" tab. In the “ Category” drop-down list, select “ Preprocessor”. Under “Additional include
directories’, add the full path to your Maya3. 0/ i ncl ude folder and Maya3. 0/ devki t / ganmes/ i ncl ude
folder. These directories may be hiding at the end of the line.

8. Click onthe“Link” tab. Inthe“Category” drop-down list, select “Input”. Under “Additional library path:”, add
the directory to Maya3. 0/ | i b. Close the dialog.

9. Findly, click on Build > Build CPExport.mll. CPExport. nl | will belocatedin/ cp/ x86/1i b.

To learn how toinstall CPExport. m | asan export plug-in to 3D Studio MAX, refer to Chapter 1 of “ Character
Pipeline for Artists.”

Y ou can build both release and debug versions for the Maya converter. Make sure to set the active project
configuration for “Win32 Release” or “Win32 Debug,” respectively, for all projects under Build > Set Active
Configuration... The debug version of the export plug-in will be named CPExport D. m | .

NOTE: The CP SDK installer makes sure that programs are in their correct directories. For your information,
CPExport. m | will call TexConv. exe to generate the TPL file for the exported scene. It expects

TexConv. exe to bein the directory specified by the environment variable CP_X86_BI N, which should be installed
by the CP SDK.

A.3 Building TexConv. exe

1. InVisua C++,0pen/ cp/ buil d/ t ool s/ TexConv/ vc++/ TexConv. dsw.
2. Click on Build > Rebuild All. The executable will be located inthe/ cp/ x86/ bi n directory.

For a demonstration of the TexConv converter on its own, refer to section 2.5.

CONFIDENTIAL © Nintendo Technology Development, Inc.

April 17, 2001 Programming CG Tools 41

Appendix B. Texture compression

B.1 S3library

TCusess3tc. | i b togenerate compressed (CMPR) textures. Texture compression is atwo-step process:
1. s3tc.|ib generates compressed texturesin its own S3_TEXTURE format.

2. The compressed textures are modified to fit the hardware format (see section B.2 below) and copied to the new
TPL file.

Source code for this conversion islocated in
/cp/build/libraries/tc/src/ TCCreateS3. cpp

Compressed textures are generated one LOD at atime. Notethat s3t c. | i b does not generate mipmaps; the calling
code must first generate LODs, which are then passed one at atime to the S3 conversion API.

B.1.1 Complete S3library documentation

s3tc.libislocatedin
/cp/ x86/1ib

Thelibrary’s header file (s3_i ntrf. h)islocated in
/cp/build/libraries/tc/include

S3's own documentation and copies of the S3 libraries for PC, Mac and Linux are stored asazip filein
/cp/build/libraries/tc/s3tclib/S3TCLib. zip

Printed S3 documentation is included in the NINTENDO GAMECUBE Graphics Programmer’s Guide.

B.2 Converting an S3 texture to hardware format

When packing an S3 texture for conversion to hardware format, there are four major points to consider:

The S3 library converts a source texture into 4x4 texel tiles. Each tile contains two 16-bit colors and sixteen 2-bit
texel indices for atotal of eight bytes. Thetiles are packed in row-major order. The hardware requires that these
tiles be packed as 2x2 “super” tiles. Each super tile consists of four S3 tiles for atotal of 8x8 texels and 32 bytes:

HardwareTile S3Tilelndex Image Texels

bytes (0-7) = S3Tile[0][0] | = texels (00, 01, 02, 03), (10, 11, 12, 13), (20, 21, 22, 23), (30, 31, 32, 33)
bytes (8-15) = S3Tile[0][1] | = texels (04, 05, 06, 07), (14, 15, 16, 17), (24, 25, 26, 27), (34, 35, 36, 37)
bytes (16-23) = S3Tile[1][0] | = texels (40, 41, 42, 43), (50, 51, 52, 53), (60, 61, 62, 63), (70, 71, 72, 73)
bytes (24-31) = S3Tile[1][1] | = texels (44, 45, 46, 47), (54, 55, 56, 57), (64, 65, 66, 67), (74, 75, 76, 77)

Table 5 Super tile composition

© Nintendo Technology Development, Inc.

CONFIDENTIAL

42 Programming CG Tools April 17, 2001

Bytes (0-3) of each 4x4 S3 tile contain two 2-byte RGB colors. These colors are packed in little-endian format,
but for hardware, these colors must be packed in big-endian format. Therefore, each 2-byte color must have its
byte order switched.

Bytes (4-7) of each 4x4 S3 tile contain 4 sets of row indices. Each set occupies one byte. Each set contains four
2-bit indices, one for each texel in therow. The ordering of these indices must be reversed within each byte;
however, bit order remains the same within each 2-bit index. For example, an input byte of 0x1B becomes OxE4
on output.

The dimensions of an S3 texture may be any multiple of four texels. Hardware requires that super tiles be formed
in multiples of 8x8 texels. That is, if any of the S3 texture's dimensionsis not a multiple of 8 texels, it will be
necessary to pad the output image with zeroed-out tiles at the right and/or bottom edges.

B.2.1 Further reading

For diagrams of texel formats, see “Graphics Library (GX),” Appendix C, in the NINTENDO GAMECUBE Graphics
Programmer’s Guide.

For thefull TC. | i b source code, please refer to the functions TCW i t eTpl | nage_CVP, TCPackTi | e CVP,
TCFi xEndi an and TCFi xCMPWr d located in

/cp/build/libraries/tc/src/ TCTPLTool box. cpp

B.2.2 Codeexample

The following code sample demonstrates how to pack an S3 texture. For clarity, thereis no checking of S3 image
dimensions for 8-texel padding, and some local variable definitions have been omitted.

/'l pack an S3-conpressed texture into a set of 32-byte hwtiles
voi d PackS3Texture(u8* s3Texture, u32 s3Wdth, u32 s3Hei ght, u8* outBuffer)
{

u8* thisTil e2x2; /Il ptr to top,left of 2x2 S3 tiles (8x8 texels)
u32 s3StrideX = 16; /1 2 S3 tiles are 8 texels wide at 8B per 4x4 tile
u32 s3StrideY = s3Wdth / 4 * 8; /1 1 S3tileis 4 texels high at 8B per 4x4 tile

for(row=0; row < (s3Height / 4); row ++)
for(col =0; col < (s3Wdth / 4); col ++)
thisTile2x2 = s3Texture + (row * s3StrideY * 2) + (col * s3StrideX);
Pack32ByteTil e(thisTile2x2 , s3strideY, outBuffer);

out Buf fer += 32;

}

/1 pack 2x2 S3 tiles into a single 32-byte hwtile
voi d Pack32ByteTile(p2x2Tile , s3strideY, outPtr)
{

u8 tnpBl ock[32];

u8* thisTile,;

Copy8Byt es(
Copy8Byt es(
Copy8Byt es(
Copy8Byt es(

p2x2Tile)

p2x2Tile + 8)
p2x2Tile + s3StrideY) ,
p2x2Tile + s3StrideY + 8),

/1 S3 tile at
/1 S3 tile at
/1 S3 tile at
/1 S3 tile at

t npBl ock)

tnpBl ock + 8)
tnpBl ock + 16)
tnpBl ock + 24)

