
 THP Library

Nintendo GameCubeTM THP Library
Version 1.0a

Table of Contents

1. Introduction ... 5

1.1 Overview ... 5
1.2 Sample program.. 6
1.3 The organization of this document.. 6

2. Using the Simple Player to Playback THP Movie Data.. 7
2.1 Source files ... 7
2.2 How to use the Simple Player... 7

3. The THP Simple Player API .. 14
3.1 READ_BUFFER_NUM.. 14
3.2 AUDIO_BUFFER_NUM .. 14
3.3 NONE / LOOP... 14
3.4 ALONE/WITH_AX/WITH_MUSYX.. 14
3.5 THPDecodeError... 15
3.6 THPVideoInfo.. 15
3.7 THPAudioInfo.. 15
3.8 THPSimpleInit ... 16
3.9 THPSimpleQuit ... 16
3.10 THPSimpleOpen ... 16
3.11 THPSimpleClose... 17
3.12 THPSimpleCalcNeedMemory ... 18
3.13 THPSimpleSetBuffer ... 18
3.14 THPSimplePreLoad .. 18
3.15 THPSimpleAudioStart ... 18
3.16 THPSimpleAudioStop ... 19
3.17 THPSimpleLoadStop... 19
3.18 THPSimpleDecode.. 19
3.19 THPSimpleDrawCurrentFrame ... 19
3.20 THPSimpleSetVolume .. 20
3.21 THPSimpleGetVolume.. 20
3.22 THPSimpleGetVideoInfo ... 20
3.23 THPSimpleGetAudioInfo ... 21
3.24 THPSimpleGetFrameRate .. 21
3.25 THPSimpleGetTotalFrame.. 21

4. The THP Player API ... 22
4.1 READ_THREAD_PRIORITY / AUDIO_THREAD_PRIORITY / VIDEO_THREAD_PRIORITY22
4.2 READ_BUFFER_NUM.. 22
4.3 DECODE_BUFFER_NUM .. 23
4.4 STOP / PREPARE / PLAY / PLAYED / PAUSE / ERROR ... 23
4.5 NONE / LOOP / ODD_INT / EVEN_INT ... 24
4.6 ALONE/WITH_AX/WITH_MUSYX.. 24
4.7 THPVideoInfo.. 24
4.8 THPAudioInfo.. 24
4.9 THPPlayerInit .. 25
4.10 THPPlayerQuit .. 25
4.11 THPPlayerOpen .. 25
4.12 THPPlayerClose.. 26
4.13 THPPlayerCalcNeedMemory.. 26
4.14 THPPlayerSetBuffer.. 26
4.15 THPPlayerPrepare .. 26

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

1

THP Library

4.16 THPPlayerPlay ..27
4.17 THPPlayerStop..27
4.18 THPPlayerPause...27
4.19 THPPlayerSkip ..27
4.20 THPPlayerDrawCurrentFrame ..28
4.21 THPPlayerSetVolume ...28
4.22 THPPlayerGetVolume...28
4.23 THPPlayerGetVideoInfo ..28
4.24 THPPlayerGetAudioInfo ..29
4.25 THPPlayerGetFrameRate ...29
4.26 THPPlayerGetTotalFrame...29
4.27 THPPlayerGetState...29
4.28 THPPlayerDrawDone..30

5. The THP Library's Low Level API ..31
5.1 THP_WORK_SIZE ..31
5.2 Error codes..31
5.3 THP_AUDIO_INTERLEAVE / THP_AUDIO_NO_INTERLEAVE..32
5.4 THPInit...32
5.5 THPVideoDecode..32
5.6 THPAudioDecode..33

6. How to Create THP Movie Data ..34
6.1 Overview..34
6.2 How to use ..34

6.2.1 Converting QuickTime Motion JPEG files into THP movie data...34
6.2.2 Converting sequential JPEG files into THP movie data ...35
6.2.3 Replacing the THP audio data inside the THP movie data ..37

6.3 Data Formats...38
6.3.1 QuickTime Motion JPEG Files ...38
6.3.2 Sequential JPEG files ..39
6.3.3 wav files ...40
6.3.4 THP movie data ...40

6.3.4.1 THPHeader ...40
6.3.4.2 THPFrameCompInfo ...40

6.3.4.2.1 THPVideoInfo ..41
6.3.4.2.2 THPAudioInfo ..41

6.3.4.3 THPFrameOffsetData..41
6.3.4.4 MovieData ...42

6.3.4.4.1 FrameHeader ..42
6.4 Items to Note When Creating THP Movie Data ..44

6.4.1 Caution regarding the path ..44
6.4.2 Sufficient free hard-disk space...44
6.4.3 The execution environment for the THPConv tool ...44

7. Cautions ...45
7.1 General Cautions ..45

7.1.1 Sub-sampling ...45
7.1.2 The Players and the GX settings ...45
7.1.3 Output of THP Audio Data for Players ...45
7.1.4 Sampling rate of THP audio data with simultaneous use of audio libraries................................46
7.1.5 Monitoring the optical disc drive during streaming playback ..46
7.1.6 Handling the sample data ..46

7.2 Cautions regarding the THP Player ..47
7.2.1 The main loop ..47
7.2.2 The THPPlayerDrawCurrentFrame function ..47
7.2.3 VI post callback..48
7.2.4 Interlaced movies...48

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

2

 THP Library

List of Tables
Table 1 Error codes returned by the THPSimpleDecode function.. 15
Table 2 The status of the THP Player .. 23
Table 3 THPVideoDecode function’s error codes .. 31
Table 4 THP Components descriptors ... 41

List of Code Examples
Code 1 Example of use of Simple Player (main.c)... 9
Code 2 Definition of READ_BUFFER_NUM / AUDIO_BUFFER_NUM in THP Simple Player 11
Code 3 Definition of THP_WORK_SIZE in THP library .. 11
Code 4 Definitions of the argument of the THPSimplePreLoad function ... 12
Code 5 Header file of the THP Simple Player API ... 14
Code 6 READ_BUFFER_NUM.. 14
Code 7 AUDIO_BUFFER_NUM... 14
Code 8 NONE / LOOP ... 14
Code 9 ALONE/WITH_AX/WITH_MUSYX .. 14
Code 10 THPDecodeError ... 15
Code 11 THPVideoInfo .. 15
Code 12 THPAudioInfo .. 15
Code 13 THPSimpleInit ... 16
Code 14 THPSimpleQuit.. 16
Code 15 THPSimpleOpen ... 16
Code 16 THPSimpleClose ... 17
Code 17 THPSimpleCalcNeedMemory.. 18
Code 18 THPSimpleSetBuffer ... 18
Code 19 THPSimplePreLoad... 18
Code 20 THPSimpleAudioStart.. 18
Code 21 THPSimpleAudioStop.. 19
Code 22 THPSimpleLoadStop... 19
Code 23 THPSimpleDecode.. 19
Code 24 THPSimpleDrawCurrentFrame.. 19
Code 25 THPSimpleSetVolume... 20
Code 26 THPSimpleGetVolume .. 20
Code 27 THPSimpleGetVideoInfo ... 20
Code 28 THPSimpleGetAudioInfo ... 21
Code 29 THPSimpleGetFrameRate... 21
Code 30 THPSimpleGetTotalFrame .. 21
Code 31 Header file of the THP Player API ... 22
Code 32 READ_THREAD_PRIORITY / AUDIO_THREAD_PRIORITY / VIDEO_THREAD_PRIORITY 22
Code 33 READ_BUFFER_NUM.. 22
Code 34 DECODE_BUFFER_NUM... 23
Code 35 STOP / PREPARE / PLAY / PLAYED / PAUSE / ERROR .. 23
Code 36 NONE / LOOP / ODD_INT / EVEN_INT.. 24
Code 37 ALONE/WITH_AX/WITH_MUSYX .. 24
Code 38 THPVideoInfo .. 24
Code 39 THPAudioInfo ... 24
Code 40 THPPlayerInit .. 25
Code 41 THPPlayerQuit .. 25
Code 42 THPPlayerOpen .. 25
Code 43 THPPlayerClose.. 26
Code 44 THPPlayerCalcNeedMemory .. 26
Code 45 THPPlayerSetBuffer... 26
Code 46 THPPlayerPrepare .. 26
Code 47 THPPlayerPlay .. 27
Code 48 THPPlayerStop.. 27
Code 49 THPPlayerPause... 27
Code 50 THPPlayerSkip .. 27
Code 51 THPPlayerDrawCurrentFrame .. 28
Code 52 THPPlayerSetVolume.. 28
Code 53 THPPlayerGetVolume ... 28
Code 54 THPPlayerGetVideoInfo .. 28
Code 55 THPPlayerGetAudioInfo .. 29
Code 56 THPPlayerGetFrameRate ... 29

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

3

THP Library

Code 57 THPPlayerGetTotalFrame ... 29
Code 58 THPPlayerGetState ... 29
Code 59 THPPlayerDrawDone .. 30
Code 60 The THP low level API header file ... 31
Code 61 THP_WORK_SIZE .. 31
Code 62 THP_AUDIO_INTERLEAVE / THP_AUDIO_NO_INTERLEAVE... 32
Code 63 THPInit... 32
Code 64 THPVideoDecode.. 32
Code 65 THPAudioDecode.. 33
Code 66 Example of monitoring drive inside main loop ... 46
Code 67 Restriction on main loop when using the THP Player.. 47
Code 68 How to make certain the call to the THPPlayerDrawCurrentFrame function succeeds 47

List of Figures
Figure 1 THP file format ... 43
Figure 2 4:2:0 sub-sampling... 45

List of Formulas
Formula 1 Size of the work region for the THP Simple Player ... 11
Formula 2 Priority of each thread for THP Player... 22
Formula 3 Formula for calculating size of set aside buffer ... 23
Formula 4 Size of buffer specified in THPVideoDecode function for each component 33
Formula 5 Required free hard-disk space when using THPConv .. 44

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

4

 THP Library

1. Introduction

1.1 Overview

The THP library is designed for the playback of movies on the Nintendo GameCubeTM. By using the THP
library, movie data comprising interleaved video data and audio data (henceforth called THP movie data)
can be played on the Nintendo GameCube.

The format of the video data handled by the THP library (henceforth called THP video data) is customized
for rapid decoding by the Nintendo GameCube. The THP library has been optimized to a high extent for
decoding of this THP video data.

Note: For increasing speed, the THP library uses certain functions unique to the Gekko CPU (i.e.,
locked cache as well as GQR).
Because THP movie data can be decoded so rapidly, it is extremely well suited for applications inside the
game. For example, a movie displayed to a screen size of 640 x 480 pixels at a frame rate of 60 frames
per second that has been compressed to around 1bit per pixel, requires around a 60% load on the CPU
when it is being decoded. If the frame rate is 30 frames per second, the compression ratio can be
lowered to 5 or 6 bits per pixel (thereby raising picture quality).

Note: The actual compression ratio is influenced by limits on the speed at which data is read from
the optical disc. The slowest optical disc read speed is 2Mbytes per second. Accordingly, for a
movie displayed at 30 frames per second, you want to compress the data to 68.3K per frame or
less.
By utilizing high-speed THP movie data, you can decode and display a movie in real-time while rendering
objects in front of the movie.

THP video data is created from the conversion of normal JPEG data. The JPEG data is converted into
THP video very quickly and with no loss in picture quality from the original JPEG data.

Through the use of THP movie data, the developer can estimate how much time is needed to decode
movie data and what kind of picture quality will be realized on the Nintendo GameCube when the data is
actually decoded.

The THP movie data's audio data (henceforth called the THP audio data) is compressed in the same
format as the Nintendo GameCube audio system's DSP ADPCM. This THP audio data is appropriately
processed in order to synchronize the video data and the audio data as required for the movie.

In summary, use of the THP library enables developers to playback high picture-quality and sound-quality
movies with only a minimum burden on the CPU.

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

5

THP Library

1.2 Sample program

Every frame of THP video data is compressed independently of every other frame. Because of this,
movie playback is easy to realize with the THP library compared to other movie libraries, which require
that information from prior and subsequent frames be referenced when decoding the present frame.

However, a slightly complicated procedure is required, in order to achieve appropriate synchronization of
the video data and the audio data during movie playback.

To avoid complexity, two movie players have been prepared that hide this procedure of the THP library,
making the playback of movies even simpler.

The first movie player is an extremely simple player designed to provide a basic understanding of how to
use the THP library.

The second movie player is an advanced player that assumes use in applications. This advanced player
has been created with flexibility to meet the various needs of the game with regard to movie playback.

The THP library was intentionally created so that movies could be actively utilized inside even ordinary
game scenes. However, the game system can have a large effect on the movie player when it is used in
this way. Thus, even though the THP movie player library is easy to use, the developer should modify the
configuration of the player to suit the environment.

Source code has been distributed along with the movie players. Feel free to modify this source to suit the
THP movie data playback environment.

1.3 The organization of this document

This document is organized as follows:

Section 2 explains the minimal procedure required for playing THP movie data on the
Nintendo GameCube.

Section 3 explains the API functions that have been prepared for the procedure described in Section 2.

Section 4 explains the API functions that have been prepared for the more advanced playback of THP
movie data on the Nintendo GameCube.

Section 5 explains the low level API functions that realize playback of THP movie data.

Section 6 explains how to create THP movie data.

Section 7 explains cautions regarding use of the THP library.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

6

 THP Library

2. Using the Simple Player to Playback THP Movie Data
The THP simple player (henceforth called the Simple Player) is a THP movie player that provides the
minimal set of functions needed for playing THP movie data on the Nintendo GameCube.

This section explains how to use the Simple Player.

2.1 Source files

The Simple Player is supplied as the sample program THPSimple in the THP library
(build/demos/thpdemo). The Simple Player is comprised of the following source files:

• src/THPSimple/THPSimple.c
Describes the various API functions of the Simple Player. The player calls the THP library's low level
API function THPVideoDecode when decoding THP video data and the low level API function
THPAudioDecode when decoding THP audio data.

• src/THPSimple/THPDraw.c
The THPVideoDecode function, which is called by the Simple Player when decoding THP video data,
outputs the decoded data in YUV texture format. This file describes the functions for drawing this data
to the EFB via the graphics processor.

• src/THPSimple/main.c
This is a simple sample of THP movie data for playback using the Simple Player.

• include/THPSimple.h
Contains the definitions for the various API functions of the Simple Player.

• include/THPDraw.h
Contains the definitions for the functions used for drawing the decoded YUV texture format data to the
EFB via the graphics processor.

2.2 How to use the Simple Player

Below is a simple program using the Simple Player for playback of THP movie data.

This program is described in build/demos/thpdemo/src/THPSimnple/main.c.

1: #include <demo.h>
2: #include <stdlib.h>
3: #include <string.h>
4: #include "THPSimple.h"
5: #include "axseq.h"
6:
7: void main(void)
8: {
9: u32 size, x, y, count;
10: s32 frame, start, vol;
11: u16 buttonDown, button;
12: u8 *buffer;
13: GXRenderModeObj *rmode;
14: THPVideoInfo videoInfo;
15:
16: DEMOInit(&GXNtsc480Int);
17:
18: AIInit(NULL);
19:
20: AXSeqSetup();
21:
22: THPSimpleInit(WITH_AX);
23:
24: GXSetDispCopyGamma(GX_GM_1_0);
25:
26: // Open THP file
27: if (THPSimpleOpen("thpdemo/fish.thp") == FALSE)
28: {

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

7

THP Library

29: OSHalt("THPSimpleOpen fail");
30: }
31:
32: THPSimpleGetVideoInfo(&videoInfo);
33:
34: rmode = DEMOGetRenderModeObj();
35:
36: x = (rmode->fbWidth - videoInfo.xSize) / 2;
37: y = (rmode->efbHeight - videoInfo.ySize) / 2;
38:
39: // Reserve work area
40: size = THPSimpleCalcNeedMemory();
41:
42: buffer = (u8 *)OSAlloc(size);
43:
44: if (!buffer)
45: {
46: OSHalt("Can't allocate the memory\n");
47: }
48:
49: THPSimpleSetBuffer(buffer);
50:
51: OSReport("\n#######################################\n");
52: OSReport("Push A button : restart the movie\n");
53: OSReport("Push B button : play/stop midi file using AX\n");
54: OSReport("Push Start button : application end\n");
55: OSReport("Pad up : volume up\n");
56: OSReport("Pad down : volume down\n");
57: OSReport("#######################################\n");
58:
59: RESTART:
60: // Pre-read for playback
61: if (THPSimplePreLoad(LOOP) == FALSE)
62: {
63: OSHalt("THPSimplePreLoad fail");
64: }
65:
66: start = 1;
67:
68: count = VIGetRetraceCount();
69:
70: while(1)
71: {
72: DEMOPadRead();
73:
74: buttonDown = DEMOPadGetButtonDown(PAD_CHAN0);
75: button = DEMOPadGetButton(PAD_CHAN0);
76:
77: DEMOBeforeRender();
78:
79: // Decode 1 frame of THP data
80: if (THPSimpleDecode() == VIDEO_DECODE_FAIL)
81: {
82: OSHalt("Fail to decode video data");
83: }
84:
85: // Draw decoded THP video data
86: frame = THPSimpleDrawCurrentFrame(rmode, x, y, videoInfo.xSize, videoInfo.ySize);
87:
88: while (VIGetRetraceCount() < count + 1)
89: {
90: VIWaitForRetrace();
91: }
92:
93: DEMODoneRender();
94:
95: count = VIGetRetraceCount();
96:
97: if (start)
98: {
99: // Permit audio output
100: THPSimpleAudioStart();
101: start = 0;
102: }
103:
104: if (buttonDown & PAD_BUTTON_A)
105: {
106: // Stop playback and restart
107: THPSimpleAudioStop();
108: THPSimpleLoadStop();
109: goto RESTART;

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

8

 THP Library

110: }
111:
112: if (buttonDown & PAD_BUTTON_START)
113: {
114: // End playback and exit main loop
115: THPSimpleAudioStop();
116: THPSimpleLoadStop();
117: THPSimpleClose();
118:
119: OSFree(buffer);
120:
121: break;
122: }
123:
124: if (buttonDown & PAD_BUTTON_B)
125: {
126: if (GetSeqState())
127: {
128: SeqStop();
129: }
130: else
131: {
132: SeqPlay();
133: }
134: }
135:
136: if (button & PAD_BUTTON_UP)
137: {
138: vol = THPSimpleGetVolume() + 1;
139: if (vol > 127)
140: {
141: vol = 127;
142: }
143: THPSimpleSetVolume(vol, 0);
144: }
145:
146: if (button & PAD_BUTTON_DOWN)
147: {
148: vol = THPSimpleGetVolume() - 1;
149: if (vol < 0)
150: {
151: vol = 0;
152: }
153: THPSimpleSetVolume(vol, 0);
154: }
155: }
156:
157: THPSimpleQuit();
158:
159: VIWaitForRetrace();
160:
161: OSHalt("application end\n");
162:
163: return;
164: }

Code 1 Example of use of Simple Player (main.c)

Line 14:

The THPVideoInfo structure is declared. This structure maintains the vertical and horizontal size of
the THP video data. The members of this structure are set by the THPSimpleGetVideoInfo
function (see line 32).

Line 18:
Before initializing one of the Nintendo GameCube audio libraries, AX library, the AIInit function is
called to initialize the audio interface.

Line 20:
The AXSeqSetup function initializes AX internally, and makes preparations for the use of the AX
sequencer.

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

9

THP Library

Line 22:
The THPSimpleInit function must be called first, before using any of the Simple Player API
functions. In addition to initializing the Simple Player's control structure (the THPSimple structure), the
THPSimpleInit function enables locked cache and calls the THP library's low level API function
THPInit. It also registers a callback function in the Nintendo GameCube audio interface for the
playback of THP audio data. When used with AX and MusyX simultaneously, initialization functions
for each audio library (AXInit, sndInit) need to be called before THPSimpleInit is called.
When used with AX simultaneously, THPSimpleInit needs to be called while sound output of AX is
set to produce no sound. This sample program specifies WITH_AX for the argument of
THPSimpleInit for simultaneous use of AX.

Line 27:
This opens the THP movie data ("fish.thp") specified by the argument. The THPSimpleOpen function
calls the DVDOpen function to open the THP movie data specified by the argument, and calls the
DVDRead function to read the header portion of that data. After that, the THPSimpleOpen function
analyzes the header portion to check that the data specified by the argument is valid THP movie data.

Line 32:
This gets information regarding THP video data from the header portion of the THP movie data that
was loaded into main memory in line 27, and stores it in the THPVideoInfo structure specified by the
argument. The information acquired here is utilized by the application (in this case, the sample
program described in main.c).

Lines 36, 37:
Requests the draw-location (upper left corner coordinates) of the decoded data so the THP video data
will be drawn centered in the screen when the THP movie data is played back.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

10

 THP Library

Line 40:
Requests the size of the work region to be used by the Simple Player. The
THPSimpleCalcNeedMemory function returns a value that is the sum of the size of the buffer used
when the THP movie data is read from the optical disc, the size of the YUV texture buffer used when
the THP library's low level API function decodes the THP video data, the size of the buffer used by the
THP audio data, and the size of the work region used by the THP library's low level API functions.
The formula used for this calculation is given below:

 // Size of buffer for reading the THP movie data
size = OSRoundUp32B (Maximum data size of THP frame data) * READ_BUFFER_NUM;

// Size of Y texture buffer
+ OSRoundUp32B (THP video data horizontal size x vertical size)

// Size of U texture buffer
+ OSRoundUp32B (THP video data horizontal size x vertical size/4)

// Size of V texture buffer
+ OSRoundUp32B (THP video data horizontal size x vertical size/4)

// Size of buffer for THP audio data
+ OSRoundUp32B (THP audio data's maximum number of samples x 4) x AUDIO_BUFFER_NUM

// Size of work region used by THP library's low level API functions
+ THP_WORK_SIZE;

Formula 1 Size of the work region for the THP Simple Player

Note: The THPConv tool, which is used to create THP movie data, automatically sets the THP
frame data's maximum size when it is creating THP movie data. This maximum size differs for
every set of THP movie data. In addition, for movies that play back a long time or have
frequently changing screens, this value will differ largely from the average size that can be
calculated from the THP movie data file size. For example, in the sample data that comes with
the THP library (rebirth.thp(dvddata/thpdemo/rebirth.thp), the average size is 39,552 bytes, and
the maximum size is set to 77,728 bytes. This type of localized fluctuation in data size can
have a large influence not only on the required buffer size for the Simple Player, but also on
the data transfer speed from the optical disc and the CPU load required for decoding. You
need to work to have a good balance when creating movies.
Note: The THPConv tool also automatically sets the maximum size for the THP audio data.
Unlike for the video value, this value for the THP audio data does not fluctuate largely in every
frame.
Note: The values for READ_BUFFER_NUM and for AUDIO_BUFFER_NUM are defined in the
THP Simple Player's header file THPSimple.h(build/demos/thpdemo/include/THPSimple.h).