~~—~—
== OO
——
= O Fr O
——

)
)
)
)

~~~—
————
————

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Programming CG Tools 43

thisTile = tnpBl ock;
for( i =0; i < 4; i++) /1 adjust bytes and bits within each S3 tile

{ Swi t chWor dEndi an( (ul6*)thisTile y; /1 1% 2-byte col or
Swi t chWor dEndi an( (ul6*)( thisTile + 2 ) ); [/ 2" 2-byte col or

Swi tchByteTuples( ( thisTile + 4 ) ); /1 1% row of 4 texels
SwitchByteTuples( ( thisTile + 5 ) ); /1 2" row of 4 texels
SwitchByteTuples( ( thisTile + 6 ) ); /1 3% row of 4 texels
Swi tchByteTuples( ( thisTile + 7 ) ); /1 4" row of 4 texels
thisTile += 8§; /1 advance 8 bytes within 32-byte bl ock
}
Copy32Byt es( tnpBl ock, outPtr ); /1 copy the nodified 32-byte bl ock

// to the output file
}

/'l reverse 2-bit tuple ordering within a byte
void SwitchTupl es( u8* pByte )
{

*pByte = ( ( *pByte & 0x03 ) << 6 ) | ( ( *pByte & OX0C ) << 2 ) |
( ( *pByte & 0x30 ) >> 2 ) | ( ( *pByte & 0xCO) >> 6 ) ;
}

/'l reverse endianness of a 2-byte word
voi d SwitchWrd( ulé* pwrd )

*pword = ( ( *pWord & OxOOFF ) << 8 ) | ( ( *pWrd & OXFFOO ) >> 8 );
}

Code 19 Packing an S3 texturefor conversion

© Nintendo Technology Development, Inc. CONFIDENTIAL



44 Programming CG Tools April 17, 2001

Appendix C. Mipmapping technical notes

There are several waysto construct mipmap LODs from an original (LOD 0) texture. Two important choices for such
an agorithm are:

The type of filter kernel used.
The treatment of alphavaluesvs. color values.

The type of filter kernel used to construct less-detailed LODs from more-detailed ones has an effect on the final
appearance of the textured object. A 2x2 filter kernel (i.e., equal-weight box filter) is common; indeed, we useit in
our implementation. However, larger filter kernels (e.g., 4x4, 6x6, etc.) can be used to provide slightly better results.
Larger filter kernels are not supported in the current implementation of mipmap LOD generation, but users can
generate their own mipmap LODs if thisfeatureis desired.

The treatment of alpha values vs. color values applies to textures that incorporate an alpha channel. The normal
assumption for such atexture isthat the alpha channel represents a transparency value to be applied to a given texel's
RGB values. In order to generate less-detailed LODs correctly under this scenario, therefore, the apha value for a
given texel must be multiplied by the RGB values befor e averaging the various texel s together, and the composite
alpha value must be divided out again befor e writing the new RGB values. In essence, you compute a weighted-
average for the new RGBS, with the alpha value serving as the weighting factor. Here's avisual example to explain.

Imagine that the following four texels must be combined to produce asingle texel for aless-detailed LOD:

R: O R: 255
G: 255 G:. O
B: O B: O
A O A: 255
R: 255 R: O
G:. O G:. O
B: O B: 255
A: 255 A: 127

Figure 11 RGBA for LOD generation

An aphaof 0 means the texel is transparent.
An aphaof 255 means the texel is fully opaque.

Thefinal texel should be computed like this:

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Programming CG Tools

A'=(0+ 255+ 255+127) / 4=159

R'=((0* 0+ 255* 255+ 255* 255+ 0* 127) / 4) / A'= 204
G'=((255* 0+0* 255+ 0* 255+ 0*127) / 4)/ A'=0
B'=((0* 0+0* 255+ 0* 255+ 255*127) / 4) | A'=51

Equation 1 Texture conversion (the right way)

And not likethis (i.e., with RGBA treated separately):

R'=(0+255+255+0)/4=128
G =(255+0+0+0)/4=64
B'=(0+0+0+255)/4=64
A'=(0+255+255+127) / 4=159

Equation 2 Texture conversion (the wrong way)

Note that the upper-left original texel isthe only one with any greeninit. However, it is also completely transparent,
and therefore the new texel should have no green in it (as the correct result shows). Similar logic applies to the other

color components.

All of thisis based upon the assumption that the alpha value represents the texel transparency. This assumption is

made by the current LOD-generation implementation, and thus we use computations such as those shown in Equation
1. However, it isworth noting that there may be cases in which the alpha value for a given texture does not represent
transparency. If alphaisto be used in some other manner, then the computations shown in Equation 1 may not apply.

In such cases, the user should generate his own mipmap LODs.

For Equation 1, a special case for the box filter existsswhen A’ iszero (i.e., al alphavalues for the four texels are
zero). Following the equation, if A’ iszero,thenR , G ,and B’ are undefined because you cannot divide by zero.
Therefore, R , G , and B' were previously set to zero (black) aswell. Now, in thisspecial case, R ,G ,and B’ will
simply be an average of the R, G, and B values for the four texels, respectively. Since A’ istill zero, this new texel is

still considered to be transparent, but the color values are preserved.

© Nintendo Technology Development, Inc.

45

CONFIDENTIAL




46 Programming CG Tools April 17, 2001

Appendix D. AnmCombine

AnmConbi ne isautility application that combines multiple ANM filesinto one ANM file. Y ou can load source and
header filesin Microsoft Visual C++ 6.0 from:

/ cp/ bui | d/ t ool s/ AnnConbi ne/ vc++/ AnnConbi ne. dsw

Building the application issimple. In Visual C++ 6.0, click on Build > Build AnmCombine.exe, or just press F7.
AnmConbi ne. exe should belocated in/ cp/ x86/ bi n.

AnmConbi ne is accessible through a command line interface:

AnmConbi ne. exe [ANM to conbine to] [ANMfile] [ANMTfil e]
Y ou can also specify a separate output file:

AnmConbi ne.exe [ANMfile] [ANMTfile] ... /o [Qutput nane]

All input ANM files must have the same byte endian, and the output byte endian is determined by the endian of the
input files. We've provided an examplein the/ cp/ cpdat a/ max/ Monkey directory; please refer to the
README. t xt filefor exact directions. AnnmCormbi ne will also ignore the user-defined data field in the ANM
formats since the program does not know how it should combine them.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Programming CG Tools 47

Appendix E. C3library internal architecture

E.1 Introduction

This appendix further explains the internal data structures, algorithms, and program flow of the C3 library. We
assume that you aready understand the C3 API as explained in Chapter 1.

The C3 library was designed to separate the conversion paths for geometry, hierarchy, animation, and texture, thus we
have four distinct output formats: GPL, ACT, ANM, and the TCS script. In keeping with the library’s design, this
document is divided into the following parts:

Main program flow in section E.2.
Geometry pipeline in section E.3.
Hierarchy pipelinein section E.4.
Animation pipelinein section E.5.
Texture pipeline in section E.6.

Although we provide many code samples here, we recommend following along in the source code to familiarize
yourself with the location of these major functional groupsin the C3 library.

The C3 library iswritten in the C programming language and compiles using Microsoft Visual C++ 6.0 with Service
Pack 3. A workspacefileisprovidedin/ cp/ bui | d/Ii brari es/ c3/vc++/ c3. dsw, which provides accessto
all of the code:

Public header files: / cp/ i ncl ude/ char Pi pel i ne/ C3. h and

/ cp/incl ude/ char Pi peline/c3/*. h.
Private header files:. / cp/ bui |l d/ i brari es/ c3/i ncl ude/ *. h.
Sourcefiles:/ cp/ buil d/libraries/c3/src/*.c.

Each source and header file carriesa“ C3" prefix and is named according to its purpose. For example:

“C3GeoCnyv. ¢” contains functions used to convert geometry.
“C3Hi eExt . ¢” contains functions used to extract hierarchy information.
“C3AnmQut . ¢” contains functions to output animation to the ANM format

Comments in the source code may also prove helpful in comprehending the C3 library.

E.2 Main program flow

The main program flow of the C3 library is straightforward. Section 1.1.3 in the main text explains the overall
program flow using a code segment from the 3D Studio MAX converter. The following diagram shows each of the
functional groups that we'll discuss here:

© Nintendo Technology Development, Inc. CONFIDENTIAL




48 Programming CG Tools April 17, 2001
INITIALIZATION [— OPTION SETTING API EXTRACTION AP
C3ilnitialize ] C3SetOption... C3Begin.../C3End...
CLEANUP CONVERSION/OUTPUT OPTIMIZATION
C3Clean C3WriteFile C30ptimizeBeforeOutput

Figure 12 C3library main program flow

E.2.1 Ca3lnitialize

C3lni tialize mustbecalledfirst in order to initialize data structures and some important utilities. This function
islocatedinC3Uti |l . c.

E.2.1.1 Memory allocation

Memory allocation and deallocation in the C3 library may be done in one of two ways:

C3_CALLOCand C3_FREE.
Memory pools.

The first method is the traditional C-style method. C3_CALLOC and C3_FREE are macros that check memory usage
and potential leaksin the C3 library, depending on whether C3_CHECK _MEM ALLCOCisenabled. While
C3_CHECK_MEM ALLCCisnot defined by default in C3Def i nes. h, enabling it during compilation of the C3
library will track all memory allocation and deallocation. The results are provided in “MemAl | oc. t xt ” inthe
export destination directory, with the file name and line number of allocation and deallocation. (See C3Debug. h and
C3Debug. c.)

The second method uses memory pools. By pre-allocating a group of the same data structures, you can minimize
memory fragmentation when many small allocations are necessary. However, there is a drawback in that no
deallocation or reuse of this memory can occur until all the pools are cleared with C3Cl ean at the end. (See
C3Pool . hand C3Pool . c.)

E.2.1.2 Structures library

Linked lists, trees, and hash tables are basic data structures used extensively in the C3 library, aswell asin the rest of
the Character Pipeline. Some of these types of structures are initialized during C31 ni ti al i ze, but since linked
lists are so important, their implementation in C3 should be explained before looking at any code.

The structures library isincluded with the NINTENDO GAMECUBE SDK, and not the CP SDK because the GCN
SDK needsit for the texPalette and fileCache libraries. The structures library islocated in

/ dol phi n/ bui | d/ char Pi pel i ne/ st ructures.
Y ou can load the workspace in Microsoft Visual C++ 6.0 by opening
/ dol phi n/ bui | d/ char Pi pel i ne/ structures/vc++/ structures. dsw.

The general-purpose linked list islocated in Li st . h and Li st . ¢c. Hereisthe structure declaration:

typedef struct

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Programming CG Tools 49

{ Ptr Prev;
Ptr Next ;

} DSLink, *DSLinkPtr;
typedef struct
u32 O fset;
Ptr Head;
Ptr Tai l ;

} DSList, *DSListPtr;

Code 20 DSLink and DSList

Asyou can see, DSLi st isthe structure that contains a general pointer to the head (beginning) and tail (end) of its