 #define READ_BUFFER_NUM 10
#define AUDIO_BUFFER_NUM 3

Code 2 Definition of READ_BUFFER_NUM / AUDIO_BUFFER_NUM in THP Simple Player

Note: The value of THP_WORK_SIZE is defined in the THP library's header file
thp.h(include/dolphin/thp.h).

 #define THP_WORK_SIZE 0x1000

Code 3 Definition of THP_WORK_SIZE in THP library

Line 42:
Sets aside a work region for the Simple Player.

Line 49:
Registers in the Simple Player the work region that was set aside in line 42.

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

11

THP Library

Line 61:
Several frames worth of THP movie data are read from the optical disc before the THP movie data
begins to play. The THPSimplePreLoad function calls the DVDRead function to read the
READ_BUFFER_NUM number of frames of THP movie data. The method of playback for the THP
movie data is set in the argument of the THPSimplePreLoad function. LOOP is specified to loop the
THP movie data, and NONE is specified to play the THP movie data only once in "one shot." Both
LOOP and NONE are defined in the header file of the Simple Player
THPSimple.h(build/demos/thpdemo/include/THPSimple.h).

 #define NONE 0x00
 #define LOOP 0x01

Code 4 Definitions of the argument of the THPSimplePreLoad function

Line 66:
The start flag is set, in order to get the timing for the start of THP audio data playback (see lines 97-
102).

Line 80:
Decodes the THP video data. The decoded data is stored in YUV texture format in a buffer
maintained internally by the Simple Player. If audio data is interleaved in the THP movie data, then
the audio data is also decoded.

Line 86:
Draws the THP video data that was decoded in line 80. For drawing, the
THPSimpleDrawCurrentFrame function takes the YUV texture-format data decoded by the
THPSimpleDecode function and pastes it onto polygons.

Lines 88-93:
Writes from the EFB to the XFB and waits for two retraces.

When using the Simple Player, the loop portion in which the various Simple Player API functions are
called and the frame buffer is drawn (i.e., the portion between lines 70-155), must have the same
frame rate as that of the THP movie data being played. For example, if the Simple Player is
incorporated into a loop where objects are being drawn at a frame rate of 60 frames per second, then
the frame rate for that object rendering must drop to 30 frames per second, which is the frame rate for
playback of THP movie data.

Note: This sample program is for the playback of THP movie data at a frame rate of 29.97
frames per second.

Lines 97-102:
Allows start of playback of THP audio data. If start of playback is allowed by the
THPSimpleAudioStart function, decoded THP audio data is sent to the Nintendo GameCube audio
interface. When audio data plays back interleaved THP movie data, THPSimpleAudioStart needs
to be called once immediately after the start of playback.

The best location for the call to this function is immediately after the first frame (line 86) of THP movie
data drawn by the THPSimpleDrawCurrentFrame function is displayed on the screen (at or after
line 93).

Lines 104-110
Stops playback of THP movie data and restarts playback of that data at the beginning. To do this, first
the THPSimpleAudioStop function (line 107) is called to cancel permission to play the audio data.
When the denial is received, decoded THP audio data will not be sent to the Nintendo GameCube
audio interface. Next, the THPSimpleLoadStop function (line 108) is called to stop preloading of
THP movie data and to initialize the THPSimple structure. Doing so returns the Simple Player to its
initial status.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

12

 THP Library

Lines 112-122:
Exits playback of THP movie data. First the THPSimpleAudioStop function (line 115) is called to
stop playback of audio data. Next the THPSimpleLoadStop function (line 116) is called to return the
Simple Player to its initial status. Then the THPSimpleClose function (line 118) is called to close
the THP file.

Lines 124 - 134:
Uses AX to play back or stop MIDI file.

Lines 136 - 144:
Turns up the playback volume of THP audio data

Lines 146-154:
Turns down the playback volume of THP audio data.

Line 157:
Exits the Simple Player. The THPSimpleQuit function calls the LCDisable function to disable
locked cache and to return the Simple Player's internal state to the status it was in before the
THPSimpleInit function was called. To use the Simple Player again, the process must begin with
the calling of the THPSimpleInit function. When using AX simultaneously, call the
THPPlayerQuit function while sound output of AX is set to not produce any sound.

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

13

THP Library

3. The THP Simple Player API
This section provides explanations about the THP Simple Player's API functions and constants.

#include "THPSimple.h"

Code 5 Header file of the THP Simple Player API

3.1 READ_BUFFER_NUM

#define READ_BUFFER_NUM 10

Code 6 READ_BUFFER_NUM

READ_BUFFER_NUM is maintained inside the Simple Player and indicates the size of the buffer used for
reading from the optical disc. The actual size of the buffer that is secured is equal to the maximum frame
size kept in the THP movie data header (THPHeader), multiplied by READ_BUFFER_NUM.

3.2 AUDIO_BUFFER_NUM

#define AUDIO_BUFFER_NUM 3

Code 7 AUDIO_BUFFER_NUM

AUDIO_BUFFER_NUM is maintained inside the Simple Player, and indicates the size of the audio buffer.
The actual size of the buffer that is secured is equal to the maximum sample number (x 4), kept in the
header portion of the THP movie data (THPHeader), multiplied by AUDIO_BUFFER_NUM.

3.3 NONE / LOOP

#define NONE 0x00
#define LOOP 0x01

Code 8 NONE / LOOP

NONE and LOOP are used when the method of THP movie data playback is specified in the
THPSimplePreLoad function. LOOP is used when the THP movie data is played in a loop; NONE is
used when the THP movie data is played only once in one shot.

3.4 ALONE/WITH_AX/WITH_MUSYX

#define ALONE 0x00
#define WITH_AX 0x01
#define WITH_MUSYX 0x02

Code 9 ALONE/WITH_AX/WITH_MUSYX

Flags specified for the THPSimpleInit function. When Simple Player is used with AX simultaneously,
specify WITH_AX. When used with MusyX simultaneously, specify WITH_MUSYX. When no audio
library is used simultaneously, specify ALONE.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

14

 THP Library

3.5 THPDecodeError

typedef enum
{

DECODE_OK = 0,
VIDEO_DECODE_FAIL,
NO_READ_BUFFER,
NO_AUDIO_BUFFER

} THPDecodeError;

Code 10 THPDecodeError

The various values defined by THPDecodeError are the error codes that are returned by the
THPSimpleDecode function. The meaning of each error code is explained in Table 1 below.

Definition name Code Explanation of code

DECODE_OK 0 Function has terminated normally.

VIDEO_DECODE_FAI
L 1 Decoding of THP video data has failed.

NO_READ_BUFFER 2 There is no data in the read buffer.

NO_AUDIO_BUFFER 3 There is no free audio buffer.

Table 1 Error codes returned by the THPSimpleDecode function

3.6 THPVideoInfo

typedef struct
{

u32 xSize;
u32 ySize;

} THPVideoInfo;

Code 11 THPVideoInfo

The THPVideoInfo structure holds the THP video data information (the vertical & horizontal sizes). The
developer can reference this structure to get information about the THP video data.

The members of the THPVideoInfo structure are set by the THPSimpleGetVideoInfo function.

3.7 THPAudioInfo

typedef struct
{

u32 sndChannels;
u32 sndFrequency;
u32 sndNumSamples;

} THPAudioInfo;

Code 12 THPAudioInfo

The THPAudioInfo structure holds the THP audio data information (the number of channels, the playback
frequency, and the total number of samples). The developer can reference this structure to get
information about the THP audio data.

The members of the THPAudioInfo structure are set by the THPSimpleGetAudioInfo function.

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

15

THP Library

3.8 THPSimpleInit

BOOL THPSimpleInit(s32 audioSystem);

Code 13 THPSimpleInit

The THPSimpleInit function initializes the Simple Player's control structure (the THPSimple structure),
enables locked cache and calls the THPInit function, which is one of the THP library's low level API
functions. The THPSimpleInit function must be called before any of the other Simple Player functions.
It also registers a callback in the Nintendo GameCube audio interface to play back THP audio data.

If using the Simple Player simultaneously with an audio library, be sure to call that audio library's
initialization functions (AXInit, sndInit) before you call this function. If you are making simultaneous
use of the AX library, be sure to call this function with AX sound output set to not produce any sound.

The audio library used simultaneously is specified as an argument of the THPSimpleInit function.
When used with AX simultaneously, specify WITH_AX. When used with MusyX simultaneously, specify
WITH_MUSYX. When no audio library is used simultaneously, specify ALONE.

This function returns TRUE if it has succeeded or FALSE if it has failed.

3.9 THPSimpleQuit

void THPSimpleQuit(void);

Code 14 THPSimpleQuit

The THPSimpleQuit function disables locked cache and returns the internal state of the Simple Player to
the state it was in, before the THPSimpleInit function was called. To use the Simple Player again you
must start again from the calling of the THPSimpleInit function. When Simple Player is used with AX,
the THPSimpleQuit function needs to be called while sound output of AX is set to produce no sound.

The THPSimpleQuit function does not return a value.

3.10 THPSimpleOpen

BOOL THPSimpleOpen(char *fileName);

Code 15 THPSimpleOpen

The THPSimpleOpen function calls the DVDOpen function to open the THP movie data specified by the
argument, and then calls the DVDRead function to read the header portion of that data. It then gets the
necessary information from that header portion, and checks that the specified data is THP movie data that
can be decoded.

The THPSimpleOpen function initializes the THP audio data playback volume to a value of 127.

The THPSimpleOpen function returns TRUE if it has succeeded or FALSE if it has failed.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

16

 THP Library

3.11 THPSimpleClose

BOOL THPSimpleClose(void);

Code 16 THPSimpleClose

The THPSimpleClose function calls the DVDClose function to close the THP movie data that was
opened by the THPSimpleOpen function.

Before the THPSimpleClose function is called it is necessary to first call THPSimpleAudioStop and
THPSimpleLoadStop to halt all access to THP files by the Player.The THPSimpleClose function
returns TRUE if it has succeeded or FALSE if it has failed.

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

17

THP Library

3.12 THPSimpleCalcNeedMemory

u32 THPSimpleCalcNeedMemory(void);

Code 17 THPSimpleCalcNeedMemory

The THPSimpleCalcNeedMemory function calculates the size of work region needed by the Simple
Player to playback the THP movie data.

The work region size differs depending on the THP movie data. You should call this function to obtain the
correct size information, when starting to playback new THP movie data.

As the returned value, the THPSimpleCalcNeedMemory function returns the work region size if it has
succeeded or 0 if it has failed.

3.13 THPSimpleSetBuffer

BOOL THPSimpleSetBuffer(u8 *buffer);

Code 18 THPSimpleSetBuffer

The THPSimpleSetBuffer function registers the work area from the argument in the Simple Player.