members. Also, all of the membersin the list should be of the same data structure, and should include DSLi nk,
which will doubly link the (next and previous) membersin the list. Since DSLi st isgeneral purpose, the Of f set
fieldin DSLi st isnecessary when members are inserted and removed so that the DSLi nk pointers of the members
are modified appropriately. Specifically, Of f set isthe number of bytes from the top of the member structure to the
DSLi nk structure.

For example, let's create an example list and two members:

/1 Declare a new data structure to be nenber of a list
typedef struct

/'l Your fields here (i.e. u32, Ptr, char*, etc.)
/1

DSLi nk i nk;

/1l More fields since DSLink can be anywhere in C3Li st Menber
/1

} C3Li st Menber;

/1 Data structures allocation
DSLi st list;

C3Li st Menber menber 1;

C3Li st Menber menber 2;

C3Li st Menber  *nmenber Ptr;

/1 Code sanple

/1 Initialize the list for C3ListMenber type (last two argunents used to initialize Ofset)
DSInitList( & ist, (Ptr)&menberl, &renberl.link );

/1 Insert menberl as first nmenber, at top of Iist
DSl nsertListObject( & ist, NULL, (Ptr)&nmenberl );

/1 Insert nmenber2 as second nenber, after nenberl
DSl nsertListObject( & ist, (Ptr)&renberl, (Ptr)&mrenber2 );

/1l Get the head of the list (should be nenberl)
menber Ptr = (C3Li st Menber *) | i st. Head,;

/1 Get the next menber in the list using function (should be menber2)
menber Ptr = DSNext Li st bj ( & ist, (Ptr)menberPtr );

/1l Get the next menber in the list manually (shoul d be NULL)
menber Ptr = (C3Li st Menber *) menber Pt r - >| i nk. Next ;

Code 21 Linked list example

© Nintendo Technology Development, Inc. CONFIDENTIAL




50

Programming CG Tools

April 17, 2001

Asaresult of Code 21, we should have a list that contains two members, as Figure 13 shows:

Head

DSList
list

Tail

C3ListMember
memberl

DSLink

C3ListMember
member2

DSLink

Prev Nextﬂi. Prev Next
Figure 13 Schematic of linked list example (Code 21)

One advantage to this linked list structure isthat it does not move memory; instead, it simply manipulates pointers.
Note that although most applications require only the single link Next , the library offers only a doubly-linked list
functionality for now.

The DSTr ee and DSBr anch structures for specifying hierarchies rather than aflat list operate in avery similar
manner. (SeeTree. hand Tree. c.)

The DSHashTabl e structure implements a hash table using alist of DSLi st s. (SeeHTabl e. h and HTabl e. c.)

E.2.2 C3SetOption

C3lnitialize setsdefault options, but you can set your own optionsin the C3 library by using the
C3Set Opt i on* functionsin C3Opt i ons. h and C3Opt i ons. ¢. Thereisabrief overview in section 1.2.2, but
here we discuss the purpose and show how to use each of the option-setting functions:

voi d C3Set Opti onReport St at usFunc( C3Report St at usFunc func )

Purpose: Method by which the C3 library reports its current status.

Default: printf.

Argument: Function pointer with voi d return type and one argument with achar * type, asdefined in
C3Util.h. ANULL functionwill prevent any status messages.

voi d C3Set Opti onReport Error Func( C3ReportErrorFunc func )

Purpose: Method by which the C3 library reports any errors.

Default: printf.

Argument: Function pointer with voi d return type and one argument with achar * type, asdefined in
C3Util.h. ANULL functionwill prevent any error messages.

voi d C3Set Opti onFil eExportFl ag( u32 fil eExportflag )

Purpose: Determines which files should be output: GPL, ACT, ANM, TCS script, or statisticsfile.

Default: C3_FI LE_ALL.

Argument: Bitwise-OR combination of any of the following C3Qut . h constants: C3_FI LE_GEQOVETRY,
C3_FI LE_HI ERARCHY, C3_FI LE_ANI MATI ON, C3_FI LE _TEXTURE, or C3_FI LE_STATS. For ease,
C3_FI LE_ALL can be specified to output al files.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Programming CG Tools 51

voi d C3Set Opti onQut put Endi an( u8 endi anType )

Purpose: Sets the output endian, depending on destination hardware byte order.
Default: C3_OUTPUT_BI G_ENDI AN.

Argument: Either C3_QOUTPUT_BI G_ENDI AN (for PowerPC/Mac and GCN) or
C3_QUTPUT_LI TTLE_ENDI AN (for PC).

voi d C3Set Opti onSrcVertexOrder( u8 vtxOrder )

Purpose: When extracting vertices, sets whether a front-facing polygon has a clockwise or counter-clockwise
vertex order.

Default: C3_CCW
Argument: Either C3_CW (clockwise) or C3_ CCW(counter-clockwise).

voi d C3Set Opti onEnabl eStitching( C3Bool flag )

Purpose: Setswhether stitching or skinning is enabled in the C3 library. If not, all polygons will berigid.
Default: C3_TRUE.
Argument: C3_TRUE or C3_FALSE.

voi d C3Set Opti onEnabl eLi ghti ng( C3Bool flag )

Purpose: Sets whether normals should be exported or not.
Default: C3_TRUE.
Argument: C3_TRUE or C3_FALSE.

voi d C3Set Opti onAnbi ent Percent age( f32 percent )

Purpose: Sets a percentage of the vertex color channel to be the ambient color in pre-lighting.
Default: 25.0 percent.
Argument: A percent between 0.0 and 100.0.

voi d C3Set Opti onConpress( ul6 targets )

Purpose: Setswhich vertex attribute arrays (position, normal, texture coordinates, vertex color) to compress, or
removes duplicates.

Default: All: C3_TARGET_POSI TI ON | C3_TARGET_NORVAL | C3_TARGET_TEXCOORD |
C3_TARGET_NORVAL.

Argument: Bitwise-OR combination of any of the following C3CnvQpz. h constants:

C3_TARGET_PCSI TION | C3_TARGET_NORMAL | C3_TARGET_TEXCOORD |
C3_TARGET_NORMAL. NOTE: C3 TARGET_ALL does not include vertex color.

voi d C3Set Opti onWél dRadi us( u32 target, f32 radius )

Purpose: Sets the welding threshold to combine vertex positions or texture coordinates within a given radius.
Default: 0.0 for position and texture coordinates.
Argument: target specifies vertex positions or texture coordinates. radius specifies welding radius.

voi d C3Set Opti onEnabl eStri pFan( C3Bool flag )

Purpose: Setswhether triangle or quad polygons should be converted to triangle strips and fans.
Default: C3_TRUE.
Argument: C3_TRUE or C3_FALSE.

voi d C3Set Opti onEnabl eStri pFanVi ew( C3Bool flag )

Purpose: Sets whether polygon primitives should be wireframed and vertex colored depending on the type of the
primitive for feedback. Red for triangles, Blue for quads, and random colors for strips and fans.

© Nintendo Technology Development, Inc. CONFIDENTIAL




52 Programming CG Tools April 17, 2001

Default: C3_FALSE.
Argument: C3_TRUE or C3_FALSE.

voi d C3Set Opti onPosi ti onRange( f32 range )

Purpose: Sets the position range for vertex position quantization other than exporting to float values. Given the
range, the quantization scale will be calculated accordingly. Should be called before

C3Set Opt i onQuant i zat i on for positions.

Default: 0.0.

Argument: range should be the absolute value of the largest x-, y-, or z-coordinate. Setting range to 0.0 will
force the C3 library to compute the optimal position range, or quantization scale, for maximum precision.

voi d C3Set Opti onQuanti zation( u32 target, u8 channel, u8 quantinfo )

Purpose: Sets the quantization information for position, texture coordinates, normals and color (with and without
alpha).
Default: Positions, normals, and texture coordinates are set to GX_S16, while vertex color is quantized to
GX_RGEB565 and GX_RGBA4, if the object contains vertex alpha. Keyframes are not quantized (e.g., GX_F32).
Argument: quant | nf o specifies the quantization type and shift, and should always be set using the macro
C3_MAKE_QUANT defined in C3Ut i | . h. Only the type needs to be set, since the shift (or scale) is calculated
automatically by the C3 library (see C31 ni t Opt i ons in C30pt i ons. ¢ asan example). channel should
always be 0, since thisis used for future multitexture support. target specifies the vertex attribute according to
the parameters below:

For C3_TARGET_POCSI Tl ON, the range must be set earlier and properly by

C3Set Opt i onPosi t i onRange in order to calculate quantization shift bits.

For C3_TARGET_NORVMAL, quantization shift bits are calculated assuming that all normals are normalized

to length 1. If channel isnot 0, this automatic calculation is turned off.

For C3_TARGET_TEXCOORD, the type of quantization is global, although the quantization scale for each

object is computed separately for maximum precision.

For C3_TARGET_KEYFRAME, quantinfo should hold only the global type of quantization for all tracks.

Only quantizes trandation and scale and their IN and OUT controls. Quaternions are always quantized to

GX_S16 since each x, y, z, and w component is between 0.0 and 1.0.

For C3_TARGET_COLCR, the type should be GX_RGB565, GX_RGB8, or GX_RGBX8. Thisquantization is

used if the geometry object contains no vertex alpha.

For C3_TARGET_COLCRALPHA, the type should be GX_RGBA4, GX_RGBA6, or GX_RGBA8. This

guantization is used if the geometry object contains at least one vertex with a non-opague a pha.

voi d C3Set Opti onUseDef aul t Nor nal Tabl e( C3Bool flag )

Purpose: Setswhether to use a default normal table of 252 normals instead of supplying anormal array for each
geometry object.

Default: C3_FALSE.

Argument: C3_TRUE or C3_FALSE.

voi d C3Set Opti onUseExt er nal Nor mal Tabl e( C3Bool flag )

Purpose: Sets whether to use a user-supplied external normal table in asimilar manner to the default normal
table. This function should be used in conjunction with C3Set Opt i onExt er nal Nor mal Tabl ePat h.
Default: C3_FALSE.

Argument: C3_TRUE or C3_FALSE.

voi d C3Set Opti onExt er nal Nor mal Tabl ePat h( char* name )

Purpose: If C3Set Opt i onUseExt er nal Nor mal Tabl e isset to C3_TRUE, then afull path to the normal
table should be specified.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Programming CG Tools 53

Default: NULL.
Argument: name should be the full path to the external normal table; it cannot exceed C3_MAX_PATH in
filename length.

E.2.3 C3Begin/C3End

After you've set al the desired options, you can extract data from a CG tool into the C3 library using the extraction
API. Detailed explanations of the hierarchical C3 extraction APl may be found in the following places:

Geometry: section 1.2.3 and C3GeoExt . c.
Texture: section 1.3.2 and C3Text ur e. c.

Hierarchy: section 1.4.2 and C3Hi eExt . c.
Animation: section 1.5.2 and C3AnnEXxt . c.

This appendix discusses how the C3 library internally extracts each of the preceding data.

E.2.4 C3OptimizeBeforeOutput

Once all of the relevant data has been loaded into the C3 library, the next stage is optimization using the function
C30pt i mi zeBef or eQut put inC3Qut . h. By calling this one function, datais processed in many ways.

C3Tr ansf or nDat a: Adjusts geometry, hierarchy, and animation data for hierarchy pivot points. See
C3CnvOpz. c.

C3Conpr essDat a: Removes duplicates and/or welds vertex attribute array. Also compresses texture paths for
the TCS script file. See C3CnvOpz. c.

C3Assi gnVerti cesToBones: Error checks stitching or skinning information and converts vertex weights
with bone names (char *) to a pointer to bone index (u16*). Also, ensures only one stitched or skinned mesh
has been extracted. See C3GeoCnv. c.

C3Convert Act or : Removes unused bones and animation tracks. Makes bone indices and control
(transformation) indices sequential after hierarchy optimization. See C3Hi eCut . c.

C3Sor t Wi ght Li st : For skinning, this function sorts the weights for each vertex according to final bone
index to simplify processing. Also, for each vertex, this function removes any weight under 4% influence, and
normalizesweightsto 1. See C3GeoCnv. c.

C3ProcessOpt i onsAft er Conpr essi on: Once fina vertex attribute arrays are computed, this function
calculates the optimal or user-defined quantization scale (or bit shift). See C3Opti ons. c.

C3Convert ToSt ri pFan: If triangle-stripping option is enabled, this function transforms primitives to triangle
strips and fans. See C3CnvOpz. c.

Even though C3Opt i ni zeBef or eQut put isan optimization step, this function must be called after extraction
because the next function, C3W i t eFi | e, dependsoniit.

Each of these functions will be explained in more detail in subsegquent sections.

E.25 C3WriteFile

After optimization, the next step isto convert and output all the data for the Character Pipeline. The function
C3WiteFile,locatedin C3Qut . ¢, simply calls these functions:

1. C3WiteHi erarchy inC3Hi eCut . c that writesto ACT format.
2. C3WiteGeonetryinC3GeoCQut. c that createsdisplay lists and converts/writes to GPL format.
3. C3WiteAnimationinC3AnmOut . c that writesto ANM format.

© Nintendo Technology Development, Inc. CONFIDENTIAL




54 Programming CG Tools April 17, 2001

4. C3WiteTexturesinC3Text ure. c that writeto TCSscript and calls TexConv. exe to create the TPL
format.
5. C3WiteStatsFil einC3Stats. c that writes geometry statistics and the information file.

These functions are largely format-dependent, but if you wish to write your own formats, you can replace these
functions with your own conversion and output methods. All of the datais ready for output.

We will explain some of these functionsin greater detail as we discuss each pipeline.

E.26 C3Clean

The last function that must be called is C3Cl ean. Thisfunction cleans up al alocated memory within the C3
library.

E.3 Geometry pipeline

Here is a step-by-step explanation of the path of geometry datain the C3 library.

E.3.1 Extraction

As we' ve mentioned, geometry datais extracted hierarchically in the order of object, primitive, and vertex. Hereisa
quick definition of terms for review:

Vertex: defines attributes such as position, normal, texture coordinate, color, and weight.
Primitive: aset of vertices defining triangles, quads, strips, fans, points, lines, and line strips.
Object: aset of primitives controlled by some hierarchy transformation from the ACT format.

Because hierarchical data extraction is naturally stack-based and only one object, primitive, or vertex can be extracted
at atime, an internal local data structure called C3Cur r ent St at e (defined in C3GeoExt.c) maintains this
information:

/1 Defined in C3GeoExt.c
typedef struct

C3Ceonthj ect *geonbj ect; // current Obj ect
C3Primtive *primtive; // currentPrimtive;
C3Vert ex *vertex; /1 currentVertex;
C3PtrLi nk *vertexPtr; // currentVertexPtr;

} C3Current State;

/1 Local variable to C3GeoExt.c
static C3Current State C3current;

Code 22 C3CurrentState

When C3Begi n(bj ect iscalled to create an object, object datais placed in C3cur r ent . geonmObj ect . Then,
when C3Begi nPol yPrim tive or C3Begi nLi nePrim tive iscalledto create atriangle/quad or line, the
appropriate primitive information isstored in C3current . pri ni ti ve, and color and texture are inherited from
the parent object. Likewise, calling C3Begi nVer t ex placesthe vertex informationin C3cur rent . vert ex. At
the same time, it places a pointer to that vertex in C3cur rent . vert exPt r, with color and texture inherited from
its parent primitive. Primitives use the vertex pointer to refer to vertices (using the data structure C3Pt r Li nk) in

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Programming CG Tools 55

order to promote the sharing of vertices among other primitives in the object, which aids in the creation of triangle
strips and fans.

Calling any of the C3End* functions will insert the newly created data into the appropriate list. For objects, they are
placed at the end of alocal linked list, called C3geontbj ect Li st ,in C3GeoExt . ¢c. Objects can be accessed
later using some internal functions:

DSLi st * C3Get Geonbj Li st ()

Purpose: Returns the global linked list of geometry objects.
Argument: None.

C3Geonbj ect* C3CGet Cbj ect From dentifier( char* identifier )

Purpose: Returns the geometry object with the given identifier. NULL will be returned if no such named object
exists.

Argument: i denti fi er should be the name of the geometry object when it was created with

C3Begi nObj ect .

C3Geonthj ect * C3CGet Next Obj ect ( C3Geonthj ect* obj )

Purpose: Returns the next geometry object after the given obj .
Argument: obj should be any geometry object (should already bein the global C3geonmhj ect Li st).

Ending a polygon primitive using C3EndPol yPri i t i ve insertsthe current primitive into the parent object.
Depending on whether the number of vertices extracted was 3 or 4, the type will be assigned as a triangle or quad,
respectively. If the source vertex order was counter-clockwise, the vertex order is then reversed to clockwise because
the C3 library treats a clockwise vertex order as front-facing.

There are three variables in the structure C3Geonthj ect that maintain state about the object:

C3Geonthj ect . col or Al | Wi t e isaBoolean C3Bool that when true, indicates that all vertex colors for
this object are white. If atextureis present and no normals are exported (i.e., lighting disabled at runtime), then
the optimized blending operation is GX_REPLACE in the first TEV stage, rather than GX_MODULATE. This state
is checked in the C3Set Col or function.

C3Geonthj ect . useVert exAl pha isanother Boolean which is true when any vertex is using a non-opaque
alpha (i.e., other than 255). At output, this variable helpsin determining which quantization type (with or without
alpha) to use for vertex colorsfor this particular object. This state is also checked in the C3Set Col or function.
C3Geonthj ect . ski nSt at e isan enumeration of C3Ski nSt at e that determinesiif the object isrigid
(C3_NONE), if weights have been extracted (C3_WEI GHTS _EXTRACTED), if the object is correctly stitched
(C3_STI TCHED), or if the object is correctly skinned (C3_SKI NNED). This state variable tells the C3 library
how to process this object. Thisstateissetin C3Set Wi ght and finalized with error checking in

C3Assi gnVerti cesToBones.

The C3Geonthj ect structure also holds minimum and maximum distance information for positions, texture
coordinates, normals, and colors so that these vertex attributes can be put into hash tables. Using hash tablesto
compress (remove duplicates) and weld helps speed up the conversion time dramatically. The additional minimum
and maximum information helps determine the optimal quantization shift (or power of two scale) later.

E.3.2 C3TransformObjectToPivot

The next stage in geometry data processing is C3Tr ansf or nCbj ect ToPi vot . Thisfunction is called within
C3Tr ansf or nDat ain C3Cnv(Opz. c. It adjusts the vertex positions as aresult of arotation and scale pivot point
that is different than the center position of the object’s hierarchy transformation. This concept is better explained in
the following diagram using a two-dimensional box as an example.

© Nintendo Technology Development, Inc. CONFIDENTIAL




56 Programming CG Tools April 17, 2001

y-axis
3
(2,2) World Coordinates
A A (1,1) Local Coordinates
1 Point on Box
! 2
Pivot offset of (-2, 0) l \
. » N
T l » »
World Coordinates (-1,1) (1,1) World Coordinates
Rotation and Scale Pivot Transformation Center
- +- X-axis
2 -1 0 1 2
C3Tr ansf or nDat a/
C3Tr ansf or nThj ect ToPi vot
y-axis
3
(2,2) World Coordinates
A (3,1) Local Coordinates
Point on Box
2
A .
l »
World Coordinates (-1,1)
New Transformation Center
- +- X-axis
2 -1 0 1 2

Figure 14 C3TransformObjectToPivot

Because the non-zero pivot offset of (-2, 0) forces a new center for the hierarchy transformation, the local coordinates
of the box must be adjusted (bold type) so that the world coordinates of the box do not change. The pivot offset only
trandlates the transformation center, which means the new transformation still has the same rotation and scale as the
old transformation.

This step is only necessary when C3Set Pi vot Of f set inthe hierarchy is other than (0, 0, 0). Thisfunctionality in
the C3 library is provided to support CG tools such as Maya, which allow the rotation and scale pivot position to be
different than the center position of a hierarchy transformation. However, other CG tools, such as 3D Studio MAX,
do not require this feature.

E.3.3 C3CompressData

After C3Tr ansf or nDat a, the vertex positions are final. The next stage removes duplicates or weld elementsin the
vertex attribute arrays to take advantage of indexed display lists and to conserve memory. For each object,

C3Conpr essObj Dat a (located in C3CnvQpz. ¢) compresses or welds positions, color, texture coordinates, and
normals using, respectively, C3Conpr essPosi ti ons, C3Conpr essCol or, C3Conpr essTexCoor ds, and
C3Conpr essNor mal .

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Programming CG Tools 57

For conversion speed efficiency, vertex attributes are hashed into hash tables so that, on average, much fewer
comparisons are needed to determine equality. Since the same basic method is used to compress or weld vertex

attributes, let’ s focus on vertex positions to show how the C3 library performs compression and welding. Here isthe

code for C3Conpr essPosi ti ons:

static void
C3Conpr essPosi ti ons( C3CGeonhj ect* obj )
{
DSHashTabl e hTabl e;
DSLi st listArray[ FLT_TABLE SIZE ]; // FLT_TABLE SIZE is currently 1024
C3Position position;
ul6é uni que 0;
ulé i
u32 count
ulé numnni que

0

0;

0;

if( obj->stats->nunPositions <= 0 )
return;

/1 Initialize the hash table
DSl ni t HTabl e( &hTabl e, FLT_TABLE SIZE, |istArray, HashPosition,
(Ptr)&position, & position.link) );

/'l Initialize the hashing paraneters
C3l ni t HashFl oat ( obj - >m nPosDi st ance, obj->naxPosDi stance, FLT_TABLE_SI ZE );

/1 Hash the |ist
C3HashlLi st ( &hTabl e, &obj->positionList );

/1 Make each hash list "unique" by sorting by index
for( i =0; i < hTable.tabl eSize; i++ )

C3Makel ndexedLi st Dat aUni que( hTabl e.table + i, &uni que, C3ConparePosition,
nunbni que, C3CopyPosition ); // nunbnique is indexBase