The work region size specified by the argument must be the same as the size returned by the
THPSimpleCalcNeedMemory function.

The THPSimpleSetBuffer function returns TRUE if it has succeeded or FALSE if it has failed.

3.14 THPSimplePreLoad

BOOL THPSimplePreLoad(s32 loop);

Code 19 THPSimplePreLoad

The THPSimplePreLoad function prepares for the playback of THP movie data by calling the DVDRead
function to read READ_BUFFER_NUM frame's worth of THP movie data.

The argument of the THPSimplePreLoad function sets the method of playback of THP movie data. The
value of the argument is either LOOP or NONE. If LOOP is specified in the argument, the THP movie
data is looped. If NONE is specified in the argument, then the movie data is played in one shot.

The THPSimplePreLoad function returns TRUE if it has succeeded or FALSE if it has failed.

3.15 THPSimpleAudioStart

void THPSimpleAudioStart(void);

Code 20 THPSimpleAudioStart

The THPSimpleAudioStart function allowss the passing of decoded THP audio data to the audio
interface. This starts the playback of THP audio data.

The THPSimpleAudioStart function does not return a value.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

18

 THP Library

3.16 THPSimpleAudioStop

void THPSimpleAudioStop(void);

Code 21 THPSimpleAudioStop

The THPSimpleAudioStop function prevents the passing of decoded THP audio data to the audio
interface. This stops the playback of THP audio data.

The THPSimpleAudioStop function does not return a value.

3.17 THPSimpleLoadStop

BOOL THPSimpleLoadStop(void);

Code 22 THPSimpleLoadStop

The THPSimpleLoadStop function stops the preloading of movie data and initializes the Simple Player's
control structure. This returns the Player to its initial state.

Once reading has stopped, the process must begin from the THPSimplePreLoad function, in order to
begin playing the THP movie data again.

The Simple Player preloads THP movie data in the background, provided there is free space in the buffer
it maintains for loading.

The THPSimpleLoadStop function returns TRUE if it has succeeded or FALSE if it has failed.

3.18 THPSimpleDecode

s32 THPSimpleDecode(void);

Code 23 THPSimpleDecode

The THPSimpleDecode function calls the THP library's low level API THPVideoDecode function and
decodes THP movie data. If audio data is interleaved in the THP movie data, the same low-level API's
THPAudioDecode function is called to decode the THP audio data. The decoded data is stored internally
by the Player.

The THPSimpleDecode function returns the error codes shown in Table 1.

Note: Decoding of the THP audio data is performed by the Gekko CPU.

3.19 THPSimpleDrawCurrentFrame

s32 THPSimpleDrawCurrentFrame(GXRenderModeObj *rmode,
u32 x,
u32 y,
u32 polygonW,
u32 polygonH);

Code 24 THPSimpleDrawCurrentFrame

THPSimpleDrawCurrentFrame function draws by pasting THP video data decoded by the
THPSimpleDecode function mentioned previously to the polygon with upper-left vertex at coordinate (x,
y), and (width, height) = (polygonW, polygonH).

As the returned value, the THPSimpleDrawCurrentFrame function returns the frame number if it has
succeeded, or -1 if it has failed.

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

19

THP Library

3.20 THPSimpleSetVolume

BOOL THPSimpleSetVolume(s32 vol, s32 time);

Code 25 THPSimpleSetVolume

The THPSimpleSetVolume function sets the volume for playback of THP audio data. The Simple Player
will change the playback volume of the THP audio data to the value specified by vol in the time specified
by time. The vol argument has a range of values from 0 to 127. The time argument is set in units of
milliseconds and has a range of 0 to 60000.

Note that the volume is initialized to a value of 127 when the THPSimpleOpen function is called.

For a return value, THPSimpleSetVolume function returns TRUE if volume setting has succeeded or
FALSE if it has failed.

3.21 THPSimpleGetVolume

s32 THPSimpleGetVolume(void);

Code 26 THPSimpleGetVolume

The THPSimpleGetVolume function obtains the current volume set for playback of THP movie data.

For a return value, THPSimpleGetVolume function returns current playback volume if it has succeeded
or –1 if it has failed.

3.22 THPSimpleGetVideoInfo

BOOL THPSimpleGetVideoInfo(THPVideoInfo *videoInfo);

Code 27 THPSimpleGetVideoInfo

The THPSimpleGetVideoInfo function gets the video information from the THP movie data that has
been opened by the THPSimpleOpen function, and stores it in the THPVideoInfo structure specified by
the argument.

The function returns TRUE if it has succeeded or FALSE if it has failed.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

20

 THP Library

3.23 THPSimpleGetAudioInfo

BOOL THPSimpleGetAudioInfo(THPAudioInfo *audioInfo);

Code 28 THPSimpleGetAudioInfo

The THPSimpleGetAudioInfo function gets the audio information from the THP movie data that has
been opened by the THPSimpleOpen function and stores it in the THPAudioInfo structure specified by
the argument.

The function returns TRUE if it has succeeded or FALSE if it has failed.

3.24 THPSimpleGetFrameRate

f32 THPSimpleGetFrameRate(void);

Code 29 THPSimpleGetFrameRate

The THPSimpleGetFrameRate function gets the frame rate of the THP movie data that has been
opened by the THPSimpleOpen function.

As the returned value, the THPSimpleGetFrameRate returns the frame rate if it has succeeded or 0.0f
if it has failed.

3.25 THPSimpleGetTotalFrame

u32 THPSimpleGetTotalFrame(void);

Code 30 THPSimpleGetTotalFrame

The THPSimpleGetTotalFrame function gets the total number of frames contained within the THP
movie data that has been opened by the THPSimpleOpen function.

As the returned value, the function returns the frame total if it has succeeded or 0 if it has failed.

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

21

THP Library

4. The THP Player API
Sections 2 and 3 explained the THP Simple Player (THPSimple, build/demos/thpdemp/src/THPSimple),
with the goal of providing a basic understanding of the use of the THP library.

This section explains the API functions and constants of the THP Player (THPPlayer, build/demos/
thpdemo/src/THPPlayer), created for use in applications.

#include "THPPlayer.h"

Code 31 Header file of the THP Player API

4.1 READ_THREAD_PRIORITY / AUDIO_THREAD_PRIORITY /
VIDEO_THREAD_PRIORITY

#define READ_THREAD_PRIORITY 8
#define AUDIO_THREAD_PRIORITY 12
#define VIDEO_THREAD_PRIORITY 20

Code 32 READ_THREAD_PRIORITY / AUDIO_THREAD_PRIORITY / VIDEO_THREAD_PRIORITY

A maximum of three threads are created with the THP Player: a Read Thread for reading data from the
optical disk, a Video Decode Thread for decoding the THP video data, and an Audio Decode Thread for
decoding the THP audio data.

The order of priority of the various threads is indicated by READ_THREAD_PRIORITY /
AUDIO_THREAD_PRIORITY / VIDEO_THREAD_PRIORITY. The priority of each thread is defined with
the sample program, so you need to adjust it according to the particular environment being used if you are
going to include the THP Player in a game. However, when you make changes, you need to maintain the
following priorities for each thread.

High READ_THREAD_PRIORITY > AUDIO_THREAD_PRIORITY > VIDEO_THREAD_PRIORITY Low

Formula 2 Priority of each thread for THP Player

In order to read data smoothly from the optical disc, without any interruption in audio, the Read Thread
and Audio Decode Thread must be assigned a high priority.

4.2 READ_BUFFER_NUM

#define READ_BUFFER_NUM 10

Code 33 READ_BUFFER_NUM

READ_BUFFER_NUM indicates the size of the buffer maintained inside the THP Player for reading data
from the optical disc. The actual size of the buffer set aside, is equal to READ_BUFFER_NUM multiplied
by the maximum frame size maintained in the THP movie data's header (THPHeader). Slight processing
errors, that are generated due to the data loading speed, can sometimes be resolved by making
READ_BUFFER_NUM larger.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

22

 THP Library

4.3 DECODE_BUFFER_NUM

#define DECODE_BUFFER_NUM 3

 Code 34 DECODE_BUFFER_NUM

DECODE_BUFFER_NUM indicates the size of the buffer maintained inside the THP Player to hold the
decoded THP video data and the decoded THP audio data. The actual size of the buffer is calculated
using the formula shown below:

// Size of Y texture buffer
(OSRoundUp32B (THP video data horizontal size x vertical size)
// Size of U texture buffer
+ OSRoundUp32B (THP video data horizontal size x vertical size / 4)
// Size of V texture buffer
+ OSRoundUp32B (THP video data horizontal size x vertical size / 4)
// Size of buffer for reading the THP audio data
+ OSRoundUp32B (THP audio data's maximum number of samples x 4) x DECODE_BUFFER_NUM

Formula 3 Formula for calculating size of set aside buffer

Slight processing errors that are generated, due to the duration of the decoding process, can sometimes
be resolved by making DECODE_BUFFER_NUM larger.

4.4 STOP / PREPARE / PLAY / PLAYED / PAUSE / ERROR

#define STOP 0x0
#define PREPARE 0x1
#define PLAY 0x2
#define PLAYED 0x3
#define PAUSE 0x4
#define ERROR 0x5

Code 35 STOP / PREPARE / PLAY / PLAYED / PAUSE / ERROR

These six status values indicate the present status of the THP Player.

Status
Valu

e Explanation

STOP 0 The movie is stopped.

PREPARE 1 Preparations for movie playback are completed.

PLAY 2 The movie is playing.

PLAYED

3

The movie has played to the end.

(For ‘one-shot’ playback, this indicates playback has reached
end)

PAUSE 4 The movie is paused.

ERROR 5 An error has been generated.

 Table 2 The status of the THP Player

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

23

THP Library

4.5 NONE / LOOP / ODD_INT /
EVEN_INT

#define NONE 0x0000
#define LOOP 0x0001
#define ODD_INT 0x0002
#define EVEN_INT 0x0004

Code 36 NONE / LOOP / ODD_INT / EVEN_INT

This is the playback flag specified in the argument for THPPlayerPrepare.

When you ‘one-shot’ playback THP movie data, specify NONE. When you loop playback, specify LOOP,
and when THP movie data is an interlaced movie, specify ODD_INT or EVEN_INT depending on the
starting field.

You can also specify the OR value of the above flag for THPPlayerPrepare. However, you must not
specify ODD_INT and EVEN_INT at the same time.

4.6 ALONE/WITH_AX/WITH_MUSYX

#define ALONE 0x00
#define WITH_AX 0x01
#define WITH_MUSYX 0x02

Code 37 ALONE/WITH_AX/WITH_MUSYX

This is the flag specified in the argument for THPPlayerInit. When THP player is used with AX
simultaneously, specify WITH_AX. When used with MusyX simultaneously, specify WITH_MUSYX.
When no audio library is used simultaneously, specify ALONE.

4.7 THPVideoInfo

typedef struct
{

u32 xSize;
u32 ySize;

} THPVideoInfo;

Code 38 THPVideoInfo

The THPVideoInfo structure holds the information for the THP video data (the horizontal and vertical
sizes). The developer can obtain THP video data information by referencing this structure.

The THPVideoInfo structure members are set by the THPPlayerGetVideoInfo function.