nurmni que = nunbni que + uni que;
obj - >st at s- >nunni quePosi ti ons = nunbni que;
if ( C3Get OptionWel dRadi us( C3_TARGET_PCSITION ) > C3_FLT_EPSILON )
/1 Weld positions (not just within the index)
c3Currentl yWel ding = C3_TRUE;
numni que = 0;
for( i =0; i < hTable.tabl eSize; i++ )

C3Makel ndexedHTabl eDat aUni que( &hTable, i, &unique, C3ConparePosition,

numni que, C3CopyPosition ); // numUnique is indexBase

numni que = nunbni que + uni que;

obj - >st at s- >nunPos\Wél ded += obj - >st at s- >nunni quePosi ti ons - nunbni que;
obj - >st at s- >nunni quePosi ti ons = nunbni que;
c3Current| yWel di ng = C3_FALSE;

}

/!l Rebuild the list fromthe hash table
DSHTabl eToLi st ( & Tabl e, &obj->positionList );

/1 Make each position in the list unique (renpve positions with duplicate indices)
C3Conpr essl ndexedLi st ( &obj - >posi tionList );

/1 Now, vertices can point to positions that are not in the positionList,
/1 so we should repoint all of the vertex data to point within the |ist
/1 for skinned objects.

C3Fi xVert exPositionPtrs( obj );

}

Code 23 C3CompressPositions

© Nintendo Technology Development, Inc. CONFIDENTIAL




58 Programming CG Tools April 17, 2001

During the extraction phase, the positions closest to and farthest from the origin, which were calculated previously,
are stored as the hashing boundariesin C3Geonmbj ect . m nPosDi st ance and

C3Geonthj ect . maxPosDi st ance. Currently, FLT_TABLE_SI ZE is defined to be 1024, so there are 1024
lists, or buckets, into which positions can be hashed using the function C3HashLi st . Thisfunction works by taking
each position in the linked list, calling HashPosi t i on to find the hash index, and inserting the index into the hash
table.

After al the positions are in the hash table, each index (or list) istraversed. C3Makel ndexedLi st Dat aUni que is
invoked to compare the equality of vertex positions (using C3Conpar ePosi t i on). Vertex positions with the same
index are assumed to be equal. If the vertex positions are equal, then the function C3CopyPosi ti on iscaled to
make the two positions exactly the same. Indices are also generated in ascending order by using nunni que asthe

i ndexBase argument. Thisisvery important because these indices will be used at runtime to reference the proper
positions from the display list.

After compression, the welding phase is completed in a similar fashion using
C3Makel ndexedHTabl eDat aUni que, except that this function traverses each subsequent hash table index until
no more welding within the welding radius can be done.

Finally, the hash table is converted back into alinked list structure using DSHTabl eToLi st . Since duplicates and
welded positions have not been removed from the hash table, they will still exist in the linked list. Note that
C3Conpr essl ndexedLi st simply traverses the position linked list and removes all positions with duplicate
indices (because positions with the same index can be assumed to be the same). This function does not deall ocate
memory, So use caution when using it. Positions do not need to be deallocated, since they utilize a memory pool and
will be cleaned with C3Cl ean at the end.

A potential result of the removal of positions by C3Conpr essl ndexedLi st isthat the vertex position pointers
may still be pointing to positions outside the object’s position list (C3Geonthj ect . posi ti onLi st). Normally
thisis not a problem; these positions have been copied by C3CopyPosi t i on and are guaranteed to be exactly the
same at output. However, you cannot traverse the position’slink (C3Posi ti on. | i nk) since it has been removed
fromthelist. In skinning, thisis unacceptable because all vertex position pointers must refer into the object’s position
list. Therefore, the function C3Fi xVert exPosi ti onPt rs will traverse al of the vertex position pointers and
force them to point within C3Geontbj ect . posi ti onLi st.

Figure 15 illustrates the position compression algorithm. For simplicity, this figure does not contain any references to
the hash table structure. The same processis followed for vertex normals, texture coordinates, and colors, but it does
not complete the last step involving C3Fi xVert exPositi onPtrs.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Programming CG Tools 59

w1 wtnd WinG

Triangled and Triangle 1 make a Quad.

Henice,
pos1==posi
and
triangled %, pos2 = pos3.
v wii2 w3
triangle0 trianglel
C3 library structures
in memory after extraction
vitx0 vix1 vix2 Vix3 vix4 vitx5
) 4 A ) 4 v v A
L pos0 posl pos2 pos3 pos4 pos5
positionList > G450 1 idx1 7 idx2 idx3 ®7 idx4 [ idx5
triangle0 trianglel
C3Makel ndexedLi st Dat aUni que
vtx0 vix1 vix2 Vix3 vix4 vitx5
A
L pos0 posl pos2 pos3 pos4 pos5
positionist —— G40 ®7 idx1 idx2 idx2 idx1 idx3
L
triangleO trianglel
C3Conpr ess
vitx0 vix1l vtx2 vix3 vixd vtx5
A A A A
L pos0 posl pos2 pos3 pos4 pos5
positionList = G450 ®71 idx1 *7 idx2 idx2 | | idx1 |[] idx3
triangle0 trianglel
C3Fi xVertexPositionPtr
vitx0 vix1 vix2 Vix3 vixd Vitx5
I
|
A
o . pos0 posl pos2 pos3 pos4 pos5
positionList > G450 ®1 idx1 ®7 idx2 idx2 idx1 idx3

Figure 15 Compression of positions

© Nintendo Technology Development, Inc. CONFIDENTIAL




60 Programming CG Tools April 17, 2001

E.3.4 C3AssignVerticesToBones

The main purpose of C3Assi gnVerti cesToBones, which islocated in C3GeoCnv. c, isto determine whether
an object isrigid, stitched, or skinned. For review, hereisaquick definition of terms:

Rigid: All vertex positionsin a geometry object are fixed and can only be modified as a group using the hierarchy
transformation in the ACT file (rotation, scale, tranglation). The most common example is segmented characters.
Stitched: Each vertex position in a geometry object is influenced by one hierarchy transformation, although
transformations can be different for each of the vertices within a geometry object. Stitching is a subset of
skinning where every vertex must have aweight of 100%.

Skinned: Each vertex position in a geometry object can be influenced by a blend of multiple hierarchy
transformations, depending on the weights assigned. The Character Pipeline implements CPU skinning rather
than using pre-blended matrices in the graphics processor.

During extraction of vertex weights using C3Set Wi ght , vertices are attached to hierarchy nodes (or bones) using
the name of the hierarchy node (char * boneNane). Because of conversion efficiency, and because vertices refer
to hierarchy transformations by index, C3Assi gnVert i cesToBones converts each vertex’s bone name to a
pointer to the hierarchy node’ sindex. We use a pointer because the hierarchy indices are not final until the bones
have been pruned. Also, to prevent the removal of bones that have vertices attached to them, a Boolean

C3Hi er Node. usedFor StitchingissettoC3_TRUE.

The C3library calls C3Assi gnVer t i cesToBones only when weights have been extracted for a geometry object
(i.e. C3Geonthj ect . ski nStat e == C3_WEI GHTS_EXTRACTED). This function only works properly with
this assumption.

The C3 library assumes a geometry object is assumed to be stitched until it encounters a vertex with more than one
weight in the object. If C3 encounters a vertex with no weights, it cannot properly stitch or skin that geometry object.
All weights are thus removed to make the object rigid.

E.3.5 C3SortWeightList

Once the geometry object is properly skinned (as checked by C3Assi gnVer ti cesToBones) and its bones have
been pruned (by C3Conver t Act or ), then C3Sor t Wi ght Li st isacalled to accomplish the following for every
vertex:

Sort the weight list by finalized bone index to simplify comparisons between weights.

Make the bone indices unique among weights (e.g., if two weights, each 50%, are attached to the same bone
index, then just make one weight that is 100%).

Eliminate weights that have less than a 4% influence.

Normalize weights to add up to 100%.

E.3.6 C3ProcessOptionsAfter Compression

Now all geometry data has been finalized and it is ready for format conversion and output. The quantization shift can
be calculated, if the output quantization type is not a floating point number, in

C3ProcessOpt i onsAft er Conpr essi on. The following quantization algorithm converts a floating point
number to a 16-bit or 8-bit fixed point number:

1. Multiply afloating point number by the scale (or 25"™).
2. Taketheresult and truncate the fractional component to create an integer number.
3. Cast theresult to the appropriate output type (s16, ul6, s8, u8).

Take care when selecting the scale. The integer number resulting from step 2 may not be appropriately represented
when cast into the output type at step 3. For example, if the output type were u8, and the shift is 8 (meaning 2°, or 256

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Programming CG Tools 61

scale), then true 1.0 cannot be represented. Instead, casting will clamp the value to 255. This means that when the
value is dequantized, 255/256 (0.996) will result. Making the shift 7, or the scale 128, will allow 1.0 to be
represented, but some precision will be lost.

Only the quantization type need be set in the options. The quantization scale is then calculated dlightly differently for
each vertex attribute (refer to section 1.2.4.3 for more information). In order to maximize fractional precision,
however, al attributes use C3Pr ocessOpt i onsAf t er Conpr essi on to calculate the largest absolute value
before computing the quantization shift. The function C3Conput eQuant i zat i onShi ft doesthe bulk of this
work.

For vertex positions, quantization is computed separately for skinned and non-skinned objects. Dueto runtime
constraints on our implementation of CPU skinning, vertex positions and normalsin a skinned object are assumed
to be quantized to a signed, 16-bit fixed point number. The largest absolute value of al positionsin a skinned
object is calculated separately from that of all positions in a non-skinned object; therefore, they can have separate
scales.

The C3 library normalizes vertex normals to be of length 1 at C3Set Nor nal , so the quantization scale is easy to
compute, and set inside the call to C3Set Opt i onQuant i zat i on using the arguments
C3_TARGET_NORMAL and channel 0.

Quantization for texture coordinates is not stored globally in the structure C3Opt i ons; rather, it is stored per
object in the C3Geombj ect . opt i ons field (whichisof aC30pt i onCObj type defined in

C3Opti onsPrivate. h).

For keyframes, quaternions are always quantized to a s16 type with a shift of 14 because each x-, y-, z-, and w-
coordinate will always be between 0.0 and 1.0. However, translation, scale, and Euler rotation components can
be quantized to a different type. The quantization scale is computed optimally for these components per
animation track and stored in C3Tr ack. par amQuant i zel nf o.