4.8 THPAudioInfo

typedef struct
{

u32 sndChannels;
u32 sndFrequency;
u32 sndNumSamples;

} THPAudioInfo;

Code 39 THPAudioInfo

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

24

 THP Library

The THPAudioInfo structure holds the information for the THP audio data (number of channels, playback
frequency and total number of samples). The developer can obtain THP audio data information by
referencing this structure.

The THPAudioInfo structure members are set by the THPPlayerGetAudioInfo function.

4.9 THPPlayerInit

BOOL THPPlayerInit(s32 audioSystem);

Code 40 THPPlayerInit

The THPPlayerInit function initializes the Player's control structure (the THPPlayer structure), enables
locked cache and calls the THPInit function, which is one of the THP library's low-level API functions. It
also registers a callback function in the Nintendo GameCube audio interface for the playback of THP
audio data. This function must be called before any of the other Player functions. If using the Player
simultaneously with an audio library, be sure to call that audio library's initialization functions (AXInit,
sndInit) before you call this function.

If you are making simultaneous use of the AX library, be sure to call the THPPlayerInit function with
AX sound output set not to produce any sound.

The audio library used simultaneously is specified as an argument of THPPlayerInit. When used with
AX simultaneously, specify WITH_AX. When used with MusyX simultaneously, specify WITH_MUSYX.
When no audio library is used simultaneously, specify ALONE.

As the returned value, the THPPlayerInit function returns TRUE if the call has succeeded or FALSE if
it has failed.

4.10 THPPlayerQuit

BOOL THPPlayerQuit(void);

Code 41 THPPlayerQuit

The THPPlayerQuit function disables locked cache and returns the internal status of the Player to the
status it was in before the THPPlayerInit function was called. To use the Player again you must start
again from the calling of the THPPlayerInit function.

If you are making simultaneous use of the AX library with the THP Player, be sure to call the
THPPlayerQuit function with AX sound output set not to produce any sound.

The function does not return a value.

4.11 THPPlayerOpen

BOOL THPPlayerOpen(char *fileName, BOOL onMemory)

Code 42 THPPlayerOpen

The THPPlayerOpen function calls the DVDOpen function to open the THP movie data specified by the
argument, and then calls the DVDRead function to read the header portion of that data. It then obtains the
necessary information from that header portion and checks that the specified data is THP movie data that
can be decoded. In the second argument, specify FALSE for streaming playback from the
Nintendo GameCube Game Disc, or TRUE for On Memory playback.

The THPPlayerOpen function initializes the THP audio data playback volume to a value of 127.

As the returned value, the THPPlayerOpen function returns TRUE if the call has succeeded or FALSE if
it has failed.

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

25

THP Library

4.12 THPPlayerClose

BOOL THPPlayerClose(void)

Code 43 THPPlayerClose

The THPPlayerClose function calls the DVDClose function to close the THP movie data that was
opened by the THPPlayerOpen function. Before calling the THPPlayerClose function, be sure to call
the THPPlayerStop function to halt the playback of THP movie data.

As the returned value, the THPPlayerClose function returns TRUE if the call has succeeded or FALSE if
it has failed.

4.13 THPPlayerCalcNeedMemory

u32 THPPlayerCalcNeedMemory(void)

Code 44 THPPlayerCalcNeedMemory

The THPPlayerCalcNeedMemory function calculates the number of bytes of work region needed to
playback the THP movie data. The work region size differs, depending on the THP movie data. You
should call this function to obtain the correct size information when starting to playback new THP movie
data.

As the returned value, the THPPlayerCalcNeedMemory function returns the work region size if it has
succeeded or 0 if it has failed.

4.14 THPPlayerSetBuffer

BOOL THPPlayerSetBuffer(u8 *buffer);

Code 45 THPPlayerSetBuffer

The THPPlayerSetBuffer function takes the work region required for playback of the THP movie data,
specified in the argument, and sets it in the Player's structure. The size of the work region specified by
the argument must be the same as the size returned by the THPPlayerCalcNeedMemory function.

As the returned value, the THPPlayerSetBuffer function returns TRUE if the call has succeeded or
FALSE if it has failed.

4.15 THPPlayerPrepare

BOOL THPPlayerPrepare(s32 frameNum, s32 playFlag);

Code 46 THPPlayerPrepare

The THPPlayerPrepare function makes preparations for playback of the THP movie data. Depending
on whether or not there is any THP audio data and on the form of playback (streaming or On Memory),
the function creates a Video Decode thread, an Audio Decode thread and a Read thread. It then preloads
the data and decodes the first frame. In addition, it registers a VI post-callback for control over playback
(the registered VI post-callback can be called internally).

The first argument of the THPPlayerPrepare function specifies the frame number from which to start the
THP movie data. If the THP movie data does not hold offset data for each frame, then 0 is the only value
that can be set in this argument.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

26

 THP Library

The playback flag can be specified via the second argument of the THPPlayerPrepare function. See
section 4.5 “NONE / LOOP / ODD_INT / EVEN_INT” to learn which flags can be set. Multiple flags can be
set using OR, but do not set both ODD_INT and EVEN_INT at the same time.

As the returned value, the THPPlayerPrepare function returns TRUE if the call has succeeded or
FALSE if it has failed.

4.16 THPPlayerPlay

BOOL THPPlayerPlay(void)

Code 47 THPPlayerPlay

The THPPlayerPlay function initiates playback of THP movie data.

As the returned value, the function returns TRUE if the call has succeeded or FALSE if it has failed.

4.17 THPPlayerStop

BOOL THPPlayerStop(void);

Code 48 THPPlayerStop

The THPPlayerStop function stops playback of THP movie data. It stops the Video Decode thread,
Audio Decode thread and Read thread that were created by the THPPlayerPrepare function and
returns the VI post callback to its original status.

The THPPlayerStop function returns TRUE if the call has succeeded or FALSE if it has failed.

4.18 THPPlayerPause

BOOL THPPlayerPause(void);

Code 49 THPPlayerPause

The THPPlayerPause function temporarily pauses playback of THP movie data.

The function returns TRUE if the call has succeeded or FALSE if it has failed.

4.19 THPPlayerSkip

BOOL THPPlayerSkip(void);

Code 50 THPPlayerSkip

The THPPlayerSkip function advances the playback of THP movie data one frame forward.

The function returns TRUE if the call has succeeded or FALSE if it has failed.

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

27

THP Library

4.20 THPPlayerDrawCurrentFrame

s32 THPPlayerDrawCurrentFrame(GXRenderModeObj *rmode,
u32 x,
u32 y,
u32 polygonW,
u32 polygonH);

Code 51 THPPlayerDrawCurrentFrame

THPPlayerDrawCurrentFrame function draws by pasting the THP video data that should be displayed
at present to the polygon with upper-left vertex at coordinate (x, y), and (width, height) = (polygonW,
polygonH).

As the returned value, the THPPlayerDrawCurrentFrame function returns the frame number if the
frame could be drawn or -1 if the frame could not be drawn.

4.21 THPPlayerSetVolume

BOOL THPPlayerSetVolume(s32 vol, s32 time);

Code 52 THPPlayerSetVolume

THPPlayerSetVolume function sets playback volume for THP audio data. It changes from the current
volume to the volume value specified by vol in the time specified by time. The value range you can
specify for vol is from 0 to 127. time is specified in milliseconds. The value range you can specify for
time is from 0 to 60000.

Be aware that when THPPlayerOpen function is called, volume value is initialized at 127.

For a return value, THPPlayerSetVolume returns TRUE if volume setting has succeeded, or FALSE if it
has failed.

4.22 THPPlayerGetVolume

s32 THPPlayerGetVolume(void);

Code 53 THPPlayerGetVolume

The THPPlayerGetVolume function obtains playback volume for the current THP audio data.

For a return value, THPPlayerGetVolume returns the current playback volume if it has succeeded or –1
if it has failed.

4.23 THPPlayerGetVideoInfo

BOOL THPPlayerGetVideoInfo(THPVideoInfo *videoInfo);

Code 54 THPPlayerGetVideoInfo

The THPPlayerGetVideoInfo function obtains the video information of the THP movie data and stores
it in the THPVideoInfo structure specified by the argument.

The function returns TRUE if the call has succeeded or FALSE if it has failed.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

28

 THP Library

4.24 THPPlayerGetAudioInfo

BOOL THPPlayerGetAudioInfo(THPAudioInfo *audioInfo);

Code 55 THPPlayerGetAudioInfo

The THPPlayerGetAudioInfo function obtains the audio information of the THP movie data and stores
it in the THPAudioInfo structure specified by the argument.

The function returns TRUE if the call has succeeded or FALSE if it has failed.

4.25 THPPlayerGetFrameRate

f32 THPPlayerGetFrameRate(void);

Code 56 THPPlayerGetFrameRate

The THPPlayerGetFrameRate function gets the frame rate of the THP movie data.

As the returned value, the function returns the frame rate if it has succeeded or 0.0f if it has failed.

4.26 THPPlayerGetTotalFrame

u32 THPPlayerGetTotalFrame(void);

Code 57 THPPlayerGetTotalFrame

The THPPlayerGetTotalFrame function gets the total number of frames included in the THP movie
data.

As the returned value, the function returns the total number of frames if it has succeeded or 0 if it has
failed.

4.27 THPPlayerGetState

s32 THPPlayerGetState(void);

Code 58 THPPlayerGetState

The THPPlayerGetState function gets the current status of the Player. See section 4.4 “STOP /
PREPARE / PLAY / PLAYED / ERROR” to read about the different status values.

As the returned value, this function returns the Player status. If the ERROR status comes back, you
should terminate playback by calling the THPPlayerStop function and the THPPlayerClose function.

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

29

THP Library

4.28 THPPlayerDrawDone

s32 THPPlayerDrawDone(void);

Code 59 THPPlayerDrawDone

THPPlayerDrawDone is called in lieu of GXDrawDone, in order to synchronize with the graphics
processor at the time of movie playback. Internally, this function releases used THP video data, if any
exists, after GXDrawDone has been called. This procedure guarantees that absolutely none of the used
THP video data is accessed from the graphics processor and is safely released. If this function is not
called, then the used THP video data will not be released and the Video Decode Thread will stop. Be sure
to call THPPlayerDrawDone instead of GXDrawDone.

The THPPlayerDrawDone function does not return a value.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

30

 THP Library

5. The THP Library's Low Level API
This section explains the THP library's low-level API functions and constants.

#include <dolphin/thp.h>

Code 60 The THP low level API header file

5.1 THP_WORK_SIZE

#define THP_WORK_SIZE 0x1000

Code 61 THP_WORK_SIZE

THP_WORK_SIZE indicates the work region size needed for decoding of THP video data.

5.2 Error codes

The THPVideoDecode function returns the following error codes:

Definition Code Explanation

THP_OK 0 The function has terminated normally.

THP_BAD_SYNTAX 3
THP video data has an invalid specification for the
maker.

THP_UNSUPPORTED_QUANTIZAT
ION 9

THP video data has an invalid specification for the
number of quantization tables.

THP_UNSUPPORTED_PRECISION 10
THP video data has an invalid specification for the bit
precision.

THP_UNSUPPORTED_MARKER 11 Unsupported marker inside THP video data.

THP_UNSUPPORTED_NUM_COM
P 12

THP video data has an invalid specification for the
number of components.

THP_UNSUPPORTED_NUM_HUFF 13
THP video data has an invalid specification for the
number of Huffman tables.

THP_BAD_SCAN_HEADER 14 THP video data has an invalid scan header.

THP_INVALID_HUFFTAB 15
THP video data has an invalid specification for the
Huffman table.

THP_UNSUPPORTED_COMPS 19
THP video data has an invalid specification for the
components.

THP_NO_INPUT_FILE 25 Input data (THP video data) is not specified.

THP_NO_WORK_AREA 26 Work region is not specified.

THP_NO_OUTPUT_BUFFER 27 Output for decoded data is not specified.

THP_LC_NOT_ENABLED 28 Locked cache is not enabled.

THP_NOT_INITIALIZED 29 THPInit has not been called.

Table 3 THPVideoDecode function’s error codes

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

31

THP Library

5.3 THP_AUDIO_INTERLEAVE / THP_AUDIO_NO_INTERLEAVE

#define THP_AUDIO_INTERLEAVE 0x00
#define THP_AUDIO_NO_INTERLEAVE 0x01

Code 62 THP_AUDIO_INTERLEAVE / THP_AUDIO_NO_INTERLEAVE

THP_AUDIO_XXX is used for specifying the output format of the THPAudioDecode function.

THP_AUDIO_INTERLEAVE specifies that the THPAudioDecode function interleave the decoded left/right
channel data in units of samples and output the data to the specified buffer. The decoded data is
interleaved in the order (right, left, right, left...) as per the specifications of the Nintendo GameCube audio
interface.

THP_AUDIO_NO_INTERLEAVE specifies that the THPAudioDecode function collect the decoded
left/right channel data in each channel separately and output the data to the specified buffer. In this case,
the decoded data is output in the order: (all samples of the right channel, followed by all samples in the left
channel).

5.4 THPInit

BOOL THPInit(void);

Code 63 THPInit

The THPInit function initializes work region settings. It returns TRUE if call has succeeded or FALSE if it
has failed.

Call the THPInit function before calling other THP functions. It is not a problem if you call THPInit
more than once.

5.5 THPVideoDecode

s32 THPVideoDecode(void *file, void *tileY, void *tileU, void *tileV, void *work);

Code 64 THPVideoDecode

The THPVideoDecode function decodes the THP video data specified by the first argument, then writes
the Y, U and V components of the decoded data to the buffers specified by the second, third and fourth
arguments, respectively. The fifth argument specifies the work region used by the THPVideoDecode
function. The size of work region is defined as THP_WORK_SIZE in the header file of the THP library,
thp.h(include/dolphin/thp.h).Locked cache should be put in the enabled state when calling this
function.

The THPVideoDecode function returns the error codes shown in Table 3. These error codes can be
broadly divided into three categories: THP_OK when the function terminates normally,
THP_NO_INPUT_FILE, etc. when the function is used incorrectly, and THP_BAD_SYNTAX, etc. when
the THP video data cannot be decoded. If the function has been used incorrectly, correct the error and
call the THPVideoDecode function again. If the THP video data cannot be decoded, check to see that
the first argument specifies the correct address, because it may be that the data specified by the first
argument is not THP movie data.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

32

 THP Library

The THPVideoDecode function outputs the three components of the decoded data in 8-bit texture image
format. The size of the buffer for each component specified in the function is calculated as shown in
Formula 4 below. The starting address of each buffer must be 32byte aligned.

Component Size (Bytes)

Y Number of horizontal pixels x Number of vertical pixels

U Number of horizontal pixels x Number of vertical pixels / 4

V Number of horizontal pixels x Number of vertical pixels / 4

Formula 4 Size of buffer specified in THPVideoDecode function for each component

Note: The THPViodeDecode function utilizes locked cache when decoding THP video data. The
function's computational results could get destroyed if it is executing inside one thread when a
thread with higher priority also makes use of locked cache. You thus need to handle the
THPViodeDecode function carefully.

5.6 THPAudioDecode

u32 THPAudioDecode(s16 *buffer, u8 *audioFrame, s32 flag);

Code 65 THPAudioDecode

The THPAudioDecode function decodes the THP audio data specified by the second argument and
outputs it to the buffer specified by the first argument. The third argument specifies the format for the data
being output. The THPAudioDecode function outputs the audio data in stereo. If the function receives
monaural THP audio data, it will convert it internally into stereo.

As the returned value, the THPAudioDecode function returns the number of decoded stereo samples (the
number increases by 1 for each pair of left and right channel sample).

The flag of the third argument is specified as either THP_AUDIO_INTERLEAVE or
THP_AUDIO_NO_INTERLEAVE.

THP_AUDIO_INTERLEAVE specifies that the THPAudioDecode function interleave the decoded left and
right channel data in units of samples and output the data to the specified buffer. The decoded data is
interleaved in the order (right, left, right, left...), as per the specifications of the Nintendo GameCube audio
interface.

THP_AUDIO_NO_INTERLEAVE specifies that the THPAudioDecode function collect the decoded
left/right channel data in each channel separately and output the data to the specified buffer. In this case,
the decoded data is output in the order: (all samples of the right channel, followed by all samples in the left
channel).

Note: If the THP audio data is monaural, the THPAudioDecode function will convert the decoded
data into stereo no matter what is specified in the third argument. Set the size of the buffer
specified in the first argument the same as you would for stereo THP audio data.

Note: The THPAudioDecode function does not utilize locked cache.

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

33

THP Library

6. How to Create THP Movie Data

6.1 Overview

The format of THP movie data has specifications unique to the Nintendo GameCube. THP movie data is
composed of THP video data and THP audio data, and both types of data are interleaved in every frame.
THP movie data has high extensibility, and can also incorporate a third type of data besides THP video
data and THP audio data.

A unique format is employed for the THP video data. It has been customized for rapid decoding by the
Nintendo GameCube. The JPEG data is converted into THP video data very quickly, with no loss in
picture quality from the original JPEG data.

The THP audio data is compressed in the Nintendo GameCube audio system's DSP ADPCM format.
During conversion from the original 16-bit PCM data, the playback frequency is slightly altered (48,000Hz

 48,043Hz / 32,000Hz 32,028Hz) to achieve synchronization with the THP video data. This THP
audio data supports both monaural and stereo playback.

The utility THPConv is available for use in creating THP movie data. The THPConv tool supports these
two input data formats: QuickTime Motion (Photo) JPEG files (see Section 6.2.1 “Converting QuickTime
Motion JPEG files into THP movie data”) and sequential JPEG files (see Section 6.2.2 “Converting
sequential JPEG files into THP movie data”). The tool also has a function that can be used for replacing
the audio data that is already incorporated in the THP movie data (see Section 6.2.3 “Replacing the THP
audio data inside the THP movie data”).

6.2 How to use

The THPConv tool is a Win32 console application. The tool is used differently depending on the format of
the input data. The following sections explain how to use the THPConv tool for each separate input data
format.

Addendum: The method of use can be displayed by executing the THPConv tool without any options.

6.2.1 Converting QuickTime Motion JPEG files into THP movie data

Use the THPConv tool as follows when converting QuickTime style Motion JPEG files to THP movie data.

THPConv.exe -m <inputfile> -d <outputfile> [-<option> <argument>]

-m <inputfile> Specifies the input file (a QuickTime Motion JPEG file). This argument must
be specified.

-d <outputfile> Specifies the output file (the THP file). If this argument is not specified,
then the THPConv tool will automatically create a file that has the same name
as the input file, but with the extension changed to .thp.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

34

 THP Library

The THPConv tool supports the following options:

-s <wavefile> Specifies an audio file (a wav file) to convert into THP audio data. The
audio data specified with this argument has priority for conversion into THP
audio data, and the audio data inside the Motion JPEG file is ignored.

-r <frame rate> Specifies the movie frame rate. The frame rate can be set in the range of 1.0
to 59.94. If no value is specified, then the default value (29.97) is

utilized.

-o With THP movie data, the offset to each frame's data can be stored as a table
(see Section 6.3.4.3). When this argument is specified, the THPConv tool creat
es an offset table inside the THP data. If this argument is not specified,
then an offset table will not be created inside the THP data.

-v Turns the verbose mode on.

6.2.2 Converting sequential JPEG files into THP movie data

Use THPConv tool as follows when converting serial numbered JPEG files to THP movie data.

THPConv.exe -j <*.jpg> -d <outputfile> [-<option> <argument>]

-j <*.jpg> Specifies the input files (sequential JPEG files). Wildcard characters (*)
can be used. This argument must be specified.

-d <outputfile> Specifies the output file (the THP file). This argument must be specified.

The THPConv tool supports the following options:
-s <wavefile> Specifies an audio file (a wav file) to convert into THP audio data. The

audio data specified with this argument has priority for conversion into THP
audio data, and the audio data inside the Motion JPEG file is ignored.

-r <frame rate> Specifies the movie frame rate. The frame rate can be set in the range of 1.0
to 59.94. If no value is specified, then the default value (29.97) is
utilized.

-o With THP movie data, the offset to each frame's data can be stored as a table
(see Section 6.3.4.3). When this argument is specified, the THPConv tool
creates an offset table inside the THP data. If this argument is not
specified, then an offset table will not be created inside the THP data.

-v Turns the verbose mode on.

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

35

THP Library

In the example below, the THPConv tool is used to convert sequential JPEG files into THP movie data.

THPConv -j test*.jpg -p output.thp

When this is executed on the command line, the sequential JPEG files located in the current directory
(test001.jpg, test002.jpg, test003.jpg) are individually converted into THP video data, and then
collected together in one THP movie data file named output.thp. See section 6.3.2 “Sequential JPEG
files” for information about sequential JPEG files.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

36

 THP Library

6.2.3 Replacing the THP audio data inside the THP movie data

THPConv.exe -c <inputfile> -s <wavfile> -d <outputfile> [-<option> <argument>]

-c <inputfile> Specifies the input file (a THP file). This argument must be specified.

-s <wavfile> Specifies the sound file (a wav file) that will be substituted. This
argument must be specified.

-d <outputfile> Specifies the output file (a THP file). If this argument is not specified,
then the THPConv tool will overwrite the input file.

The THPConv tool supports the following options:
-r <frame rate> Specifies the movie frame rate. The frame rate can be set in the range of 1.0

to 59.94. If no value is specified, then the default value (29.97) is
utilized.

-o With THP movie data, the offset to each frame's data can be stored as a table
(see Section 6.3.4.3). When this argument is specified, the THPConv tool creat
es an offset table inside the THP data. If this argument is not specified,
then an offset table will not be created inside the THP data.

-v Turns the verbose mode on.

Note: When the THPConv tool replaces the audio data that is already inside the THP movie data,
the old THP audio data is deleted. Once the THP audio data has been deleted it cannot be
recovered. Moreover, if an output file is not specified when the audio data is replaced, then the
THPConv tool will overwrite the existing THP movie data. Thus, when replacing audio data, take
the precaution of creating a backup file or specifying an output file, so you do not inadvertently
lose data.

Note: If the playback duration of the wav file is longer than that of the THP movie data, then when
the wav file is substituted for the existing audio data, that portion of the wav file that is longer than
the THP movie data will not be converted. Conversely, if the playback duration of the THP movie
data is longer than that of the wav file, then there will be no sound during that extra time.