E.3.7 C3ConvertToStripFan

Next, the geometry pipeline converts triangles and quads to triangle strips and fans, if this option is enabled. We
provide more information in section 1.2.4.2; the algorithm is outlined in Figure 4. The following code segment of
C3Convert ToSt ri pFan (in C3CnvOpz. c) controls how the extracted primitives are converted into strips and
fans:

voi d
C3Convert ToSt ri pFan( C3Geonthj ect* geonhj )
{

C3CreateTri Stri psGeonthj ect ( geonbj ); Il strip, tri
C3Short GeoStri psToQuads( geomObj ); /] strip, tri, quad
C3Joi nGeoFans( geonthj ); /1 strip, tri, quad, fan

/1 Convert all quads to fans if C3_QUADS_TO FANS is defined.

/1l Non-copl anar quads are not a problemin the hardware, but there

/1 can be backface rejection issues in Mac OpenG., which the enul ator uses.
#i f def C3_QUADS_TO_FANS

C3FansFr omGeoQuads( geonObj ); Il strip, tri, fan
#el se

C3Short GeoFansToQuads( geonthj ); /1 strip, tri, quad, fan
#endi f

i f( C3GetOptionEnabl eStripFanView() )

C3Col or VerticesByPrim geontnj );

}

Code 24 C3ConvertToStripFan

© Nintendo Technology Development, Inc. CONFIDENTIAL




62 Programming CG Tools April 17, 2001

The algorithm isfairly simple and works well. Each function converts from one set of primitive types to another. At
the end, primitives are colored according to their type if this option is enabled. However, if

C3Set Opt i onEnabl eSt ri pFanVi ewisenabled, vertex colors will not be compressed because each polygon
primitive will be flat-shaded (i.e., no Gouraud shading) at runtime. Both C3Set Opt i onEnabl eStri pFanVi ew
and C3Set Opt i onConpr ess error-check this process.

The C3_QUADS_TO _FANS label, defined in C3Def i nes. h, converts all quads to fans with two triangles (as
described in section 1.2.4.2). Y ou should be aware of the MAX_FAN_VTX label defined at the top of C3CnvOpz. c.
A bug in thefirst version of the graphics processor (HW1) necessitated this define to limit the number of verticesin a
trianglefanto 4. If you are using the C3 library to convert to alater version of the graphics processor (HW?2), set
MAX_FAN_VTXto 255.

E.3.8 Conversion

The geometry datais now ready to be processed into the output GPL format and SKN format using two major
functions. In C3GeoCnv. c, C3Convert ToGeoPal et t e iscaled once to convert each geometry object using
C3Convert ToDOLayout . During the entire conversion phase, format and runtime data structures are allocated for
everything in memory and filled in with the appropriate data. For example, the GPL header is a structure called
CGEOPal et t e and defined ingeoPal et t e. h. Itisalocated and set with the GPL version number, user data
information, and information for each geometry object.

Y ou may find it helpful to refer to “ Game Engine Programming” (especially section 2.1) in this guide. Understanding
how geometry data is used at runtime will help you to understand how and why geometry is converted in the C3
library.

Since CPU skinning was added to the Character Pipeline well after the initial design phase, the CP processes geometry
information dlightly differently between skinned objects and non-skinned objects. We will discuss the conversion of
non-skinned objects first.

E.3.8.1 Non-skinned objects

The function C3Conver t ToDOLayout converts one geometry object into GPL format. Each vertex attribute is
converted using a separate function:;

C3Convert Posi ti onDat a converts positions for non-skinned objects.
C3Convert Li ghti ngDat a converts normals.

C3Convert Text ur eDat a converts texture coordinates.

C3Convert Col or Dat a converts colors.

C3Convert Di spl ayDat a creates display lists and state changes.

Conversion is straightforward and similar for all the vertex attributes, so as an example, let’s explain how positions
are converted. Code 25 shows the source code for C3Convert Posi t i onDat a with the code defined for
C3_CGENERATE_NORMAL _TABLE eliminated (this was a hack to aid in the creation of anormal table).

static void
C3Convert Posi ti onDat a( C3Geom(bj ect* geonhj, DOPositionHeader** posHeader )
{

DOPosi t i onHeader * pos = NULL;
voi d* array = NULL;
C3Posi tion* cursor = NULL;
u8 si ze = 0;
u32 count =0
Fl LE* nFile = NULL;

C3_ASSERT( geonthj && posHeader && geonthbj - >positionlList. Head );

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Programming CG Tools 63

/1 Allocate a new header
pos = (DOPositionHeader*)C3_CALLOC( 1, sizeof (DOPositionHeader) );
C3_ASSERT( pos );

pos->conpCount = 3;
pos->nunPosi ti ons = geonbj - >st at s- >nunini quePosi ti ons;
pos->quanti zel nfo = C3Get Opti onQuanti zati on( C3_TARGET_PCSITION, 0 ); // we only look at type

/1 Calculate the size of a position conponent
size = C3Get Conponent Si ze( C3_TARCGET_PCSITION, 0 );

/1 Allocate the menmory for the array

pos->positionArray = array = C3_CALLOC( pos->nunPositions,
pos->conmpCount * size );

C3_ASSERT( array );

/1 Fill the array (Positions are assumed to have a uni que index)
cursor = (C3Position*)(geombj->positionList.Head);
whi | e(cursor)

{
C3Quanti zeFl oat ( array, pos->quantizelnfo, cursor->x, C3_FALSE );
array = (void*)((u8*)array + size);
C3Quanti zeFl oat ( array, pos->quantizelnfo, cursor->y, C3_FALSE );
array = (void*)((u8*)array + size);
C3Quanti zeFl oat ( array, pos->quantizelnfo, cursor->z, C3_FALSE );
array = (void*)((u8*)array + size);
count ++;
cursor = (C3Position*)(cursor->link. Next);

}

*posHeader = pos;
C3_ASSERT( count == geon(bj - >st at s- >nunlni quePosi tions );

/1 Set the index quantization depending on the quant
/1 NOTE: OxFF or OxFFFF index is reserved for positions by GX API
if ( count <= 255)
C3Set VCDDat aType( geonmbj, C3_TARGET_PCSI TION, C3_VCD I NDEX8, 0 );
el se
C3Set VCDDat aType( geontbj, C3_TARGET_PCSI TION, C3_VCD_| NDEX16, 0 );

}

Code 25 C3ConvertPositionData

Let’s go over the algorithm:
1. First, anew header is allocated.
2. Theheader isfilled with data which will be written out verbatim to the GPL file later:

The component count will always be 3, since vertex positions are always defined in 3D space: (X, Y, 2).
The number of positions is set from the statistics data structure.

Quantization information is set so the runtime code can properly dequantize position data.

The component size if calculated: 1 byte for u8 or s8, 2 bytes for ul6 or s16, and 4 bytes for float.
Multiplying the component count and size sets the proper stridein GXSet Ar r ay at runtime.

3. Thearray of positionsis allocated.

4. Indicesinthe position list are in ascending order as completed by C3Conpr essDat a, so positions are written
out in the proper quantization format using C3Quant i zeFl oat .

5. Findly, the optimal index size for the display list is selected depending on the number of positions. 8-bit indices
are used if there are 255 positions or fewer.

All of the necessary information will be in memory and ready for output later.

© Nintendo Technology Development, Inc. CONFIDENTIAL




64 Programming CG Tools April 17, 2001

E.3.8.2 Skinned objects

The GCN converts skinned objects in a dlightly different fashion from non-skinned objects. Geometry datais
specifically converted for use with the Character Pipeline’ s runtime CPU skinning library (see

/cp/ build/libraries/skinning). It may bedifficult to understand the conversion algorithms without
understanding the runtime algorithms. Therefore, we strongly recommend reading the runtime algorithm detailed in
NINTENDO GAMECUBE Development News #2 (January 23, 2001). Thisarticle provides a critical understanding of
how and why the C3 library converts skinning data in its current manner.

Due to runtime code optimizations, positions and normals must be interleaved in one array instead of two separate
arrays. Moreover, both positions and normals must be quantized to a signed 16-bit fixed point number, using the
same quantization scale. Since the Gekko CPU will transform vertices using a locked-cache DMA system,
position/normal pairs cannot stride 32-byte cache line boundaries. Dummy vertices are therefore necessary in the
position/normal array.

Since skinning was added to the Character Pipeline well after the initial design phase, al skinning data is gathered
into a separate SKN format, which supplements the GPL format.

Asyou can see from the C3Conver t ToDOLayout code, adifferent set of functionsis called to convert positions
and normalsfor if a skinned geometry object:

C3Sor t Posi ti onNor mal Dat aFor Ski n.
C3Convert Ski nDat a.
C3Convert Posi ti onNor mal Dat aFor Ski n.

Texture coordinates, vertex colors, and display data are till generated in the same manner as non-skinned objects.

C3Sor t Posi ti onNor mal Dat aFor Ski n checks for a one-to-one correspondence between each shared vertex
and the positions and normals at that vertex. For example, it is possible that a vertex that is shared between two
trianglesin a strip has the same position, but two different normals. In this case,

C3Sor t Posi ti onNor mal Dat aFor Ski n will create two position/normal pairsin order to properly transform the
different normals on the CPU. The C3 library represents a position/normal pair by using the C3Posi ti on typeto
access the position data and then using the field ( ( C3Ver t ex*) C3Posi ti on. vt x) - >nor nal to accessthe
normal data. At the end, this function will also do an initial sort on the linked list of positions

(C3Geombj ect . posi ti onLi st), first by the number of weights, then by bone indices.

C3Convert Ski nDat a converts each position/normal pair into three lists depending on the number of weights: a
one-matrix list (SK1Li st ) for one bone influence, atwo-matrix list (SK2Li st ) for two bone influences, and the
accumulation list (SKAccLi st ) for three or more bone influences. Due to runtime constraints, each SK1Li st and
SK2Li st must contain at least three position/normal pairsto be transformed. If there are less than three, then these
weights are placed into the appropriate accumulation lists.

Normally, position/normal pairs with three or more bone influences would be distributed into the accumulation list.
However, the function C3Sor t AccLi st ToTwoM xLi st performs an optimization at the end of

C3Sor t Posi ti onNor mal Dat aFor Ski n that first sorts two of these weights into the two matrix lists, then sorts
the leftoversinto the accumulation list. At runtime, the two matrix lists are processed first, followed by each
accumulation list. In this case, when the |eftovers are finally accumulated on the CPU, they will be written
somewhere into the SK2Li st , and asaresult, this cache line must be flushed into main memory at runtime.
C3Convert Ski nDat a computes exactly which indicesin the position/normal pair array should be flushed; it is
optimized using C3CondenseFI ushl ndi ces so that the same cache lineis not flushed more than once.