Note: If the THP movie data that has been specified as the input file does not contain audio data,
this operation will add THP audio data to the specified file.

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

37

THP Library

6.3 Data Formats

6.3.1 QuickTime Motion JPEG Files

The THPConv tool can convert QuickTime Motion (Photo) JPEG files into THP movie data. However, the
following restrictions apply to the video data and the audio data stored inside the Motion JPEG file:

・The video data

- Only the JPEG baseline DCT format is supported

- Only sequential coding is supported

- Only 4:2:0 sub-sampling is supported

- The pixel count must be a multiple of 16 both vertically and horizontally

・The audio data

- Must be uncompressed 16-bit PCM data

- Monaural (1 channel) and stereo (2 channels) are supported

- Only playback frequencies of 32KHz and 48KHz are supported

If the Motion JPEG file does not fully meet these restrictions, then the THPConv tool will output an error
and the process will stop.

Note: The THPConv tool only supports Photo-JPEG codec QuickTime Motion JPEG files. It does
not support Motion JPEG A/B.

Note: When the THPConv tool converts the Motion JPEG file's audio data into THP audio data, the
playback frequency is altered (48,000Hz 48,043Hz / 32,000Hz 32,028Hz) to match the
characteristics of the Nintendo GameCube. It is not necessary to create a QuickTime file ahead of
time, with the playback frequency already changed for the Nintendo GameCube. However, if the
playback frequency of the audio data is something other than 48,000Hz or 32,000Hz, then the
THPConv tool will output an error and the process will stop.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

38

 THP Library

6.3.2 Sequential JPEG files

The THPConv tool can convert sequential JPEG files (a group of JPEG files, with consecutive numbers at
the end of the files that indicate the ordered sequence for playback) into THP movie data. If audio data is
interleaved in the sequential JPEG files, either a wav file must be specified with the -s option during the
conversion process, or the wav file must be added after the sequential JPEG files have been converted.

The following restrictions apply to the sequential JPEG files that can be handled by the THPConv tool:

- Consecutive numbers corresponding to the frame numbers must be at the end of the sequential
JPEG files.

- The JPEG file that corresponds to the first frame of the THP movie data can have any number,
but the files thereafter must be numbered consecutively from that number.

- The frame number at the end of the filename should have the same number of digits as the final
frame, with zeros attached to the front.

- All of the JPEG files that are collected together into a single set of THP movie data must have the
same number of vertical pixels and the same number of horizontal pixels.

In the example below, sequential JPEG files are used to create 4 seconds worth of THP movie data at a
frame rate of 30 frames per second. The sequential JPEG files (testxxxx.jpg) are numbered as shown
below:

Frame 1 : test001.jpg
Frame 2 : test002.jpg
Frame 3 : test003.jpg

: :
Frame 51 : test051.jpg
Frame 52 : test052.jpg

: :
Frame 118 : test118.jpg
Frame 119 : test119.jpg
Frame 120 : test120.jpg

The following restrictions apply to the individual JPEG files that comprise the sequential JPEG file group:

- Only the JPEG baseline DCT format is supported

- Only sequential coding is supported

- Only 4:2:0 sub-sampling is supported

- The pixel count must be a multiple of 16 both vertically and horizontally

If the sequential JPEG files do not fully meet these restrictions, then the THPConv tool will output an error
and the process will stop.

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

39

THP Library

6.3.3 wav files

The THPConv tool can convert a common wav file into THP audio data, and interleave it into the THP
movie data. However, there are certain restrictions as to what kinds of wav files the THPConv tool can
convert:

- Must be uncompressed 16-bit PCM data

- Monaural (1 channel) and stereo (2 channels) are supported

- Only playback frequencies of 32KHz and 48KHz are supported

If the wav file does not fully meet these restrictions, then the THPConv tool will output an error and the
process will stop.

Note: When the THPConv tool converts the wav file's audio data into THP audio data, the playback
frequency is altered (48,000Hz 48,043Hz / 32,000Hz 32,028Hz), to match the characteristics of
the Nintendo GameCube. It is not necessary to create a wav file ahead of time, with the playback
frequency already changed for the Nintendo GameCube. However, if the playback frequency of
the audio data is something other than 48,000Hz or 32,000Hz, the THPConv tool will output an
error and the process will stop.

6.3.4 THP movie data

The following sections explain the format of the THP movie data that is output by the THPConv tool.

6.3.4.1 THPHeader

THPHeader is situated at the beginning of the THP movie data. It holds information for the proper
initialization of the THP Player.

"THP\0" (magic[4]) and the version number are stored at the start of THPHeader, in order to identify the
THP movie data. The upper two bytes of the version number indicate the major number and the lower 2
bytes the minor number. The THPConv tool automatically sets the version number. THP_VERSION is
defined in the header file (THPSimple.h, THPPlayer.h) of both Players.

Following this information inside THPHeader, is information about the maximum frame data size (bufSize)
and the maximum number of audio samples (audioMaxSamples), which together are used by the THP
Player to calculate the size of the work region.

After this comes other information, including the THP movie data's frame rate (frameRate) and the total
number of frames (numFrames).

The THP movie data format is designed with extensibility in mind, and can accommodate additional data.
The offset to this additional data also can be stored in THPHeader (beginning from
finalFrameDataOffsets).

6.3.4.2 THPFrameCompInfo

Data can be interleaved in frames and stored inside the THP movie data. In the THP library, these
interleaved data are referred to as components. THP video data and THP audio data are also
components. Designed with extensibility in mind, the THP movie data can store components other than
video and audio.

THPFrameCompInfo holds numComponents, which is the number of components included in the THP
movie data, and frameComp[], an array showing the order of the various components stored in each
frame. This array stores the THP Components descriptors (see table below) in the order in which the
components are interleaved.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

40

 THP Library

Video Comp 0

Audio Comp 1

Undefined 2

Undefined 3

Undefined 4

Undefined 5

Undefined 6

Undefined 7

 - 8

 - 9

 - 10

 - 11

 - 12

 - 13

 - 14

 - 15

Nothing FF

Table 4 THP Components descriptors

For example, if the first component of the frame is THP video data and the second component is THP
audio data, then THPFrameCompInfo would look like this:

numComponents = 2 : Number of components
frameComp[0] = 0 : Video data descriptor
frameComp[1] = 1 : Audio data descriptor
frameComp[2..15] = FF : No data

After THPFrameCompInfo comes information on each component (THPVideoInfo, THPAudioInfo, etc.).
This latter component information must also be in the order of the THP Components descriptors stored in
the frameComp array.

6.3.4.2.1 THPVideoInfo

THPVideoInfo holds the THP video data's vertical & horizontal size information (xSize, ySize). This
information is used for proper playback of the THP video data.

6.3.4.2.2 THPAudioInfo

THPAudioInfo holds the number of channels (sndChannels), the playback frequency (sndFrequency) and
the total number of audio samples (sndNumSamples) of THP audio data. This data is used for proper
playback of the THP audio data.

6.3.4.3 THPFrameOffsetData

The THP movie data can also maintain a data table with the offset to the start of every frame. When the
THPConv tool is used with the -o option, THPFrameOffsetData is created in the THP movie data. If the -o
option is not specified, then THPFrameOffsetData will not be created. Use this offset data table for
special playback purposes, such as to start movie playback from any frame.

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

41

THP Library

6.3.4.4 MovieData

MovieData holds the interleaved component data for each frame.

6.3.4.4.1 FrameHeader

FrameHeader is situated at the front of the MovieData data for every frame.

Stored at the start of FrameHeader are the size of the previous frame (frameSizePrevious) and the size of
the next frame (frameSizeNext). For the very first frame, the size of the very last frame is stored in
frameSizePrevious. Similarly, for the very last frame, the size of the very first frame is stored in
frameSizeNext.

Following these two values, FrameHeader stores the data size information in each component interleaved
in that frame. This size information must be stored in the order in which the components are interleaved,
as defined in THPFrameCompInfo.

The size of each frame must be a multiple of 32 bytes. Frames should be padded with 0, as needed, at
the end of the frame data to meet this requirement.

Note: The THP audio data is compressed in the Nintendo GameCube audio system's DSP ADPCM
format. Because of this, the number of audio data samples stored in every frame (with the
exception of the last frame) must be a multiple of 14.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

42

 THP Library

Marker name name size Comments
THP Start

THP Header magic[4] char 4 byte "THP\0"
version u32 4 byte Version information
bufSize u32 4 byte Data size of largest Frame
audioMaxSamples u32 4 byte Largest numberof samples of Audio
frameRate f32 4 byte Framerate
numFrames u32 4 byte Total number of frames
firstFrameSize u32 4 byte Size of first frame
movieDataSize u32 4 byte Size of MovieData
compInfoDataOffsets u32 4 byte Offset to CompInfo
offsetDataOffsets u32 4 byte Offset to FrameOffsetData
movieDataOffsets u32 4 byte Offset to first frame
finalFrameDataOffsets u32 4 byte Offset to last frame
* * * Can be extended

FrameCompInfo numComponents u32 4 byte Number of components in frame. Max is 16
frameComp[16] u8 1 * 16 byte Array of component type descriptors

Video Info xSize u32 4 byte Horizontal width
ySize u32 4 byte Vertical width

Audio Info sndChannels u32 4 byte Number of soumd channels
sndFrequency u32 4 byte Sound frequrncy
sndNumSamples u32 4 byte Total number of samples played in Movie

(OffsetData) Second offset Stores the offset values to each frame.
- (Example, mid-playback)

Offset to the end of the final frame * With/without the THPConv option (-o) THPFrameOffsetData

THPHeader

THPFrameCompInfo

THPVideoInfo

THPAudioInfo

MovieData frameSizeNext u32 4 byte Total size of frame 2
frameSizePrevious u32 4 byte Total size of frame Final
size of Comp[0] vdoFilesize u32 4 byte Video file size
size of Comp[1] sndFileSize u32 4 byte Sound file size

Pad
frameSizeNext u32 4 byte Total size of frame 3
frameSizePrevious u32 4 byte Total size of frame 1
size of Comp[0] vdoFilesize u32 4 byte Video file size
size of Comp[1] sndFileSize u32 4 byte Sound file size

Pad
frameSizeNext u32 4 byte Total size of frame 4
frameSizePrevious u32 4 byte Total size of frame 2
size of Comp[0] vdoFilesize u32 4 byte Video file size
size of Comp[1] sndFileSize u32 4 byte Sound file size

Video frameComp[0]

Pad
THP End

Video file size
of frame 1

Sound file sizeframeComp[1]

Sound file size

frameComp[0] Video file size
of frame 2

padding data

Frame 1
Video file

Sound file

frameComp[1]

Movie Data

Video

Audio

Video

Audio

frame
Final

Frame 3
Video file

frame
1

frame
2

frame
3

Sound file

frameComp[0]

Frame 2
Video file

padding data

padding data

* Size of FrameHeader varies depending on
number of components

Frame
Header

Frame
Header

Frame
Header

Video file size
of frame 3

Audio frameComp[1] Sound file Sound file size

Frame data is
multiple of
32 bytes

Figure 1 THP file format

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

43

THP Library

6.4 Items to Note When Creating
THP Movie Data

The following items should be noted when using the THPConv tool.

6.4.1 Caution regarding the path

The THPConv tool makes use of dsptool(D).dll, which comes with the Nintendo GameCube SDK. In order
to use THPConv tool, you must adhere to the path: \(DolphinRoot)\x86\bin.

6.4.2 Sufficient free hard-disk space

The THP movie data output by the THPConv tool is nearly the same size as the original data before the
conversion. When the THPConv tool converts video data and audio data into THP movie data, it creates
temporary files in the current directory. These temporary files are also around the same size as the
original data.

Be sure to confirm that there is sufficient free space on the hard disk when using the THPConv tool.

Necessary free hard-disk space = Size of original data x 3

Formula 5 Required free hard-disk space when using THPConv

When the THPConv tool creates temporary files, it names the temporary file for video data __tmp_VD and
the temporary file for audio data __tmp_AD. If files with these same filenames exist in the current
directory, the THPConv tool will overwrite them.

6.4.3 The execution environment for the THPConv tool

If the THPConv tool is executed on bash, sometimes the tool will not get the input file that was specified
by the argument and the THP file will not be created as anticipated. For this reason, be sure to execute
the THPConv tool from the command line.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

44

 THP Library

7. Cautions

7.1 General Cautions

7.1.1 Sub-sampling

The THP library only supports 4:2:0 sub-sampling.

For a JPEG file with 4:2:0 sub-sampling, the Cb & Cr components are culled as shown in the figure below
in regards to the Y component:

Y Cb Cr

Figure 2 4:2:0 sub-sampling

If the input JPEG data does not have 4:2:0 sub-sampling, then the THPConv tool will output an error and
the conversion process will stop. If it is not clear what kind of sub-sampling is performed on the JPEG
data output by a commercial graphics application, you can determine whether the THP library will be able
to decode the data by seeing what happens when the file is input to the THPConv tool.

7.1.2 The Players and the GX settings

The THP Simple Player and the THP Player both utilize the THP library's low-level API function
THPVideoDecode to decode the THP video data. This function outputs the decoded data in YUV texture
format. Both Players draw to the screen by pasting this YUV texture format decoded data to polygons.

Both Players effect major changes to the GX settings when drawing the decoded data. For applications
that make use of THP movie data, and especially for applications that play movies and draw objects at the
same time, be sure to rectify the GX settings that are used for the drawing of objects, fixing them in each
frame after the movie has been drawn and before the object is drawn.

7.1.3 Output of THP Audio Data for Players

When the THP Simple Player and THP Player are used with AX or MusyX simultaneously, they mix audio
output data from the various audio libraries with THP audio data using the CPU, and send it to the audio
interface.

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

45

THP Library

7.1.4 Sampling rate of THP audio data with simultaneous use of audio libraries

The sampling rate for THP audio data needs to be 32khz when the THP Simple Player and the THP
Player are used with AX and MusyX simultaneously.

7.1.5 Monitoring the optical disc drive during streaming playback
When streaming THP movie data from the optical disc for playback, please monitor the state of the disc
drive from inside the main loop that calls the THP Player's various API functions and draws the frame
buffer, and perform the proper process for the given disc drive state. The code shown below is an
example of such processes, and you do not need to follow the exact same procedure.

switch(DVDGetDriveStatus())
{

case DVD_STATE_FATAL_ERROR:
Stop playback
break;

case DVD_STATE_NO_DISK:
Stop playback
break;

case DVD_STATE_COVER_OPEN:
Pause playback
break;

case DVD_STATE_WRONG_DISK:
Stop playback
break;

case DVD_STATE_RETRY:
Stop playback
break;

}

Code 66 Example of monitoring drive inside main loop

7.1.6 Handling the sample data

The sample data that accompanies this library (rebirth.thp) is provided strictly for reference purposes. The
misappropriation of this sample data and its duplication or alteration without the permission of Nintendo of
America is prohibited.

* Sample data [rebirth.thp] : Copyright (c) 2000 Nintendo

 Producer mix core（http://www.mix-core.com）

 CG Designers Shunichi Shirai, Yutaka Nishikawa, Makoto Nishibori,

Takahiro Onishi, Hiroyuki Kusugawa

 Sound Composer Masaya Tsunemoto

 Violinist Yoko Yoshida

 * Please direct all queries regarding this sample data to Nintendo of America.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

46

 THP Library

7.2 Cautions regarding the THP Player

7.2.1 The main loop

When playing THP movie data, make sure that the main loop that draws to the screen and calls the THP
Player functions is created with the loop set to 1vsync.

THPPlayerPlay()

while(1)
{

.

.

THPPlayerDrawCurrentFrame();
.
.

VISetNextFrameBuffer();
VIFlush();
VIWaitForRetrace();

}

Code 67 Restriction on main loop when using the THP Player

The THP movie data may not play smoothly if the main loop is set to loop at anything other than 1vsync.

7.2.2 The THPPlayerDrawCurrentFrame function

Sometimes the call to the THPPlayerDrawCurrentFrame function may fail (returned value = -1) even
after the call to the THPPlayerPlay function has succeeded. The reason is because, internally,
playback has been delayed past the proper timing for the start of play.

Basically speaking, the first frame of decoded data is fetched by the THP Player's VI post callback
function at the time of the vsync right after the THPPlayerPlay function is called (though in the case of
an interlaced movie, this action could be delayed due to restrictions on the first field). It is after this
process that drawing of video data by the THPPlayerDrawCurrentFrame function becomes possible.

If you are drawing movies and objects at the same time, please check the value returned by the
THPPlayerDrawCurrentFrame function and confirm that it is some frame number other than -1 (failure)
before displaying the object.

If it is not an interlaced movie, then you can use the procedure below to make certain that the
THPPlayerDrawCurrentFrame function is called successfully:

THPPlayerPlay();

VIWaitForRetrace(); <------- At the time of this vsync, the first frame is
fetched by the VI post callback.

while(1)
{

.

.

THPPlayerDrawCurrentFrame();
.
.

VISetNextFrameBuffer();
VIFlush();
VIWaitForRetrace();

}

Code 68 How to make certain the call to the THPPlayerDrawCurrentFrame function succeeds

© 2002 Nintendo of America Inc. DOL-06-0183-001-A1
 Released: 3/28/02

47

THP Library

7.2.3 VI post callback

The THP Player utilizes VI post callbacks in order to control movie playback. Callbacks that are
registered before the registration of the THP Player's VI post callback function are called via the Player's
VI post callback. At the end of playback (i.e., when THPPlayerStop is called), the Player returns the VI
post callback to its origin.

7.2.4 Interlaced movies

The THP Player supports the playback of interlaced movies, but only if the format is such that the data in
every frame contains even fields and odd fields that are alternately interleaved in each scan. The even
and odd fields should be set up so that each field comes 1/59.94 seconds after the previous field for
NTSC and MPAL, and 1/25 seconds for PAL

When the data exists in this format, the timing for the start of playback is affected by whether the data in
each frame begins with the even field or the odd field.

The THP Player uses the second argument of the THPPlayerPrepare function to get information on the
scanning order of the interlaced movie, and to automatically adjust the timing of the start of playback.

There are no restrictions on the screen size for interlaced movies that can be played by the THP Player.
However, whether each frame begins with an even field or an odd field places restrictions on the drawing
location when the movie is drawn to the screen. The developers must adjust the drawing location
themselves.

When an interlaced movie is scaled, the position of the even and odd lines inside the frame will be
misaligned, and it may not be possible to play the movie back correctly. For this reason, do not scale
interlaced movies for playback.

Below is a list of the restrictions that apply to interlaced movies that can be played with the THP Player:

• The even fields and the odd fields must be interleaved.
• The frame rate must be 29.97 frames per second for NTSC and MPAL, and 25 frames for PAL.
• The developer must specifiy in the THP Player whether the frame data that comprises the interlaced

movie is scanned in the order of even field odd field, or odd field even field.
• There are no restrictions on screen size, but the drawing location must be adjusted.
• The decoded data canot be scaled.

DOL-06-0183-001-A1 © 2002 Nintendo of America Inc.
Released: 3/28/02

48

	Introduction
	Overview
	Sample program
	The organization of this document

	Using the Simple Player to Playback THP Movie Data
	Source files
	How to use the Simple Player

	The THP Simple Player API
	READ_BUFFER_NUM
	AUDIO_BUFFER_NUM
	NONE / LOOP
	ALONE/WITH_AX/WITH_MUSYX
	THPDecodeError
	THPVideoInfo
	THPAudioInfo
	THPSimpleInit
	THPSimpleQuit
	THPSimpleOpen
	THPSimpleClose
	THPSimpleCalcNeedMemory
	THPSimpleSetBuffer
	THPSimplePreLoad
	THPSimpleAudioStart
	THPSimpleAudioStop
	THPSimpleLoadStop
	THPSimpleDecode
	THPSimpleDrawCurrentFrame
	THPSimpleSetVolume
	THPSimpleGetVolume
	THPSimpleGetVideoInfo
	THPSimpleGetAudioInfo
	THPSimpleGetFrameRate
	THPSimpleGetTotalFrame

	The THP Player API
	READ_THREAD_PRIORITY / AUDIO_THREAD_PRIORITY / VIDEO_THREAD_PRIORITY
	READ_BUFFER_NUM
	DECODE_BUFFER_NUM
	STOP / PREPARE / PLAY / PLAYED / PAUSE / ERROR
	NONE / LOOP / ODD_INT / EVEN_INT
	ALONE/WITH_AX/WITH_MUSYX
	THPVideoInfo
	THPAudioInfo
	THPPlayerInit
	THPPlayerQuit
	THPPlayerOpen
	THPPlayerClose
	THPPlayerCalcNeedMemory
	THPPlayerSetBuffer
	THPPlayerPrepare
	THPPlayerPlay
	THPPlayerStop
	THPPlayerPause
	THPPlayerSkip
	THPPlayerDrawCurrentFrame
	THPPlayerSetVolume
	THPPlayerGetVolume
	THPPlayerGetVideoInfo
	THPPlayerGetAudioInfo
	THPPlayerGetFrameRate
	THPPlayerGetTotalFrame
	THPPlayerGetState
	THPPlayerDrawDone

	The THP Library's Low Level API
	THP_WORK_SIZE
	Error codes
	THP_AUDIO_INTERLEAVE / THP_AUDIO_NO_INTERLEAVE
	THPInit
	THPVideoDecode
	THPAudioDecode

	How to Create THP Movie Data
	Overview
	How to use
	Converting QuickTime Motion JPEG files into THP movie data
	Converting sequential JPEG files into THP movie data
	Replacing the THP audio data inside the THP movie data

	Data Formats
	QuickTime Motion JPEG Files
	Sequential JPEG files
	wav files
	THP movie data
	THPHeader
	THPFrameCompInfo
	THPVideoInfo
	THPAudioInfo

	THPFrameOffsetData
	MovieData
	FrameHeader

	Items to Note When Creating THP Movie Data
	Caution regarding the path
	Sufficient free hard-disk space
	The execution environment for the THPConv tool

	Cautions
	General Cautions
	Sub-sampling
	The Players and the GX settings
	Output of THP Audio Data for Players
	Sampling rate of THP audio data with simultaneous use of audio libraries
	Monitoring the optical disc drive during streaming playback
	Handling the sample data

	Cautions regarding the THP Player
	The main loop
	The THPPlayerDrawCurrentFrame function
	VI post callback
	Interlaced movies