C3Convert Ski nDat a also calculates the 32-byte cache line boundaries and inserts dummy, unused vertices so that
position/normal pairs do not straddle a cache line. In the process, indices for the display list are properly updated. Due
to limitations in the locked-cache DMA sizes, each SK1Li st islimited to 8192 bytes, and each SK2Li st and
SKAccLi st islimited to 4096 bytes. At the end of this function, al of the organized data is written into the runtime
skinning structures (defined in SKNTy pes. h) so that it isready for output in the SKN file format.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Programming CG Tools 65

NOTE: For debug output, please uncomment the code at the end of C3Convert Ski nDat a. Thisfilewill show
how all of the weights are distributed among the lists, along with alittle bit of statistics.

E.3.8.3 Creating the display list

Creating the display list is the same for skinned and non-skinned objects. When display lists are created using
C3Convert Di spl ayDat a, the raw bytesin the GPL format are compatible with the graphics processor; therefore,
GXCal | Di spl ayLi st will work with just apointer toit.

The current method of display list generation includes only geometry data, but no state changes, in the display list.
The CPU sets state changes outside the display list viathe GX library. Hence, geometry datais packaged into display
lists that share the same runtime state. Figure 16 illustrates how state nodes and display lists are organized in the
memory of the C3 library, and eventually into the GPL file.

C3StateNode *stateList

l Iy q
Display list
C3StateNode
C3StateNode
| /\/
C3StateNode
y
C3StateNode >
Y
Y Display list
C3StateNode
y
C3StateNode >

Figure 16 State nodes and display lists

The function C3Conver t Di spl ayDat a calls three functions:
C3Sort PrimLi st.

© Nintendo Technology Development, Inc. CONFIDENTIAL




66 Programming CG Tools April 17, 2001

C3Assenbl eDi spLi st .
C3Cr eat eDi spLi st.

First, minimizing state changes allows the graphics processor to draw more polygons. C3Sort Pri nii st in
C3GeoCnv. ¢ performsan important task by sorting primitivesin order of the most- to least-expensive state change.
The following algorithm sorts the linked list of primitivesin C3GeontCbj ect . pri miti velLi st:

1. All primitives are sorted by texture IDs using a quicksort algorithm with
C3Conpar ePri nfFor Di spLi st OnText ur e as the comparison function.

2. If the object is stitched, primitives are sorted to minimize the number matrix loads. Hereisthe algorithm:

C3Sort Pri nByPosMat ri x iscaled for each texture “bucket” from step 1.

C3Fi ndBest Pri mi t i ve, going one primitive at atime, finds the primitive in the texture bucket that
requires the least number of matrix loads, given the current set of matrices in the matrix cache. The best case
is0 (no loads).

If any matrices need to be loaded, matrices are replaced in a FIFO manner. The new set of matricesin the
matrix cache isrecorded in aC3St at eMat r i xCache data structure, which isthen inserted into a linked
liss mat ri xCachelLi st . Thislist keeps a history of matrix caches.

After C3Sor t Pri mByPosMat ri x finishes processing every primitive in all the texture buckets, the
function C3Gr oupMat r i xLoads additionally optimizes hardware performance by loading as many
matrices at atime as possible.

3. Primitives are then sorted by primitive type in the order of the C3_PRI M * constants defined at the top of
C3GeoExt . h.

Other state changes, such as vertex component descriptor (VCD) changes and TEV combine method, do not require
sorting. They occur mostly when the texture state changes (by moving from a primitive with no texture to another
with one texture, and vice versa), which has already been sorted. To understand how primitives are arranged before
and after sorting, we highly recommend that you uncomment the “TESTI NG’ code inside C3Sor t Pri nii st .

After sorting primitives, the next function called is C3Assenbl eDi spLi st . Thisfunction steps through each
primitivein C3GeomObj ect . pri mi ti veLi st and creates the data structures shown in Figure 16.

C3Get St at eChange and C3Get St at e must figure out which states have changed between two primitives and
storethemin aC3St at eNode data structure (defined at the top of C3GeoCnv. c) inthest at eLi st linked list.
The groups of primitives that share the same state are attached to the appropriate state node.

There are only four state changes that occur between display lists:

C3_STATE_TEXTUREOQ: Setsthe texture by changing the index into the TPL file. Also sets the wrapping mode
and minification/magnification filter. Currently, only one texture channel is supported.
C3_STATE_TEV_COMBI NE: Sets the operation to be completed in the TEV stage using GXTev Ops.
C3_STATE_VCD: Setsthe vertex component descriptor (GXAt t r Ty pe).

C3_STATE_MIXLQAD: Loads amatrix derived from a control in the ACT file into hardware matrix memory.

After the data structure in Figure 16 is assembled, the last step isto invoke C3Cr eat eDi spLi st , which converts
the structuresin Figure 16 into GPL format. Specifically, C3Convert St at e converts each state node and
C3Convert Prinli st creates hardware-compatible indexed display listsin C3GeoCnv. ¢. The Character
Pipeline runtime libraries process each state node into GX library state commands. If thereisavalid pointer to a
display list, GXCal | Di spl ayLi st isinvoked. Dueto GX library specifications, each display list starts and ends at
a 32-byte boundary (by padding, if necessary).

E.4 Hierarchy pipeline

The hierarchy pipeline is much simpler than the geometry pipeline.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Programming CG Tools 67

E.4.1 Extraction

We recommend familiarizing yourself with the hierarchy extraction API covered in section 1.4.2. Ashierarchy datais
extracted using this API, information is stored in a C3Hi er Node data structure (defined in

C3Hi eExt Pri vat e. h). Sincethe C3 library continues to use hierarchical extraction, the global variable

C3St ack (declared at the top of C3Hi eExt . ¢) naturally uses a stack. The following local functions manipulate this
stack in order to properly set parent information for hierarchy nodes:

voi d C3PushHi er Node( C3Hi er Node *hNode ).
voi d C3PopHi er Node ( ).

If callsto C3Begi nHi er ar chyNode are not nested, the stack does not set parenting information automatically.
Therefore, you will need to set parenting information explicitly using C3Set Par ent .

When a hierarchy node is completed using C3EndHi er ar chyNode, the C3Hi er Node structure is removed from
the stack and inserted into a DSTr ee data structure. Thistree structure is stored in the global variable

C3current Act or. hi er ar chy (declared at the top of C3Hi eExt . ¢). The DSTr ee and DSBr anch data
structures from Tr ee. h implement atree structure in amanner similar to how DSLi st and DSLi nk implement a
flat linked list.

The transformation for a hierarchy node is stored in aC3Cont r ol structure (defined in C3Hi eExt Pri vat e. h).
C3Cont r ol isasimple wrapper around the CTRLCont r ol structure from the CTRL library. A control isthe
primary means for positioning, rotating, and scaling nodes in a hierarchy. In the Character Pipeline, the CTRL library
isasimple and efficient method for constructing transformation matrices at runtime; the source code is referenced in
/cp/build/libraries/control. For detailed information, please refer to section 2.5.2 in “Game Engine
Programming” in this guide.

E.4.2 C3TransformBoneT oPivot

If C3Set Pi vot O f set isused with a non-zero argument, the translation component in the hierarchy
transformation control must be compensated. To understand this concept, please refer to section E.3.2 and Figure 14.

E.4.3 C3ConvertActor

After extraction, C3Conver t Act or optimizesthe hierarchy by calling C3RenoveUnusedBones (coded in
C3Hi eQut . c) to remove unused hierarchy nodes. A boneis considered to be unused if the following three
conditions exist:

No geometry object is attached to the bone.
No stitched or skinned vertices are attached to the bone.
Both of the above conditions are true for all of this bone's children.

Asimplied by the third point, these conditions are naturally checked. The recursive function
C3RenpveUnusedBones traverses the hierarchy tree structure backwards from leaf nodes to parent nodes,
checking for the first two conditions.

After al bones are pruned, bone and control indices are set in ascending order. All animation tracks that are attached
to unused bones are discarded as well via C3RenoveUnusedTr acks. To seethe hierarchy tree before and after
optimization, uncomment the TESTI NGcode in C3Convert Act or .

© Nintendo Technology Development, Inc. CONFIDENTIAL




68 Programming CG Tools April 17, 2001

E.4.4 Conversion and output

At thispoint, all hierarchy datais ready for output. Minimal conversion is necessary since control data and tree data
are aready stored in the runtime data structures CTRLCont r ol and DSTr ee/DSBr anch. Output occursvia
C3WiteHi erarchy (in C3H eCut . c). Thisfunction writes hierarchy datainto the ACT format.

E.5 Animation pipeline

Processing animation in the Character Pipeline is straightforward, but a complete understanding requires quite a bit of
math knowledge. We provide full source code in the Character Pipeline so that devel opers can see how animation data
is converted from popular CG tool sourcesto an animation engine. Developers and artists can choose among the
many different types of interpolation methods according to their game’' s requirements and tradeoffs.

Keep in mind that the current system is not game-specific. In the interest of readability, the code is not optimized in
assembly language. Because the Character Pipeline animation system is only example code not designed for a game,
we do not implement any solution for inverse kinematics (1K) or driven keys.

Please refer to section 2.4 in “Game Engine Programming,” which outlines the architecture and runtime data
structures used heavily by the C3 library.

E.5.1 Extraction

The C3 library API for extracting animation data is covered in section 1.5.2. For review, here isa quick definition of
terms:

Keyframe: A set of trandation, rotation, and/or scale parameters that define a transformation at a moment in
time.

Track: A set of keyframes that define how a transformation control (i.e., one bone of a character) should animate
according to time. In the C3 library, a bone can have only one track within one sequence.

Sequence: A set of tracks that compose an animation for a character, such as walking, running, and jumping.

Like geometry and hierarchy data extraction, animation data is extracted in a hierarchical manner from sequence, to
track, to keyframe. The current animation stateis stored in a C3Ani mat i onSt at e structure allocated by

c3Cur r ent Ani mat the top of C3AnnEXt . h. We recommend looking over all of the data structuresin
C3AnnExt Pri vat e. h.

Currently, only one sequence has been tested for export in the C3 library, so the same sequence name should be sent
toal callsof C3Begi nTr ack. Thisisbecause 3D Studio MAX and Maya can only export one animation sequence
per file. For details on how to use the AnmCombine tool to combine animation sequences after export, refer to
Appendix D.

In extracting animation tracks, you should understand two flagsin the C3Tr ack structure:

sort KeyFramesNeeded: If C3_TRUE, keyframeswill have to be sorted so that their times are in ascending
order. If C3_FALSE, keyframe times are aready in the proper order for the ANM format.

repl aceHi erarchyCrl : Inthe current version of the C3 library, thisflag isalways C3_TRUE. Thisdirects
the Character Pipeline runtime library to ignore the hierarchy transformation control (matrix), and to use only the
results of keyframe interpolation to determine the final transformation for a bone.

NOTE: Thisflag existsto correct an inefficiency in a previous version of the Character Pipeline. Previoudly,
animation keyframes were converted to be relative to the hierarchy transformation. The final transformation for a
bone involved a runtime matrix concatenation of the animation matrix and the orientation (hierarchy) matrix.
Thisturned out to be unnecessary, since animation data from CG tools are not relative to the hierarchy. However,

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Programming CG Tools 69

thisflag is necessary for backward compatibility so that the runtime library can still properly animate older ANM
files.

When atrack is completed with C3EndTr ack, the CPinsertsit asa C3Ani nBank structure into alinked list of
tracks in the global animation bank c3Cur r ent Ani m bank. Thetrack isalso inserted into alinked list of
C3SeqTr ack structuresinside the sequence at C3Sequence. t r ackLi st . When akeyframe is completed with
C3EndKeyFr ane, itisinserted into aC3Tr ack. keyLi st structureasalinked list of keyframes within its parent
track.

After the extraction phase, the function C3Tr ansf or nDat a prepares all animation data for export by calling four
major functions:

C3Sor t KeyFr anes.

C3Tr ansf or mlrackToPi vot .

C3Conput eTr ackBezi er | nCut Cont r ol .
C3Conput eTr ackl nQut Cont r ol .

E.5.2 C3SortKeyFrames

Aspreviously explained, if the C3Tr ack. sort KeyFr anesNeeded flag is TRUE for atrack, t hen
C3Sor t KeyFr anes will sort the keyframes in ascending time order.

E.5.3 C3TransformTrackToPivot

Just the use of C3Set Pi vot OF f set compensates the position of geometry vertices and the translation of hierarchy
controls, C3Tr ansf or niTr ackToPi vot must be called to compensate the translation component of the animation
track. These adjustments maintain flexibility for artists when using Maya. Animation datais transformed to hierarchy
datain asimilar fashion (see section E.3.2 and Figure 14).

E.5.4 C3ComputeTrackBezierInOutControl

C3Conput eTr ackBezi er | nQut Cont r ol computes the control points for Bezier-interpolated components.

At extraction, the in and out tangent information is stored as an angle (in radians) to determine the shape of the
interpolation curve; however, the Character Pipeline runtime libraries need Bezier control points. Fortunately, control
points are easy to compute, given the angle:

1. Firgt, find thein and out tangent control points between keyframes kO and k1. The horizontal u-axisistime, and
the vertical v-axisisthe value.

2. Compute the time difference as du = time(k1) — time(k0).

Thefirst control point (out tangent of kO) lies 1/3 of the time distance from kO to k1. So, using simple
trigonometry, outtan(kQ) = outtan_angle(k0) * du/3.

4. The second control point (in tangent of k1) lies 1/3 of the time distance from k1 to k0. So, intan(kl) =
intan_angle(k1) * du/3.

This process must be repeated for each (x, y, 2) for each Bezier-interpolated trand ation, Euler rotation, and scale
component.

E.5.5 C3ComputeTracklnOutControl

This function will compute the in and out controls necessary for three types of interpolation:

© Nintendo Technology Development, Inc. CONFIDENTIAL




70 Programming CG Tools April 17, 2001

Squad: quadratic interpolation of quaternions for rotation
SquadEE: quadratic interpolation of quaternions with ease and TCB (tension, continuity, bias) parameters for
rotation.

Hermite: Hermite-based interpolation using TCB parameters for translation and scale.

For squad-type interpolations, you must call C3MakeTr ackQuat er ni onsCl osest . In quaternion math, two
“opposite” quaternions can equally represent one rotation. Therefore, given a quaternion qO, to interpolate to the next
quaternion g1 properly, we need to find the “closest” quaternion g1 to q0.

For squad interpolation, getting the in and out controlsis simplein C3Conput eTr ackSquadAB: thein and out
control for akeyframe is simply the quaternion of the previous and the next keyframe, respectively.

At this point, we'd prefer to spare the reader any more discussion of difficult, four-dimensional quaternion
mathematics. The algorithm for computing tangent controls for squad interpolation with ease and TCB parameters,
accomplished in C3Conput eTr ackSquadTCB, israther hard to explain. The algorithm for the proper in and out
controls needed for TCB interpolation for trandation and scale animation, performed in C3Conput eTr ackTCB, is
equally abstruse. We implement these esoteric interpolation methods in order to faithfully represent 3D Studio MAX
animation and give more flexibility to artists and animators. Although these methods may not be helpful for arealistic
game engine, example code exists for your perusal nonethel ess.

E.5.6 Conversion and output

Once all of the necessary in and out controls have been computed, all of the animation datais ready for output.

C3Cr eat eAni mBank starts the conversion. Since the C3 library stores animation datain structures similar to the
runtime animation structures, conversionissimple. Infunctions such as C3Convert Tr acks and

C3Convert KeyFr anes, animation datais just transferred from C3 library structures (i.e., C3Tr ack and
C3KeyFr ane) to runtime structures (i.e., ANl MTr ack and ANl MKeyFr ane).

Afterward, C3W i t eAni mBankl| nt writes out the structuresto the ANM file format. Quaternions are always
guantized to a signed 16-hit fixed point number because each x, y, z, and w component is always between O and 1. In
the C3 library, trandlation and scale components can be quantized to a user-defined type; however, runtime
interpolation will be slower due to unoptimized animation code.

E.6 Texture pipeline

Sincethe TC library is separate from the C3 library, the texture pipeline creates a TCS script file for use by the texture
converter application TexConv. exe. All of the functions are contained within C3Text ur e. h,
C3Text urePri vat e. h,and C3Text ure. c.

E.6.1 Extraction

The API for setting texture datais explained in section 1.3.2. For review, the following list defines the four major
componentsin a TCS script file:

Source (file): A file name that is alocation for a color map, alpha map, or palette.

Image: Two source files that combine a color and alphamap. An aphamap is not necessary.
Palette: One source file that specifies a palette (CLUT) for a color-indexed (Cl) texture.
Texture: A binding between an image and a palette. A paletteis not necessary.

Information for each of these four groups is extracted by the following functions. These functions fill separate data
structures and store them in separate linked lists allocated at the top of C3Text ur e. c.

C3Begi nText ur e/C3EndText ur e functionsfill aC3Text ur e structure and add it to the c3TexLi st list.

CONFIDENTIAL © Nintendo Technology Development, Inc.



April 17, 2001 Programming CG Tools 71

C3Set | mage fillsaC3l mage structure for acolor map and adds it to the ¢ 31 ngLi st list.
C3Set | mageAl pha fillsaC3l mage structure for an alpha map and adds it to the c 31 ngLi st list.
C3Set Pal | mage fillsaC3Pal et t e structure and adds it to the c3Pal Li st list.

Since a source filename is necessary for the latter three functions, they also call C3AddSr ¢l ng tofill a
C3Sr cl mage structure and add it to the c3Sr cLi st list.

Asyou know, texture data is assigned for a geometry object or a primitive depending on the context in which
C3Begi nText ur e iscaled. Itispossibleto assign atexture to a geometry object, then override it with a different
texture on a per-primitive basis.

Texture formats are set based on a current state stored in ac3TexFnt variable at the top of C3Text ur e. ¢. Using
C3Set TexFnt changes the state for the output texture format. For example, the current texture converter only
supports color-indexed textures in the Cl 8 format and palettes in the RGB565 format, so a color-indexed texture must
be extracted in the following manner in the C3 library:

C3Begi nTexture( 0 );

C3Set TexFmt ( C18 );

C3Set I mage( “C:\\sonetex.tga” );
C3Set TexFnt ( RGB565 ) ;

C3Set Pal | mage( “C.\\sonetex.tga” )
C3EndTexture();

Code 26 Extracting color-indexed textures

If the second call to C3Set TexFnt did not exist, then the pal ette output format would still be Cl 8 and the texture
converter would produce an error. Every time C3Begi nText ur e iscalled, the format defaults back to RGBAS8, so
we recommend calling C3Set TexFnt with the desired format before calling C3Set | nage,

C3Set | mageAl pha, or C3Set Pal | mage.

In Code 26, C3Set TexTi | i ng and C3Set TexFi | t er Type are not caled; therefore, default settings are used.
The default tiling clamps both s- and t-axes, and the default filter type uses point samples.

E.6.2 C3CompressTextureData

After extracting all the texture data, the only optimization step is to remove duplicate information in

C3Conpr essText ur eDat a (called within C3Conpr essDat a). C3Conpr essText ur eDat a cals

C3Conpr essLi st Dat a on each of the four linked lists, using a hash table to speed compression time. This method
of compression isasimilar but ssimpler version of how geometry vertex attributes are compressed in section E.3.3.

E.6.3 Output

No conversion is necessary, since al of the texture datais naturally processed into the four groups for the TCS script
file. Thefunction C3W it eText ur es first calls C3Qut put TexScri pt to write the TCS script file, then it
invokes the texture converter application to create the TPL file.

At output, each of the four lists are written out using the following functions:

C3Qut put Srcl ng writesout the“fi |l e n =" lines, wheren isan integer.
C3Qut put | ng writesout the“i mage n =" lines.

C3Qut put Pal writesoutthe“pal ette n =" lines.

C3Qut put Tex writesout the“t ext ure n =" lines.

© Nintendo Technology Development, Inc. CONFIDENTIAL




